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A B S T R A C T

We develop a novel recovery theorem based on no-arbitrage principles. To implement our Arbitrage-Based
Recovery Theorem empirically, one needs to observe the Arrow–Debreu prices only for one single maturity.
We perform several different density tests and mean prediction tests using more than 26 years of S&P 500
options data, and we find evidence that our method can correctly recover the probability distribution of the
S&P 500 index return on a monthly horizon, despite the presence of a non-trivial permanent SDF component.

1. Introduction

Extracting information about the physical probabilities of future
events from market data has been the focus of finance research for
several decades. A huge variety of applications in financial economics
relies on knowledge of physical probabilities, such as portfolio choice,
risk management, and asset pricing, just to name a few. Market practice
usually hinges upon estimating physical probabilities from histori-
cal data. Nevertheless, estimates are only as reliable as good of a
representative the historical data are.1 Therefore, extracting physical
probabilities from real-time market data in a forward-looking manner
(as opposed to estimating them from backward-looking historical data)
would be of paramount importance.

However, since the seminal works of Black and Scholes (1973)
and Merton (1973) (and even earlier, of Bachelier, 1900), we know

✩ Nikolai Roussanov was the editor for this article. We thank Zsolt Bihary, Jens C. Jackwerth, Christian S. Jensen, Yongjin Kim, Péter Kondor, Yaxuan Qi,
Alexander Szimayer, Jianfeng Xu, and Steven Utke for useful comments.

1 Already Markowitz (1952) warns about basing one’s investment decision on expected returns and (co)variances which have been estimated from historical
data: ‘‘... (W)e must have procedures for finding reasonable 𝜇𝑖 and 𝜎𝑖𝑗 . These procedures (...) should combine statistical techniques and the judgment of practical men.
(...) (T)he statistical computations should be used to arrive at a tentative set of 𝜇𝑖 and 𝜎𝑖𝑗 . Judgment should then be used in increasing or decreasing some of these
𝜇𝑖 and 𝜎𝑖𝑗 on the basis of factors or nuances not taken into account by the formal computations.’’

2 The stochastic discount factor is transition independent if it can be written as the product of a constant and a fraction, the numerator of which is a positive
scalar-valued function of the state variable evaluated at the arrival state, and the denominator of which is the same function evaluated at the initial state. I.e., a
transition-independent SDF has the functional form 𝑚𝑖,𝑗 = 𝛿 × ℎ

(

𝜃𝑗
)

∕ℎ
(

𝜃𝑖
)

, where 𝑖 is the initial state, 𝑗 is the arrival state, 𝛿 ∈ R>0, 𝜃 is the state variable, and
ℎ is a positive scalar-valued function.

3 As Jensen et al. (2019) point out, the recovered Arrow–Debreu matrix is almost surely unique. I.e., the set of parameters for which there exists a continuum
of recovered Arrow–Debreu matrices (instead of a unique recovered Arrow–Debreu matrix) has a measure of zero.

that asset prices, per se, depend only on risk-neutral probabilities,
but not on physical probabilities. Therefore, extracting information
about physical probabilities from asset pricing data is not possible
without imposing further assumptions. In a recent seminal paper, a
set of such assumptions was stated and the corresponding physical
probability recovery theory developed by Ross (2015). In a finite-state
framework Ross demonstrates that if we are able to observe the entire
Arrow–Debreu price matrix and the stochastic discount factor (SDF)
is transition independent,2 then the physical probability measure can
be recovered. Since in reality we can observe only one row of the
Arrow–Debreu price matrix (and not the entire matrix), Ross proposes
an approach where observing the transition state prices for as many
maturities as the number of possible states, the entire Arrow–Debreu
price matrix can be reconstructed.3
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Ross’s recovery theorem has initiated a lively academic debate
both in the theoretical and in the empirical finance literature. Sev-
eral years before the emergence of the recovery theorem, Alvarez
and Jermann (2005) and Hansen and Scheinkman (2009) showed
that the stochastic discount factor process can be decomposed into
the product of a transition-independent factor (the transitory compo-
nent) and a martingale (the permanent component). Building on this
factorization, Borovička et al. (2016) point out that Ross’s approach
recovers the true physical probabilities if and only if the martingale
component of the SDF process is constant. This implicit assumption of a
constant martingale component is, however, incompatible with several
mainstream asset pricing models, for example, with the long-run risk
model of Bansal and Yaron (2004). Using options on the 30-year
Treasury bond futures, Bakshi et al. (2018) confirm empirically that
the martingale component is unlikely to be constant. Qin et al. (2018)
arrive at the same conclusion, using U.S. Treasury data. Dillschneider
and Maurer (2019), after extending the recovery theorem to contin-
uous state spaces, use S&P 500 index options to argue that Ross’s
recovery seems to be misspecified. Tran and Xia (2018) highlight the
importance of the Arrow–Debreu price matrix dimension when imple-
menting Ross’s recovery theorem. Martin and Ross (2019) apply the
idea of the recovery theorem to study the properties of the spot yield
curve. Schneider and Trojani (2019) recover the conditional minimum
variance projection of the pricing kernel on tradeable realized moments
of market returns. Pazarbasi et al. (2021) amend the recovery frame-
work with investor heterogeneity. In an early paper, Carr and Yu (2012)
extend Ross’s recovery to a bounded diffusion context, and Walden
(2017) derives necessary and sufficient conditions of when recovery
is possible with unbounded diffusion processes. A (non-exhaustive)
list of further studies on recovery includes Dubynskiy and Goldstein
(2013), Huang and Shaliastovich (2014), Liu (2014), Massacci et al.
(2016), Park (2016), Qin and Linetsky (2016), Ghosh and Roussellet
(2020), Jensen (2021), and Heston (2021).

Jackwerth and Menner (2020) perform a thorough empirical anal-
ysis to assess whether the physical probabilities recovered by Ross’s
Recovery Theorem and other approaches are indeed equal to the
true physical probabilities. Using monthly observations of more than
30 years of S&P 500 European-style options, they recover the one-
month physical probability distributions of the S&P 500 index level.
Then, based on several different density tests and mean- and variance
prediction tests, Jackwerth and Menner reject the hypothesis that
realized S&P 500 index values are drawn from the recovered physical
probability distributions.

The empirical analysis of Jackwerth and Menner (2020) also points
out that applying Ross’s recovery theorem to reconstruct the entire
Arrow–Debreu price matrix can lead to a recovered transition state
price matrix with highly counterintuitive features. E.g., even though
one would expect high recovered state prices on the main diagonal
of the Arrow–Debreu price matrix, the recovered Arrow–Debreu price
matrix of Jackwerth and Menner tends to have high state prices in
states which are far off-diagonal. Furthermore, the model-implied risk-
free rates are often negative or their magnitude is as high as several
hundred percent.

Besides assuming a constant SDF martingale component, empirical
implementations of Ross’s recovery theorem also assume that transition
state prices are time-homogeneous. Jensen et al. (2019) develop the
Generalized Recovery Theorem, where they relax this assumption. They
show that as long as we are able to observe the transition state prices
for at least as many maturities as the number of possible states, physical
probabilities (corresponding to the assumed SDF) can almost surely be
recovered, without assuming time-homogeneity.

Jensen et al. (2019) also demonstrate when (and how) Generalized
Recovery can be implemented even if the number of possible states
grows over time. Standard examples for such a case include the models
of Mehra and Prescott (1985) and of Cox et al. (1979). Basically, one
needs to make use of the fact that the SDF can be expressed as a

function (with a fixed number of parameters) of the state variable.
Recovery then means recovering the parameter values. Then, after
calculating the SDF values, recovering the physical probabilities is
straightforward. In this structured version of the Generalized Recovery
framework, one needs to observe the transition state prices for at least
as many maturities as the number of unknown parameters.

An unattractive requirement of each of the currently available
recovery theorems is that one needs to observe the transition state
prices for several different maturities in order to recover the physical
probabilities for one single maturity. Even in the simplest case when the
only state variable is the asset price, one needs to observe the transition
state prices for at least as many different maturities as many possible
values the asset price can take. For example, if we are interested in the
physical probabilities over a one-month horizon and we can observe
the monthly transition state prices for up to one year of maturity,
then (assuming non-overlapping observation periods) the asset price
is allowed to take only twelve different values. As Ross (2015) notes,
such a coarse grid leads to poorly discretized transition state prices
and eventually poorly discretized recovered probabilities. Audrino et al.
(2019) use overlapping observation periods and transition state prices
of 1∕10 of a month, but without additional restrictions, the recovered
one-month transition state prices still exhibit counterintuitive features,
as it is demonstrated by Jackwerth and Menner (2020). An adapted
version of the Generalized Recovery approach of Jensen et al. (2019)
suggests a way out: if the SDF can be written as a known function (with
a small number of unknown parameters) of the state variables, then
it is enough to observe the transition state prices for only as many
different maturities as the number of parameters (which is, ideally,
much lower than the number of possible values of the state variable).
There is, however, a trade-off: the modeler has to exogenously provide
the functional form of the SDF. The validity of the recovered physical
probabilities will then also depend on the validity of the assumed SDF
functional form. Furthermore, one still needs to observe the transition
state prices for several different maturities, if the SDF has more than
one parameter.

When recovery theorems are empirically implemented in the lit-
erature, the price of a traded asset is usually assumed to constitute
the state variable. The goal is then to extract a ‘‘flexible’’ form of
the SDF in the sense that the SDF is restricted only by the transition
independence assumption. In this paper, we show that such a flexibility
is actually spurious, and the recovered SDF cannot be anything else
but the reciprocal of the gross asset return. This result follows from an
additional no-arbitrage restriction ignored by the existing literature.

First, we develop our Arbitrage-Based Recovery approach when
the state space (spanned by the price of a traded asset) is discrete.
In such a framework, the pricing operator is represented by a posi-
tive square matrix (the Arrow–Debreu price matrix), and the existence
and uniqueness of our recovered probability measure relies on the
Perron–Frobenius theorem. Then, we show that the implications of
Arbitrage-Based Recovery also hold when the state space is continuous
and the state variable (the price) can take any real value in a closed
and bounded interval. Since in such a framework the pricing operator
is an integral operator (instead of a square matrix) and one cannot rely
on the Perron–Frobenius theorem, we prove existence and uniqueness
of our recovered probability measure directly. Finally, we show that
our results still hold and Arbitrage-Based Recovery can also be applied
when the state variable is the price–dividend ratio instead of the price
itself.

Besides contributing to the literature on recovery theorems, our
paper also contributes to the emerging literature on the factorization
of the SDF into a transitory and a permanent component. Namely, we
show that as long as the state variable is the price of a traded asset
and the state space is bounded and closed, under a new numeraire the
transitory SDF component is equal to the inverse of the realized gross
return on that asset. Then, we show that the same result holds when
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the state variable is the price–dividend ratio (instead of the price itself)
under another new numeraire.

Our results on the SDF factorization lead us directly to the next
contribution of our paper. Namely, we add to the recent literature
on estimating the expected return on the market in a forward-looking
manner, based on options data. Martin (2017) shows that as long as
the ‘‘negative correlation condition’’ is satisfied, a lower bound for the
expected return on the market can be derived in real time, based on
option prices. Then, Martin demonstrates empirically that the lower
bound appears to be tight in the sense that the correlation in question
seems to be close to zero. Our paper contributes to these results in two
aspects. First, we show that Martin’s negative correlation condition is
actually a condition on the martingale component of the SDF under
a new numeraire when a bounded and closed price process spans
the state space. Namely, it imposes that the martingale component of
the SDF under the so-called dividend account numeraire is negatively
correlated with the total market return under the dollar numeraire.4
Second, we show that the probabilities recovered by the Arbitrage-
Based Recovery Theorem imply the same expected return on the market
as Martin’s lower bound.

Ross (2015) and other recovery theorems do not specify the state
variable. The state space is allowed to be spanned by any variable, as
long as options are traded on that state variable. The vast majority of
the empirical literature on recovery, however, focuses on state spaces
spanned by prices. The reason is pragmatic: most (liquid) options are
written on prices (e.g., on the S&P 500 index level).5 The fact that the
state variable is a price itself, however, can be used to our advantage,
and this aspect of the empirical implementation of recovery theorems
has been so far largely overlooked by the literature. In this paper,
we demonstrate that – after an appropriate change of numeraire –
the transitory component of the SDF can be directly inferred from
a theoretical recursive no-arbitrage restriction which the asset price
spanning the underlying state must satisfy. In a recent paper, Zhu
(2020) formulates a critique of Ross’s Recovery Theorem based on its
ignoring the Fundamental Theorem of Asset Pricing when developing
the Recovery Theorem itself. However, when the state variable is not a
price, the only no-arbitrage requirement is that the Arrow–Debreu price
matrix be non-negative – which in itself is assumed by Ross’s Recovery.
The Fundamental Theorem of Asset Pricing does not necessitate impos-
ing any additional assumptions in general. The additional connection
between Ross’s Recovery Theorem and the Fundamental Theorem of
Asset Pricing proposed by Zhu (2020) exists only in the special case
when the state variable is the price of a traded asset and the asset does
not pay any intermediate cash flow. In that case, the Perron–Frobenius
eigenvector is indeed equal to the vector of possible prices and the
corresponding eigenvalue is equal to one, as argued by Zhu (2020).
Still, Ross’s Recovery Theorem remains valid and it is not inconsistent
with the Fundamental Theorem of Asset Pricing; rather, the latter
pins down the unique solution of Ross’s recovery problem. However,
when the underlying asset potentially pays any intermediate cash flow
(e.g., dividend), as it is the case for stocks or the S&P 500 stock
market index, this implication does not hold any more under the dollar
numeraire. The numeraire has to be changed in order for it to reflect
the effects of the intermediate cash flow. Importantly, the recovered
stochastic discount factor will be transition independent only under
the new numeraire (and not the dollar), and the recovery exercise can
be interpreted as the long-term factorization of the SDF only under
the new numeraire. A pragmatic approach to handle intermediate cash
flows might be to use the cash-flow-reinvestment account value as the
state variable, but this still requires making an assumption about the

4 We provide the relevant definitions and we discuss these results in details
in Section 3.4.

5 Examples of options the underlying variable of which is not a price
include, among others, interest rate options and weather options.

paid cash flow in future states, because options are almost always
written on post-cash-flow prices, e.g., stock options are written on
post-dividend stock prices.

As an empirical contribution, we implement our Arbitrage-Based
Recovery Theorem using more than 26 years of S&P 500 stock market
index options data. We test the hypothesis that the realized monthly
returns of the S&P 500 market index are indeed drawn from the
probability distributions recovered by our Arbitrage-Based Recovery
Theorem. We find that this hypothesis cannot be rejected when using
our recovery approach, while it is confidently rejected when Jackwerth
and Menner (2020) test it using other recovery approaches. We also
demonstrate that this result does not contradict the findings of the
empirical literature on the importance of the permanent SDF compo-
nent. We show that the restrictive assumptions imposed by empirical
implementations of recovery theorems (e.g., that a closed and bounded
price process spans the space) imply an SDF which is very unlikely to
be equivalent to the true transitory SDF component. Hence, the fact
that the permanent SDF component is very volatile empirically (as we
confirm in Section 8.1) does not contradict the empirical success of our
Arbitrage-Based Recovery Theorem.

The paper is organized as follows. In Section 2, we develop our
Arbitrage-Based Recovery Theorem in a discrete-state-space frame-
work. In Section 3, we discuss several alternative interpretations of
the probabilities recovered by Arbitrage-Based Recovery. In Section 4,
we connect Arbitrage-Based Recovery to the long-term factorization
of Alvarez and Jermann (2005) and Hansen and Scheinkman (2009).
In Section 5, we extend our model into a continuous-state-space frame-
work, while in Section 6 we show how our theory can be implemented
if the state variable is the price–dividend ratio (instead of the price
itself). In Section 7, we implement our Arbitrage-Based Recovery The-
orem empirically using more than 26 years of S&P 500 index options
data. We test the hypothesis that the realized monthly returns of the
S&P 500 market index are indeed drawn from the probability distri-
butions recovered by our Arbitrage-Based Recovery Theorem, and we
also perform several robustness checks. In Section 8, we demonstrate
how the empirical success of our recovery approach can be reconciled
with the literature’s findings that the permanent SDF component is
empirically very volatile. Section 9 concludes. In Appendix A, we
provide methodological details on how we attach left and right tails
to the risk-neutral probability density functions when we implement
our Arbitrage-Based Recovery empirically. In the accompanying Online
Appendix, we give a brief overview of the currently available recovery
theorems, focusing on how Arbitrage-Based Recovery offers itself as the
next logical step in the evolutionary pathway of recovery theorems; we
provide a detailed treatment of specific dividend payment structures;
and we also provide there the proofs which are not included in the
paper.

2. Arbitrage-based recovery

Since the original Recovery Theorem was developed by Ross (2015),
a sequence of alternative recovery approaches has emerged. In the
Online Appendix, we provide a detailed comparison of the different
recovery approaches and the exact assumptions they pose.

In this section, we develop a novel recovery theorem which does
not require the observation of Arrow–Debreu prices for several different
maturities in order to recover the probabilities over a single period. The
key element of our approach is a change of numeraire, which enables us
to link the solution of the recovery (eigenvalue–eigenvector) problem
to an additional no-arbitrage criterion. Under the new numeraire, we
retain Ross’s assumption of a transition-independent stochastic discount
factor. By applying our version of the recovery theorem, we need to
observe the Arrow–Debreu prices only for the current state as initial
state and only for one single maturity, and from those observations we
can recover the physical transition probabilities corresponding to that
maturity. Our model can be applied to recover the physical probabil-
ities of the price movement of any asset, as long as the state space is
spanned by the price of that asset. A schematic demonstration of our
recovery theory can be found in Fig. 1.
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Fig. 1. Arbitrage-based recovery. One needs to observe the Arrow–Debreu prices (where the current state is the initial state) for only one maturity. If the SDF under the dividend
account numeraire takes the form 𝛿 × ℎ̂

(

𝑆𝑗
)

∕ℎ̂
(

𝑆𝑖
)

, where 𝛿 is a positive constant, 𝑆 is the asset price and the only state variable, and ℎ̂ is a positive function of 𝑆, then in the
absence of arbitrage opportunities the physical transition probabilities can be recovered.

Fig. 2. Timing in our model. At time 𝑡, we observe the stock price in the current state 𝑖. Then, at time 𝑡+ 1 in state 𝑗 the dividend 𝐷𝑖,𝑗 is paid. Right afterwards, we observe the
stock price 𝑆𝑗 .

2.1. Framework

Consider a discrete-time complete financial market. For the sake of
concreteness, we consider here the market for a stock, but our approach
can readily be applied for other long-term financial assets as well. The
only state variable in our model is the stock price, which can take 𝑛
possible values, collected in the 𝑛× 1 column vector 𝑺 ∈ R𝑛

>0. The 𝑛× 𝑛
matrix of one-period Arrow–Debreu prices is 𝑨$ ∈ R𝑛×𝑛

>0 . The dollar
sign in the superscript emphasizes that the Arrow–Debreu price matrix
corresponds to the dollar numeraire. The stock pays dividend in one
period, which is allowed to be stochastic. Denoting by 𝐷𝑖,𝑗 ∈ R≥0 the
dollar amount of dividend paid in one period if we go from state 𝑖 to
state 𝑗, we introduce the 𝑛 × 𝑛 gross dividend yield matrix 𝑭 ∈ R𝑛×𝑛

≥1
with elements

𝐹𝑖,𝑗 =
𝐷𝑖,𝑗 + 𝑆𝑗

𝑆𝑗
, (1)

where 𝑆𝑗 is the stock price in state 𝑗, observed just after the dividend
has been paid. The timeline in Fig. 2 demonstrates the timing in our
model. In our theoretical discussion, we do not restrict the form of
the dividend yield matrix 𝑭 apart from requiring dividends to be non-
negative (and therefore the elements of 𝑭 to be greater than or equal
to one).6

Now, we introduce the concept of a dividend account. A dividend
account has an initial (time-zero) value of $1. Then, after one period,
the account is increased by multiplying its value by the realized gross
dividend yield. So, its value after one period will be $1 × 𝐹𝑖,𝑗 if we
go from state 𝑖 to state 𝑗. Using the value of the dividend account as
numeraire, we can define a ‘‘currency’’ (denoted by 𝐷) whose value is
always equal to the dividend account value.

Next, consider the Hadamard (element-wise) product 𝑨D ≜ 𝑨$ ⊙𝑭 .
Since 𝐴$

𝑖,𝑗 is the current price in dollars (in state 𝑖) of receiving $1 in

6 In the Online Appendix, we discuss several specific forms of the gross
dividend yield matrix 𝑭 in details. In our empirical analysis in Section 7, we
assume that the dividend is known one period ahead.

one period in state 𝑗 (and nothing in other states), 𝐴
D

𝑖,𝑗 is the current
price in dollars (in state 𝑖) of receiving 1 × 𝐹𝑖,𝑗 dollars in one period
in state 𝑗 (and nothing in other states). Alternatively, we can interpret
𝐴
D

𝑖,𝑗 as the current price in units of 𝐷 (in state 𝑖) of receiving one unit

of 𝐷 in one period in state 𝑗 (and nothing in other states).7 Hence, 𝑨D

is the Arrow–Debreu price matrix under the 𝐷-numeraire.
The stochastic discount factor (SDF) under the dollar numeraire,

𝒎$ ∈ R𝑛×𝑛
>0 , is the (unique) 𝑛 × 𝑛 matrix such that

𝑨$ = 𝒎$ ⊙ 𝝅 (2)

holds, where 𝝅 ∈ R𝑛×𝑛
>0 is the physical transition probability matrix.

Similarly, the SDF under the 𝐷-numeraire is the unique 𝑛 × 𝑛 matrix

𝒎D ∈ R𝑛×𝑛
>0 such that

𝑨D = 𝒎D ⊙ 𝝅 (3)

holds.8 Substituting 𝑨D = 𝑨$ ⊙ 𝑭 in (3) and then dividing both sides
(element-wise) by 𝝅, we obtain that the relationship between the dollar
SDF and the 𝐷-SDF is
𝒎D = 𝒎$ ⊙ 𝑭 . (4)

Following Ross (2015), we now introduce the definition of a
transition-independent stochastic discount factor.

Definition 1. Consider a discrete-time finite-state complete-market
model where the only state variable is the post-dividend stock price 𝑆.
The stochastic discount factor 𝒎$ is said to be transition independent
if it can be expressed as

𝑚$
𝑖,𝑗 = 𝛿 ×

ℎ
(

𝑆𝑗
)

ℎ
(

𝑆𝑖
) , (5)

7 To see this, recall that at time zero 𝐷1 = $1.
8 Note that the physical transition probability matrix 𝝅 in (3) is the same

as in (2).
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where 𝑖 is the initial state, 𝑗 is the arrival state, 𝛿 is a positive scalar,
and ℎ∶R>0 → R>0 is a positive scalar-valued function.

Similarly, the stochastic discount factor 𝒎D is said to be transition
independent if it can be expressed as

𝑚
D

𝑖,𝑗 = 𝛿 ×
ℎ̂
(

𝑆𝑗
)

ℎ̂
(

𝑆𝑖
)
, (6)

where 𝛿 is a positive scalar, and ℎ̂∶R>0 → R>0 is a positive scalar-
valued function.

2.2. No-arbitrage and recovered physical probabilities

The purpose of our recovery theory – just as it is the purpose of
any other recovery theory – is to decompose the observed Arrow–
Debreu prices into the SDF and the physical probabilities. The first
building block of our approach, which we formalize in the following
theorem, establishes the uniqueness of the recovered physical transition
probabilities. Since the theorem holds under any numeraire, we do not
specify the numeraire of the Arrow–Debreu price matrix.

Theorem 1. Consider a discrete-time finite-state complete-market model
with a positive square Arrow–Debreu price matrix 𝑨 ∈ R𝑛×𝑛

>0 . There exists
a unique decomposition of the matrix 𝑨 such that 𝑨 = 𝜙𝒁 𝜫 𝒁−1, where
𝒁 ∈ R𝑛×𝑛

≥0 is a diagonal matrix with positive diagonal elements, 𝜫 ∈ R𝑛×𝑛
>0

is a stochastic matrix, 𝜙 ∈ R>0 is a positive scalar, and the uniqueness of
𝒁 is to be understood as ‘‘unique up to a positive scale factor’’.

Proof. The proof follows the logic of the proof of Result 1 in Martin and
Ross (2019). First, we prove the existence of 𝒁, 𝜫 , and 𝜙. According
to the Perron–Frobenius theorem, there exist a positive vector 𝒛 ∈ R𝑛

>0
and a positive scalar 𝜙 ∈ R>0 such that 𝑨𝒛 = 𝜙𝒛. Define 𝜫 ≜ 1

𝜙𝒁
−1𝑨𝒁,

where 𝒁 is a diagonal matrix with the elements of 𝒛 in its diagonal.
Since 𝜫 is positive and its elements in each of its rows sum to one, it
is a stochastic matrix. As one can check, 𝑨 = 𝜙𝒁 𝜫 𝒁−1 holds. Thus,
there indeed exist 𝜙, 𝒁, and 𝜫 satisfying the appropriate claims in the
theorem.

Now, we prove the uniqueness of 𝒁, 𝜫 , and 𝜙. Multiplying both
sides of 𝑨 = 𝜙𝒁 𝜫 𝒁−1 by 𝒁 𝜾 from the right (where 𝜾 is the 𝑛 × 1
column vector of ones), we obtain 𝑨𝒛 = 𝜙𝒛. According to the Perron–
Frobenius theorem, 𝜙 is unique and 𝒛 is unique up to a positive scale
factor. Hence, 𝒁 is also unique up to a positive scale factor. And if we
rearrange 𝑨 = 𝜙𝒁 𝜫 𝒁−1 as 𝜫 = 1

𝜙𝒁
−1𝑨𝒁, we find that therefore 𝜫 is

also unique. ■

Now, we impose our additional no-arbitrage condition. If there is no
arbitrage opportunity, then the time-𝑡 stock price must be equal to the
sum of each Arrow–Debreu prices multiplied by the time-(𝑡 + 1) cash
flows in the respective states. Since the stock cash flow at time 𝑡 + 1 is
the sum of the dividend and the post-dividend stock price, this means
that

𝑆𝑖 =
𝑛
∑

𝑗=1
𝐴$
𝑖,𝑗 ×

(

𝐹𝑖,𝑗 × 𝑆𝑗
)

∀𝑖 ∈ {1, 2,… , 𝑛} (7)

must hold, if there is no arbitrage opportunity. Note that 𝑆 is always
the stock price which we can observe in the stock market after dividend
payment : on the left-hand side 𝑆𝑖 is the stock price which we observe at
time 𝑡, and 𝑆𝑗 on the right-hand side is the stock price which we observe
at time 𝑡 + 1, right after we have received the dividend. Expressing (7)
in matrix notation (and switching the left-hand side and the right-hand
side), we find that
(

𝑨$ ⊙ 𝑭
)

𝑺 = 𝑺 (8)

must hold, if there is no arbitrage opportunity. And since 𝑨D = 𝑨$ ⊙𝑭
by definition, this no-arbitrage condition can be equivalently written
as

𝑨D𝑺 = 𝑺. (9)

Hence, interestingly, we find that the no-arbitrage condition (9)
is actually a condition on the Perron–Frobenius eigenvector and the
Perron–Frobenius eigenvalue of 𝑨D, i.e., the Arrow–Debreu price ma-
trix under the 𝐷-numeraire. We formalize this in the following lemma.

Lemma 1. Consider a positive square Arrow–Debreu price matrix under
the D-numeraire, 𝑨D ∈ R𝑛×𝑛

>0 , in a discrete-time finite-state complete-market
model. The only state variable is the post-dividend stock price in dollars,
the possible values of which are collected in the vector 𝑺 ∈ R𝑛

>0. If there is
no arbitrage opportunity, then the Perron–Frobenius eigenvector of 𝑨D is 𝑺
and its Perron–Frobenius eigenvalue is 1.

Proof. The fact that the Perron–Frobenius eigenvector of 𝑨D is 𝑺 and
its Perron–Frobenius eigenvalue is 1 readily follows from Eq. (9) and
the Perron–Frobenius theorem. ■

Now, we are ready to state our main theorem, in which we provide
our recovered physical transition probabilities.

Theorem 2 (Arbitrage-Based Recovery Theorem). Consider a discrete-time
finite-state complete-market model with a positive square Arrow–Debreu
price matrix under the dollar numeraire, 𝑨$ ∈ R𝑛×𝑛

>0 , and a gross dividend
yield matrix 𝑭 ∈ R𝑛×𝑛

≥1 . The state variable is the post-dividend stock price,
the possible values of which are collected in the vector 𝑺 ∈ R𝑛

>0. The
stochastic discount factor under the D-numeraire is assumed to be transition
independent. If there is no arbitrage opportunity, then the elements of the
physical transition probability matrix 𝜫 ∈ R𝑛×𝑛

>0 are

𝛱𝑖,𝑗 = 𝐴$
𝑖,𝑗 ×

𝑆𝑗 × 𝐹𝑖,𝑗

𝑆𝑖
(10)

for all 𝑖 ∈ {1,… , 𝑛} and 𝑗 ∈ {1,… , 𝑛}.

Proof. According to Theorem 1, there exist a unique positive scalar
𝜙, a unique diagonal matrix 𝒁 with positive diagonal elements, and
a unique stochastic matrix 𝜫 such that 𝑨D = 𝜙𝒁 𝜫 𝒁−1. Rearranging
this, we obtain 𝜫 = 1

𝜙𝒁
−1𝑨D𝒁. According to Lemma 1, 𝜙 = 1 and

𝑍𝑖,𝑖 = 𝑆𝑖. Substituting these values into the rearranged equation and
using the identity 𝑨D = 𝑨$ ⊙ 𝑭 , we find 𝛱𝑖,𝑗 = 𝐴$

𝑖,𝑗 × 𝐹𝑖,𝑗 × 𝑆𝑗∕𝑆𝑖. This
completes the proof. ■

The result of Theorem 2 offers itself as the next logical step in the
evolutionary path of recovery theorems. From a practical perspective,
according to the theorem, if there is no arbitrage opportunity and the
SDF under the 𝐷-numeraire is transition independent, we can uniquely
recover the physical transition probabilities in the state space spanned
by the (post-dividend) asset price.

2.3. Inferred stochastic discount factor

Similarly to recovering the physical transition probabilities, we
can also infer the unique transition-independent stochastic discount
factor under the 𝐷-numeraire, 𝒎D. We formalize this in the following
corollary.

Corollary 1. Consider a discrete-time finite-state complete-market model
with a positive square Arrow–Debreu price matrix under the dollar nu-
meraire, 𝑨$ ∈ R𝑛×𝑛

>0 , and a gross dividend yield matrix 𝑭 ∈ R𝑛×𝑛
≥1 . The

state variable is the post-dividend stock price, the possible values of which
are collected in the vector 𝑺 ∈ R𝑛

>0. The stochastic discount factor under the
D-numeraire is assumed to be transition independent. If there is no arbitrage
opportunity, then the stochastic discount factor under the D-numeraire is
𝑚
D

𝑖,𝑗 =
𝑆𝑖
𝑆𝑗

. (11)

Furthermore, the stochastic discount factor under the dollar numeraire is
𝑚$
𝑖,𝑗 =

𝑆𝑖
𝐹𝑖,𝑗 × 𝑆𝑗

. (12)
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Proof. The inferred SDFs follow readily from the definition of the
Arrow–Debreu price, the relationship 𝑨D = 𝑨$ ⊙ 𝑭 , and our recovered
probabilities in (10). ■

3. Alternative interpretations and further discussion

Although the focus of the current paper is the canonical problem
of recovering the physical probabilities from observable asset prices,
the theory of Arbitrage-Based Recovery is also related to several other
branches of the literature. In this section, we discuss these connec-
tions and highlight several alternative interpretations of our recovered
probabilities.

3.1. Log-utility agent

The form of our inferred dollar SDF in (12) lends itself for an al-
ternative economic interpretation. Namely, it can be interpreted as the
stochastic discount factor implied by a pseudo-representative investor
who has a subjective discount rate of zero and log-utility over the
realized total cash flow, and who invests her wealth fully in the stock.9
Consequently, this pseudo-representative agent makes her investment
decision based on our recovered physical probabilities, (10). The next
corollary formalizes this.

Corollary 2. Consider a log-utility agent within a single-period finite-state
complete-market arbitrage-free model, where the states are indexed by the
possible values of the stock, expressed in dollars. She allocates her wealth at
𝑡 = 0 so that her expected utility from the dollar value of her wealth at 𝑡 = 1
is maximized. If she invests her wealth fully in the stock, then the probability
measure used by this agent is the same as the probability measure recovered
by the Arbitrage-Based Recovery Theorem.

Proof. We provide the proof in the Online Appendix. ■

3.2. Discounting by the return on the SÐ-asset

Another alternative interpretation of our recovered probabilities is
that they are used by an agent who discounts everything by the return
on an asset whose next-period payoff (in state 𝑗) will be 𝑆𝑗 units of 𝐷.
We formalize this in the next corollary.

Corollary 3. Consider an asset (the SD-asset) whose next-period payoff
in state 𝑗 is 𝑆𝑗 units of D. The probabilities recovered by the Arbitrage-
Based Recovery Theorem correspond to the probabilities used by an agent
who discounts the next-period cash flow by the return on the SD-asset.

Proof. The time-𝑡 price in state 𝑖 of the 𝑆𝐷-asset is 𝑆𝑖 units of 𝐷, due
to the no-arbitrage condition (9). Thus, the one-period gross return on
the 𝑆𝐷-asset under the 𝐷-numeraire is 𝑆𝑗∕𝑆𝑖. Comparing this to the
recovered probabilities in (10), the result follows immediately. ■

3.3. Positivity of Ross’s subjective discount rate

In Ross’s original recovery theorem, the Perron–Frobenius eigen-
value is often interpreted as the subjective discount factor of a pseudo-
representative agent. The Perron–Frobenius theorem assures that this
subjective discount factor is positive. Economic intuition further sug-
gests that its value should be lower than one, in accordance with the
concept of time value of money. Based on the logic of our Arbitrage-
Based Recovery Theorem, now we prove rigorously that if the state

9 But, importantly, we do not assume any form of preference or even
the existence of a representative agent. We only assume that the SDF 𝒎D

is transition independent. The particular functional form of our inferred SDF
(both under the dollar and the 𝐷-numeraire) is then a direct consequence of
the no-arbitrage condition.

variable is the price of a traded asset (e.g., the S&P 500 index level)
and the dividend (or other similar cash flow) is for sure non-negative,
then the Perron–Frobenius eigenvalue of the Arrow–Debreu (dollar)
price matrix is for sure lower than or equal to one. Furthermore, if
the dividend is strictly positive in at least one initial-state-arrival-state
combination, then the Perron–Frobenius eigenvalue (and therefore the
subjective discount factor of the pseudo-representative agent) is strictly
lower than one.10 We formalize this in the following theorem.

Theorem 3. Consider a discrete-time finite-state complete-market model
with a positive square Arrow–Debreu price matrix under the dollar nu-
meraire, 𝑨$ ∈ R𝑛×𝑛

>0 , and a gross dividend yield matrix 𝑭 ∈ R𝑛×𝑛
≥1 . The

state variable is the post-dividend stock price, the possible values of which
are collected in the vector 𝑺 ∈ R𝑛

>0. If there is no arbitrage opportunity,
then the Perron–Frobenius eigenvalue of the matrix 𝑨$ is less than or equal
to one. Furthermore, if at least one element of the gross dividend yield
matrix 𝑭 is strictly greater than one, then the Perron–Frobenius eigenvalue
of the matrix 𝑨$ is strictly less than one.

Proof. First, consider the case when the underlying asset does not
pay any dividend (i.e., when each element of the gross dividend yield
matrix 𝑭 is equal to one). Then, by definition, 𝑨D = 𝑨$. Hence, due to
Lemma 1, the Perron–Frobenius eigenvalue of the matrix 𝑨$ is equal
to one.

Now, consider the case when at least one element of 𝑭 is strictly
greater than one. Then 𝑨$ ≤ 𝑨D and 𝑨D ≠ 𝑨$. Due to Corollary 6.16
in Zhan (2013), this implies that the Perron–Frobenius eigenvalue of
𝑨$ is strictly less than the Perron–Frobenius eigenvalue of 𝑨D. Since
according to Lemma 1 the Perron–Frobenius eigenvalue of 𝑨D is equal
to one, the Perron–Frobenius eigenvalue of 𝑨$ must then be strictly less
than one. This completes the proof. ■

3.4. Negative correlation condition of Martin (2017)

In a model-free framework, Martin (2017) shows that the condi-
tional expected excess return on the market can be decomposed into
two terms. Concretely,

E𝑡

(

𝑅$
𝑡+1

)

− 𝑅$
𝑓 ,𝑡+1 =

1
𝑅$
𝑓 ,𝑡+1

𝑣𝑎𝑟∗𝑡
(

𝑅$
𝑡+1

)

− 𝑐 𝑜𝑣𝑡
(

𝑀$
𝑡+1𝑅

$
𝑡+1, 𝑅$

𝑡+1

)

, (13)

where 𝑅$
𝑡+1 and 𝑅$

𝑓 ,𝑡+1 are the market return and the risk-free rate over
the period from 𝑡 to 𝑡+ 1, the SDF corresponding to the same time period
is 𝑀$

𝑡+1, the asterisk means that the variance is calculated under the
risk-neutral probability measure, the 𝑡 subscript denotes conditioning
on the information available at time 𝑡, and the dollar sign in the super-
script emphasizes that the numeraire is the dollar (and not the dividend
account). The strength of the decomposition in (13) – besides its model-
free nature – lies in the fact that the first term on the right-hand side can
be observed directly in the market in real time (via option prices), while
the sign of the second term can be ‘‘controlled’’ by economic reasoning.
As Martin (2017) argues, in all mainstream asset pricing models the
sign of the covariance in (13) is negative. As a consequence, the risk-
neutral variance of the market return scaled by the risk-free rate serves
as a lower bound for the expected excess market return. Then, Martin
(2017) shows that empirically the magnitude of the covariance term
is small, thus the lower bound is a good approximation for the true
expected excess market return.

Our Arbitrage-Based Recovery helps understand the essence of Mar-
tin’s negative correlation condition. Concretely, we can show that the
negative correlation condition is actually a condition on the correlation
between the martingale component of the 𝐷-SDF (in a framework

10 This is a special case of a more general, recent result by Borovička and
Stachurski (2021). We thank the referee for pointing this out.
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where the state is spanned by a closed, bounded price process) and
the market return. To see this, note that the true SDF under the
𝐷-numeraire can be written as

𝑀
𝐷

𝑡+1 =
𝑆𝑡
𝑆𝑡+1

×𝐻
𝐷

𝑡+1, (14)

where 𝐻
𝐷

𝑡+1 is a positive random variable with expected value of one,
also known as the martingale component of the 𝐷-SDF. Dividing both
sides by the gross dividend yield 𝐹𝑡+1, we obtain

𝑀
𝐷

𝑡+1
𝐹𝑡+1

=
𝑆𝑡

𝑆𝑡+1 × 𝐹𝑡+1
×𝐻

𝐷

𝑡+1, (15)

which can be equivalently written as

𝑀$
𝑡+1 × 𝑅$

𝑡+1 = 𝐻
𝐷

𝑡+1. (16)

Hence, Martin’s covariance term can be written as

𝑐 𝑜𝑣𝑡
(

𝑀$
𝑡+1𝑅

$
𝑡+1, 𝑅$

𝑡+1

)

= 𝑐 𝑜𝑣𝑡
(

𝐻
𝐷

𝑡+1, 𝑅$
𝑡+1

)

. (17)

The negative correlation condition is thus, in essence, equivalent to
the condition that the martingale component of the SDF (under the
dividend account numeraire) is negatively correlated with the total
market return (under the dollar numeraire).

Since Arbitrage-Based Recovery assumes that the permanent compo-
nent of the 𝐷-SDF is constant, its implied probabilities correspond to
an expected return which is exactly equal to the lower bound of Martin
(2017). Hence, Arbitrage-Based Recovery can also be considered as
an extension of Martin’s approach: while Martin (2017) recovers the
first moment of the stock market return from option prices, Arbitrage-
Based Recovery extracts a consistent probability distribution of the
stock market return from the same option prices. And just as Martin’s
recovered expected returns are hard to reject empirically, in Section 7
we similarly find that the probability distributions implied by our
Arbitrage-Based Recovery Theorem are difficult to reject empirically as
well.

4. Long-term factorization

Ross’s Recovery Theorem is closely related to the branch of the
literature initiated by Alvarez and Jermann (2005) which concerns
the long-term factorization of the stochastic discount factor and the
corresponding long-forward probability measure. As Alvarez and Jer-
mann (2005) and Hansen and Scheinkman (2009) show, the stochastic
discount factor can be decomposed into the product of a transitory
component and a permanent component. The transitory SDF component,
in turn, is equal to the reciprocal of the return on the long bond, i.e., on a
zero-coupon bond the maturity of which is in the infinity.11 Since Ross’s
Recovery Theorem actually recovers the transitory SDF component (as
shown by Borovička et al., 2016), the SDF recovered by Ross is also
equal to the reciprocal of the return on the long bond. In this section,
we show that this interpretation carries over to our Arbitrage-Based
Recovery approach, but under the dividend numeraire 𝐷 (instead of
the dollar numeraire). In other words, our inferred SDF is equal to the
reciprocal of the return on a zero-coupon bond denominated in units
of 𝐷 and with maturity in the infinity. In the remainder of this section,
we demonstrate this in more details.

If we take the dividend account as the numeraire, the equivalent
of a zero-coupon bond with maturity in 𝑇 periods is a security which
will pay one unit of the dividend account in each state in 𝑇 periods. We

11 The essence of this result predates the emergence of the literature on
recovery theorems and on the SDF decomposition and was first pointed out
by Kazemi (1992). Importantly, the result itself does not rely on either Marko-
vianity of the model or the Perron–Frobenius Theorem. Further discussion can
be found in Alvarez and Jermann (2005) and Martin and Ross (2019). Qin and
Linetsky (2017) generalize the result to semimartingale settings.

call this asset the 𝑇 -period zero-coupon D-bond. For example, if the initial
state at 𝑡 = 0 is 𝑖 and in 𝑇 periods we arrive at state 𝑚 by taking the path
(𝑖 → 𝑗 → 𝑘 → ... → 𝑙 → 𝑚), then the 𝑇 -period zero-coupon 𝐷-bond will
pay 𝐹𝑖,𝑗 × 𝐹𝑗 ,𝑘 ×⋯ × 𝐹𝑙 ,𝑚 dollars, which is equivalent to one unit of the
dividend account then. Now, we show that the recovered probabilities
in (10) indeed correspond to the long-forward probabilities under the
𝐷-numeraire.

Corollary 4. The probabilities recovered by the Arbitrage-Based Re-
covery Theorem correspond to the long-forward probabilities under the
D-numeraire.

Proof. If we go from state 𝑖 to state 𝑗, the one-period gross return on
the 𝐷 long bond is

𝑅
𝐷

∞,𝑖,𝑗 = lim
𝑇→∞

∑𝑛
𝑘=1

[

(

𝐴D)𝑇−1
]

𝑗 ,𝑘
∑𝑛

𝑘=1

[

(

𝐴D)𝑇
]

𝑖,𝑘

, (18)

where we raised the one-period Arrow–Debreu price matrix 𝑨D to the
power of 𝑇 and 𝑇 − 1, to obtain the 𝑇 - and the (𝑇 − 1)-period Arrow–
Debreu price matrices. According to the Perron–Frobenius theorem, we
have

lim
𝑇→∞

(

𝑨D)𝑇
= 𝑺 𝒘′, (19)

where 𝒘 is the left Perron–Frobenius eigenvector of 𝑨D. Hence, the
return in (18) can be written as

𝑅
𝐷

∞,𝑖,𝑗 =
𝑆𝑗

∑𝑛
𝑘=1 𝑤𝑘

𝑆𝑖
∑𝑛

𝑘=1 𝑤𝑘
=

𝑆𝑗

𝑆𝑖
. (20)

Using the identity 𝑨D = 𝑨$ ⊙ 𝑭 , we can express the recovered
probabilities in (10) as

𝛱𝑖,𝑗 = 𝐴
D

𝑖,𝑗 ×
𝑆𝑗

𝑆𝑖
. (21)

Substituting 𝑅
𝐷

∞,𝑖,𝑗 in place of 𝑆𝑗∕𝑆𝑖 in (21) and then dividing both

sides by 𝑅
𝐷

∞,𝑖,𝑗 , we readily see that the recovered probabilities indeed
correspond to the long-forward probabilities under the 𝐷-numeraire.
This completes the proof. ■

5. Arbitrage-based recovery in continuous space

So far, we have assumed that the only state variable in our model
is the stock price, and that it can take only finitely many values.
Consequently, our pricing operator has been represented by a square
matrix of positive Arrow–Debreu prices, and our recovery approach
has relied on the uniqueness of the positive eigenvector (and the
corresponding positive eigenvalue) of this matrix.

Although one might argue that stock prices are quoted using dis-
crete price increments (‘‘ticks’’), there is no economic rationale behind
assuming that prices can take only certain (discrete) values. The good
news is that our framework can readily be extended to accommodate
a continuous state space represented by the price of a traded asset, as
we now show in this section.

We still consider a discrete-time financial market where the only
state variable is the stock price, but this price can now take any real
value in the interval

[

𝑆, 𝑆
]

where 0 < 𝑆 < 𝑆. There exists a linear
positive operator (the pricing operator) A $ mapping the set of bounded
real-valued functions with domain

[

𝑆, 𝑆
]

into the same set. The pricing
operator can be represented as
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(

A $𝑓
)

(𝑥) = ∫

𝑆

𝑆
𝐴$ (𝑥, 𝑦) 𝑓 (𝑦) 𝑑 𝑦, (22)

where 𝐴$ (𝑥, 𝑦) ∶
[

𝑆, 𝑆
]

×
[

𝑆, 𝑆
]

→ R>0 is the dollar state-price density
going from state 𝑆𝑡 = 𝑥 to 𝑆𝑡+1 = 𝑦. Similarly to the gross dividend
yield matrix 𝑭 defined in (1) in the discrete-state case, now there
exists a gross dividend yield function 𝐹 (𝑥, 𝑦) ∶

[

𝑆, 𝑆
]

×
[

𝑆, 𝑆
]

→ R≥1
representing the gross dividend yield if we go from state 𝑆𝑡 = 𝑥 to
𝑆𝑡+1 = 𝑦. The state-price density under the 𝐷-numeraire is defined as

𝐴𝐷 (𝑥, 𝑦) = 𝐴$ (𝑥, 𝑦) × 𝐹 (𝑥, 𝑦), which, in turn, defines the pricing oper-
ator under the 𝐷-numeraire, A

𝐷, accordingly. If there is no arbitrage
opportunity in the market, then

A
𝐷𝑓 (𝑥) = 𝑓 (𝑥) (23)

must hold for 𝑓 (𝑥) = 𝑥. I.e., absence of arbitrage implies that 𝑓 (𝑥) =
𝑥 is an eigenfunction of the operator A

𝐷 with the corresponding
eigenvalue being equal to one.

To show that our results developed in a discrete state space also hold
when the state space is continuous (i.e., when the stock price can take
any real value in the interval

[

𝑆, 𝑆
]

), it suffices to show that 𝑓 (𝑥) = 𝑥
is the unique (up to a multiplicative constant) positive eigenfunction of
the operator A

𝐷. We formalize this in the following theorem.

Theorem 4. The pricing operator A
𝐷 has a unique (up to a multiplicative

constant) positive eigenfunction, namely, 𝑓 (𝑥) = 𝑥. Furthermore, the
eigenvalue corresponding to this eigenfunction is equal to one.

Proof. We provide the proof in the Online Appendix. ■

When the stock price is not restricted to the interval
[

𝑆, 𝑆
]

, but
it can take any positive real value, the recovery problem can still
be formulated. Then, however, the pricing operator A

𝐷 might have
several different positive eigenfunctions, in which case unique recovery
is not possible. Whether there exists a unique (up to a multiplicative
constant) positive eigenfunction, depends on the exact properties of the
pricing operator A

𝐷, besides its linearity and positivity. Importantly,
even if the recovery problem has several distinct solutions, the solution
proposed by our Arbitrage-Based Recovery approach will always be
among the solutions. Furthermore, if the recovery problem has a unique
solution, then our approach will provide this unique solution.

6. Price–dividend ratio as the state variable

In our frameworks so far, we have assumed that the only state
variable is the price of a traded asset, and the state space is bounded.
The assumption that prices can take values only in a given interval is,
however, not supported empirically. Assuming instead that the price–
dividend ratio can take values in an interval is more plausible. The good
news is that the principles of our Arbitrage-Based Recovery approach
can also be applied in an environment where the state variable is the
price–dividend ratio (instead of the price itself). Furthermore, our re-
covered probability distribution of the price–dividend ratio is consistent
with our previously recovered probability distribution of the price. In
this section, we show how Arbitrage-Based Recovery can be adapted
to a framework with the price–dividend ratio as the state variable. We
only show the continuous-state-space case; the discrete-state-space case
can be treated analogously.

Consider a discrete-time economy where the only state variable is
the price–dividend ratio, 𝑋 ∈ R>0, which can take any real value in
the interval

[

𝑋, 𝑋
]

where 0 < 𝑋 < 𝑋. There exists a linear positive
operator (the pricing operator) mapping the set of bounded real-valued
functions with domain

[

𝑋, 𝑋
]

into the same set. This operator can be
represented as
(

A $𝑓
)

(𝑥) = ∫

𝑋

𝑋
𝐴$ (𝑥, 𝑦) 𝑓 (𝑦) d𝑦, (24)

where 𝐴$ (𝑥, 𝑦) ∶
[

𝑋, 𝑋
]

×
[

𝑋, 𝑋
]

→ R>0 is the dollar state-price
density if we go from state 𝑥 to state 𝑦. There exists a dividend growth
function ℎ (𝑥, 𝑦) ∶

[

𝑋, 𝑋
]

×
[

𝑋, 𝑋
]

→ R>0 representing the dividend
growth 𝐷𝑡+1∕𝐷𝑡 if we go from state 𝑥 (at time 𝑡) to state 𝑦 (at time
𝑡 + 1).

Similarly to previous sections, also now we propose a change of nu-
meraire. Since our state variable is the post-dividend stock price scaled
by the dividend itself (i.e., 𝑋𝑡 = 𝑆𝑡∕𝐷𝑡), we can define a corresponding
state price density 𝐴$ (𝑥, 𝑦) × ℎ (𝑥, 𝑦) which also uses the dividend as
numeraire. While 𝐴$ (𝑥, 𝑦) expresses the rate of exchange between one
dollar today and one dollar in a future state, 𝐴$ (𝑥, 𝑦) × ℎ (𝑥, 𝑦) is the
rate of exchange between one unit of dividend today and one unit
of dividend in a future state. We can also go one step further and
define the state price density 𝐴𝐺 (𝑥, 𝑦) ≜ 𝐴$ (𝑥, 𝑦)×ℎ (𝑥, 𝑦)×𝐹 (𝑦), where
𝐹 (𝑦) = 1 + 1∕𝑦 corresponds to the 𝑭 matrix in our discrete-state-space
framework in Section 2 and to the 𝐹 function in our continuous-state-
space framework in Section 5, evaluated at the arrival state 𝑦. Since the
state variable now is the price–dividend ratio itself (as opposed to the
earlier sections, where the state variable was the price), 𝐹 is a function
of the arrival state only, and it is independent of the departure state.
The state price density 𝐴𝐺 (𝑥, 𝑦) expresses the rate of exchange between
one unit of dividend today and 𝐹 units of dividend in a future state. The
pricing operator under the 𝐺-numeraire, A

𝐺, is defined accordingly as
[

A
𝐺𝑓

]

(𝑥) = ∫

𝑋

𝑋
𝐴𝐺 (𝑥, 𝑦) 𝑓 (𝑦) d𝑦. (25)

Recovery under the 𝐺-numeraire entails solving the eigenvalue–
eigenfunction problem
[

A
𝐺𝑔

]

(𝑥) = 𝛾 𝑔 (𝑥) (26)

for 𝑔 (𝑥) > 0 and 𝛾 > 0. Note that if there is no arbitrage opportunity,
then

𝑥 = ∫

𝑋

𝑋
𝐴$ (𝑥, 𝑦)ℎ (𝑥, 𝑦)𝐹 (𝑦) 𝑦 d𝑦 (27)

must hold, which can equivalently be expressed as

𝑥 = ∫

𝑋

𝑋
𝐴𝐺 (𝑥, 𝑦) 𝑦 d𝑦. (28)

Therefore, absence of arbitrage implies that 𝑔 (𝑥) = 𝑥 and 𝛾 = 1 is
a solution of the eigenfunction–eigenvalue problem (26). Using the
same reasoning as in Theorem 4, it can be shown that this is the
only solution. The corresponding conditional probability density of the
price–dividend ratio is
𝜋 (𝑥, 𝑦) = 𝐴𝐺 (𝑥, 𝑦) × 𝑦

𝑥
, (29)

where 𝑥 is the price–dividend ratio at the departure state and 𝑦 is the
price–dividend ratio at the arrival state. This density, however, can
equivalently be expressed as

𝜋 (𝑥, 𝑦) = 𝐴$ (𝑥, 𝑦) × 𝑅 (𝑥, 𝑦) , (30)

where 𝑅
(

𝑋𝑡, 𝑋𝑡+1
)

=
(

𝐷𝑡+1 + 𝑃𝑡+1
)

∕𝑃𝑡 is the gross total return on the
security itself, if we go from state 𝑋𝑡 to state 𝑋𝑡+1. This recovered
probability measure is therefore consistent with the implications of our
Theorem 2 (and, of course, our results in Section 5).

If we relax the assumption that the price–dividend ratio can take
values only in the interval

[

𝑋, 𝑋
]

and allow it to take any positive
real value, the recovery problem does not necessarily have a unique
solution. Whether a unique solution exists depends on the exact prop-
erties of the pricing operator A

𝐺, besides its linearity and positivity.
However, if the solution is unique, then it will be equal to our solution,
otherwise there would be an arbitrage opportunity in the market.
When multiple solutions exist and we assume that the price–dividend
ratio is stationary and ergodic under the true physical probability
measure, there is at most one solution under which the price–dividend
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ratio remains stationary and ergodic, as shown by Borovička et al.
(2016). Whether there is such a solution (which retains stationarity and
ergodicity) and whether it corresponds to our solution depends, again,
on the exact properties of the operator A

𝐺.

7. Empirical tests of arbitrage-based recovery

From a theoretical perspective, our Arbitrage-Based Recovery Theo-
rem has several appealing properties. Not only does it require observing
only one row of the Arrow–Debreu price matrix for only one single
maturity, but it also explicitly excludes arbitrage opportunities.

Nonetheless, the proof of the pudding is in the eating, and the
defense of a theory resides in its empirical validity. Jackwerth and
Menner (2020) systematically test to what extent the different ver-
sions of recovery theorems are supported empirically. They test three
different recovery theorem versions (Ross Original, Ross Basic, Ross
Stable/Generalized Recovery), with and without imposing economic
restrictions on the Arrow–Debreu price matrix. Based on 32 years
of S&P 500 options data (from April 1986 to December 2017) and
using several different density tests (the Berkowitz test, two forms
of the Knüppel test, and the Kolmogorov–Smirnov test), they find
strong evidence that the one-month S&P 500 returns do not follow
the distribution predicted by the recovery theorems. These findings
are also supported by mean-prediction and variance-prediction tests.
We test our Arbitrage-Based Recovery Theorem following an approach
similar to Jackwerth and Menner (2020), using more than 26 years of
S&P 500 options data. Our results are summarized in Table 5.

Before describing our empirical exercise in details, we would like
to point out a duality regarding how our empirical results can be
interpreted. Having access to a time series of the one-month-ahead
S&P 500 index level state price density, we apply our methodology to
recover the probability distribution of the index level in one month. As
our theoretical results in Sections 5 and 6 show, this empirical exercise
can be motivated and approached from two different perspectives.
Concretely, either we assume that the state variable is the index level
itself or we assume that the state variable is the price–dividend ratio.
Since the dividend is assumed to be known one period in advance
(as we will explain later), the recovered probability densities will be
exactly the same, only the random variable (i.e., the index level or
the price–dividend ratio) is scaled by a constant. Similarly, the results
of our empirical tests will be exactly the same, regardless of whether
the index level or the price–dividend ratio is the state variable. For
brevity, in this section we will refer to our exercise as one attempting
to recover the probability distribution of the index level itself, keeping
in mind that the exercise and its results can also be interpreted as one
attempting to recover the price–dividend ratio probability distribution.

7.1. Data

We collect prices of European-style options written on the S&P 500
index from January 19, 1996 to May 19, 2022. The options expire at
the market opening of the third Friday12 of each month, and we observe
their bid and ask prices 29 days before their expiry.13 Our source of
option price data from January 19, 1996 to December 23, 2021 is
OptionMetrics, and for 2022 observations it is Bloomberg. We discard
all options with a bid price lower than $0.50, and then we calculate
the mid option prices. We also collect the S&P 500 price index values
from OptionMetrics14 and the S&P 500 total return index values from

12 Until February 15, 2015, our observed options expire at the market
opening of the Saturday immediately following the third Friday of the month.

13 Due to the options expiring at the market opening, this corresponds to a
horizon of 28 days.

14 For 2022, our S&P 500 price index value data is obtained from Yahoo
Finance.

Yahoo Finance for each observation date and for each option exercise
date.

Altogether, we have 317 observation dates, one in each month of
our sample period. On each observation date, we determine the 28-day
continuously-compounded risk-free interest rate by linearly interpolat-
ing between the two closest available maturities.15 Furthermore, using
the S&P 500 price index and the S&P 500 total return index data, we
calculate the dividend received during each 28-day period.

7.2. Risk-neutral probabilities

On each observation date, we first obtain the risk-neutral proba-
bility density function (pdf) characterizing the risk-neutral probability
distribution of the S&P 500 index value 28 days later. To this end, we
first transform each option price into its implied volatility, using the
Black–Scholes option pricing formula.16 As standard in the literature,
we use only out-of-money (OTM) options. To handle the ‘‘jump’’ of
the implied volatility function at the moneyness level of one, we
adapt an approach similar to Figlewski (2010) to smooth the implied
volatilities around the current S&P 500 index level. Then, applying a
slightly modified version of the Fast and Stable Method of Jackwerth
(2004),17 we fit a smooth curve on the ‘‘observed’’ implied volatilities
for each observation day, using a fine grid of 𝛥 = $0.10 along the
strike price dimension between the lowest and the highest traded strike
prices. For demonstration purposes, in Fig. 3, we depict our implied
volatility curves (together with the ‘‘observed’’ implied volatilities) for
three observation dates: August 20, 2004; November 21, 2008; and
April 16, 2020.

Transforming back each implied volatility along the grid into a
European call option price and then taking the (numeric) second deriva-
tive of the option price with respect to the strike price, we obtain the
state-price density for each observation day. For details on why the
second derivative of a European call option price with respect to the
strike price is equal to the state-price density, we refer to Ross (1976)
and Breeden and Litzenberger (1978). Dividing the state-price densities
by the risk-free discount factors, we obtain the risk-neutral densities.
Finally, to add tails to the risk-neutral density functions below the
lowest and above the highest traded strike prices, we follow Figlewski
(2010) and choose appropriately parameterized generalized extreme
value (GEV) distributions. We provide more details on our methodology
of adding tails to the risk-neutral density curves in Appendix A. In
Fig. 4, we plot the risk-neutral probability density functions (as dotted
curves) for the same three dates as we used in Fig. 3 for the implied
volatilities. The square markers indicate the lowest and the highest
traded strike prices for each date.

7.3. Recovering the physical probabilities

The Arrow–Debreu price is the product of the physical probability
and the stochastic discount factor, and our ultimate goal is to separately

15 For observations between 1996 and 2021, our spot yield curve data is
from OptionMetrics. For 2022, we use the 4-week Treasury Bill secondary
market rate, provided by the St. Louis Fed.

16 Importantly, we do not assume that the assumptions of the Black–Scholes
model hold. We use the Black–Scholes formula only as a tool which provides
a one-to-one mapping between option prices and implied volatilities.

17 When calculating the numerical derivatives of the fitted volatility
curve, Jackwerth (2004) assumes that the volatility corresponding to an
exercise price just one grid step outside the boundary is equal to the implied
volatility on the boundary. To allow for larger flexibility, our boundary
condition instead assumes that the second derivatives on the boundaries are
zero.
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Fig. 3. Implied volatility curves on three dates, calculated from European-style S&P 500 index options with 28 days to maturity. The ‘‘*’’ markers indicate implied volatilities
corresponding to mid option prices, while the ‘‘⋅’’ markers denote implied volatilities corresponding to bid and ask option prices. Implied volatilities are calculated by the Black–
Scholes option pricing formula. The 28-day risk-free interest rates are obtained by linearly interpolating between the two risk-free rates with the closest maturities (e.g., 25 days
and 31 days). The dividend yield parameter of the Black–Scholes formula is calculated under the assumption that the dividend is received just before the option exercise date, and
the dollar amount of this dividend is known on the observation date. To interpolate between the observation points on the implied volatility curves, we use a slightly modified
version of the Fast and Stable Method of Jackwerth (2004).

identify these two components, based on our Arbitrage-Based Recovery
Theorem. In the previous step, we have determined the Arrow–Debreu
prices.18 But to apply our theorem, we still need to determine the
gross dividend yield 𝐹𝑖,𝑗 . Since we want to recover the S&P 500 index
level over a one-month horizon, we can reasonably assume that the
dividend to be received in one month is deterministic and known at
the time of observation.19 In Fig. 4, we show the physical probability
density functions recovered by our model on the three dates used in
the previous subsection. For comparison purposes, we also show the
risk-neutral densities as dotted curves. The first date, August 20, 2004,
reflects relaxed market conditions, with implied volatilities between
12 and 26 percent for the observed options. The recovered physical
probability density function looks ‘‘standard’’: it is centered around a

18 We can readily calculate the Arrow–Debreu prices from the state price
densities by integrating the state price density function between any two strike
prices (or moneyness levels).

19 As Chetty et al. (2005) note, firms usually announce dividend payments
about four to six weeks before the actual payment takes place.

level slightly higher than one, and it features a slight left skew. The
two other dates correspond to crisis periods, with much higher implied
volatilities. By 21 November, 2008, the severity of the global financial
crisis became evident, and the strong negative skewness of the density
function indicates that the market was prepared for further serious
declines in the S&P 500 level. A high (more than 10% per month)
increase in the index level had also much higher probability than on the
‘‘relaxed’’ date of 20 August, 2004, which reflects the huge uncertainty
perceived by the market. The situation was similar on 16 April, 2020,
by when the seriousness of the COVID-19 pandemic on a global level
became apparent. Comparing the two crises dates, the market during
the pandemic attributed a much lower probability to a large positive
monthly jump in the S&P 500 index level, which is reflected in the
difference between the right tails of the two ‘‘crisis’’ distributions. The
effect of risk adjustment is much more apparent on the two crisis dates,
reflected in the observable differences between the risk-neutral and
the physical density functions. Risk adjustment has a more substantial
effect in ‘‘very bad’’ and ‘‘very good’’ states (corresponding to low and
high moneyness levels, respectively), and its effect is more negligible
around a moneyness level of one. This is intuitive from an economic
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Fig. 4. Risk-neutral and physical probability density functions on three dates, calculated from European-style S&P 500 index options with 28 days to maturity. The risk-neutral
probability density functions are shown as dotted curves, while the dash-dotted, the solid, and the dashed curves correspond to the physical probability density functions. The square
markers indicate the lowest and the highest traded strike prices for each date. Between these two strike prices, the risk-neutral densities are obtained as the second derivatives of
the call option price with respect to the strike price, divided by the risk-free discount factor. Call price curves are obtained as transforms of the implied volatility curves in Fig. 3,
and the 28-day risk-free discount factors are obtained by linearly interpolating between the two risk-free interest rates with the closest maturities (e.g., 25 days and 31 days).
Then, following Figlewski (2010), we add tails to the risk-neutral probability density functions by choosing appropriately parameterized generalized extreme value distributions.
Afterwards, we apply the Arbitrage-Based Recovery Theorem to transform these risk-neutral probability density functions into physical probability density functions. During this
transformation, we assume that the dividend is received just before the option exercise date, and the dollar amount of this dividend is known on the observation date.

Fig. 5. Recovered physical probability distributions of the 1-month non-annualized total returns on the S&P 500 market index, calculated from European-stye S&P 500 A.M.-settled
index options with 29 days to maturity. The dash-dotted lines denote returns lying between the 10th and the 90th percentiles, the boxes denote returns between the 25th and the
75th percentiles, and the solid lines inside the boxes correspond to returns between the 45th and the 55th percentiles. First, we obtain a smooth implied volatility curve for each
observation date by applying a slightly modified version of the Fast and Stable Method of Jackwerth (2004), which we then transform back into risk-neutral probability density
functions. We attach tails to these risk-neutral density functions by choosing appropriately parameterized generalized extreme value distributions, following Figlewski (2010). Then,
we transform the risk-neutral probability distributions into physical probability distributions by applying the Arbitrage-Based Recovery theorem. Throughout, we assume that the
dividend is received just before the option exercise date, and the dollar amount of the dividend is known on the observation date. The 28-day risk-free interest rates are obtained
by linearly interpolating between the two risk-free rates with the closest maturities (e.g., 25 days and 31 days) (until 2021). For 2022, we use the 4-week Treasury Bill secondary
market rate as the risk-free rate.
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Fig. 6. Recovered physical moments of the 1-month non-annualized total return on the S&P 500 market index. We obtain the physical probability distributions by applying the
Arbitrage-Based Recovery Theorem, as shown in Fig. 5. Then, for each observation date, we calculate the expected value (mean), the standard deviation (volatility), the skewness,
and the kurtosis of the return. The recovered physical moments suggest that throughout our observation period, the probability distribution of the market return is left-skewed
and it features fat tails. Both its mean and its volatility are highly volatile. Furthermore, both the magnitude and the volatility of its skewness and kurtosis increased substantially
after the 2008 financial crisis. The mean and the volatility of the return are highly correlated, which is in accord with economic intuition that higher risk (volatility) should be
compensated with higher reward (mean).

Table 1
Summary statistics of recovered physical moments of the 1-month non-annualized total
return on the S&P 500 market index. From January 1996 to May 2022, we obtain the
physical probability distributions with monthly frequency by applying the arbitrage-
based recovery theorem, as shown in Fig. 5. Then, for each observation date, we
calculate the expected value (mean), the standard deviation (volatility), the skewness,
and the kurtosis of the return.

Median Expected
value

Standard
deviation

Minimum Maximum

Mean 0.42% 0.52% 0.43% 0.10% 4.20%
Volatility 4.64% 5.01% 2.12% 2.38% 17.90%
Skewness −1.42 −1.53 0.69 −4.27 −0.34
Kurtosis 8.03 10.14 6.29 3.37 40.78

perspective: in ‘‘very bad’’ states (corresponding to low moneyness
levels) market participants’ marginal utility is high, hence they value
cash flows in those states highly, which corresponds to attributing
much higher risk-neutral probabilities to those states than physical
probabilities. The opposite is true for ‘‘very good’’ states with high
moneyness levels. These effects of the risk adjustment can be seen by
comparing the risk-neutral density functions (dotted curves) and the
recovered physical density functions (dash-dotted, solid, and dashed
curves) in Fig. 4.

In Fig. 5, we show the recovered physical probability distributions
of the 1-month non-annualized total returns on the S&P 500 market
index for each month between January 1996 and May 2022. The
day of recovery is always 29 days before the Saturday immediately
following the third Friday of the month (until February 2015) or 29
days before the third Friday of the month (after February 2015). Due
to all options being AM-settled, this corresponds to a 28-day recovery
period. The dash-dotted lines denote returns between the 10th and the
90th percentiles, the boxes denote returns between the 25th and the
75th percentiles, and the solid lines inside the boxes correspond to
returns between the 45th and the 55th percentiles. Return distributions
are in general left skewed with a median slightly above 0%, and they
clearly exhibit time-varying volatility. This is further confirmed in
Fig. 6, where we plot the time series of the recovered physical moments;
and in Table 1, where we provide summary statistics of the recovered
physical moments.

Table 2
Cross-correlations of recovered physical moments of the 1-month non-annualized total
return on the S&P 500 market index. From January 1996 to May 2022, we obtain the
physical probability distributions with monthly frequency by applying the Arbitrage-
Based Recovery Theorem, as shown in Fig. 5. Then, for each observation date, we
calculate the expected value (mean), the standard deviation (volatility), the skewness,
and the kurtosis of the return.

Mean Volatility Skewness Kurtosis

Mean 1 – – –
Volatility 0.87 1 – –
Skewness 0.45 0.45 1 –
Kurtosis −0.42 −0.44 −0.94 1

The expected (total) return on the market index is on average 0.52%
per month (about 6% per year), and it is extremely volatile, ranging
from 0.10% per month during relaxed market conditions to 4.20% per
month in October 2008. Furthermore, in untabulated results, we con-
firm the finding of Martin (2017) that the distribution of the expected
return itself is right skewed (its skewness is 4.21). The volatility of the
(monthly) market return is also highly volatile, ranging from 2.38%
to 17.90%, with an average level of 5.01%. We find a strong positive
correlation (Table 2) between recovered physical expected returns and
volatilities, which is in line with economic intuition: a higher risk
(higher volatility) must be compensated by a higher expected return.

The recovered monthly return distributions exhibit negative skew-
ness and positive kurtosis throughout our observation period, which
is in accordance with the empirical literature. The skewness and the
kurtosis are strongly negatively correlated, which suggests that fat
tails tend to coincide with left skews. Interestingly, return distributions
which are more left skewed and which exhibit fatter tails tend to occur
during low-volatility and low-expected-return periods. This is in accord
with the recent findings of Gormsen and Jensen (2020). Furthermore,
as Fig. 6 suggests, both the magnitude and the volatility of the return
skewness and kurtosis increased substantially after the 2008 financial
crisis.

Fig. 7 plots the Sharpe ratio of the monthly non-annualized total
return on the S&P 500 index, calculated on each observation date under
the physical probabilities implied by the Arbitrage-Based Recovery
Theorem. First, for each observation date, we calculate the expected
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Fig. 7. Sharpe ratio of the 1-month non-annualized total return on the S&P 500 market index. We obtain the physical probability distributions by applying the Arbitrage-Based
Recovery Theorem, as shown in Fig. 5. Then, for each observation date, we calculate the expected value and the standard deviation of the market return. The Sharpe ratio is then
obtained by subtracting the 1-month risk-free rate from the expected market return and dividing the difference by the volatility of the market return. The Sharpe ratio is volatile,
and its value is especially high at the beginning of crisis periods (October and November 2008, and March 2020).

Fig. 8. Moment risk premia of the 1-month non-annualized total return on the S&P 500 market index. We obtain the physical probability distributions by applying the Arbitrage-
Based Recovery Theorem, as shown in Fig. 5. Then, for each observation date, we calculate the expected value, the variance, the skewness, and the kurtosis of the return under
both the risk-neutral and the recovered physical probability measures. The moment premia are then obtained as the difference between the physical and the risk-neutral moments.
In accord with economic intuition, the equity premium is positive and the variance premium is negative throughout our observation period, and the skewness premium is almost
always positive while the kurtosis premium is almost always negative. The equity premium and the variance premium are strongly negatively correlated, just as the skewness
premium and the kurtosis premium. Similarly to the Sharpe ratio, the magnitudes of the equity premium and the variance premium are especially high at the beginning of crisis
periods (October and November 2008, and March 2020). Furthermore, similarly to the physical skewness and kurtosis, both the magnitude and the volatility of the skewness
premium and the kurtosis premium increased substantially after the 2008 financial crisis.

value and the standard deviation of the non-annualized market return
under the recovered probability measure. The Sharpe ratio is then
obtained by subtracting the 1-month non-annualized risk-free rate from
the expected market return and dividing the difference by the volatility
of the market return. The Sharpe ratio is highly volatile, and its value
is especially high at the beginning of crisis periods (October and
November 2008, and March 2020).

We also calculate the risk premia of the first four moments (eq-
uity premium, variance premium, skewness premium, and kurtosis
premium), defined as the difference between the physical and the risk-
neutral moments of the 1-month non-annualized total returns on the

S&P 500 market index. Fig. 8 shows the time series of the moment risk
premia, while Tables 3 and 4 show their summary statistics and their
cross-correlations, respectively. The signs of the moment risk premia
are in accordance with economic intuition (see, e.g., Ebert, 2013): odd
moments have positive risk premia, and even moments have negative
risk premia.20 Each of the four moment risk premia features strong
time variation, their standard deviations being at least as high as the

20 On every single observation date, the equity premium is positive and the
variance premium is negative. The skewness premium is positive on more than
98% of our observation dates, while the kurtosis premium is negative on more
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Table 3
Summary statistics of moment risk premia of the 1-month non-annualized total return
on the S&P 500 market index. From January 1996 to May 2022, we obtain the
physical probability distributions with monthly frequency by applying the arbitrage-
based recovery theorem, as shown in Fig. 5. Then, for each observation date, we
calculate the expected value, the variance, the skewness, and the kurtosis of the
return under both the risk-neutral and the recovered physical probability measures.
The moment premia are then obtained as the difference between the physical and the
risk-neutral moments.

Median Expected Standard Minimum Maximum
value deviation

Equity premium 0.24% 0.34% 0.40% 0.07% 3.96%
Variance premium −0.02% −0.04% 0.07% −0.77% −0.002%
Skewness premium 0.11 0.18 0.21 −0.05 2.90
Kurtosis premium −0.61 −1.55 3.60 −56.68 0.35

Table 4
Cross-correlations of moment risk premia of the 1-month non-annualized total return
on the S&P 500 market index. From January 1996 to May 2022, we obtain the
physical probability distributions with monthly frequency by applying the Arbitrage-
Based Recovery Theorem, as shown in Fig. 5. Then, for each observation date, we
calculate the expected value, the variance, the skewness, and the kurtosis of the
return under both the risk-neutral and the recovered physical probability measures.
The moment risk premia are then obtained as the difference between the physical and
the risk-neutral moments.

Equity Variance Skewness Kurtosis
premium premium premium premium

Equity premium 1 – – –
Variance premium −0.96 1 – –
Skewness premium −0.10 0.00 1 –
Kurtosis premium 0.11 −0.02 −0.96 1

absolute value of their expected values. Similarly to the Sharpe ratio,
the magnitudes of the equity premium and the variance premium are
especially high at the beginning of crisis periods (October and Novem-
ber 2008, and March 2020). Furthermore, similarly to the physical
skewness and kurtosis, both the magnitude and the volatility of the
skewness premium and the kurtosis premium increased substantially
after the 2008 financial crisis. The equity premium and the variance
premium are strongly negatively correlated, as it is also confirmed
empirically by Bollerslev et al. (2009). The skewness premium and
the kurtosis premium are also strongly negatively correlated, which
is in agreement with economic intuition: when the market requires a
high compensation for a stronger left skew, it tends to require a high
compensation for fatter tails as well.

To demonstrate a possible practical application of our Arbitrage-
Based Recovery Theorem, we also perform a simple market-timing
exercise. Starting with $1 on January 19, 1996, we invest our wealth
according to three different investment strategies with monthly rebal-
ancing, and we plot the evolution of our wealth (on a logarithmic
scale) in Fig. 9. According to the first investment strategy (shown as
the blue dashed curve), the total wealth is invested in the one-month
risk-free asset and upon maturity it is always reinvested at the actual
one-month risk-free interest rate. The second strategy (shown as the
red dotted curve) corresponds to a buy-and-hold investment policy,
where the total wealth is invested in the S&P 500 total return index on
January 19, 1996, and it is kept there indefinitely. The third investment
policy (shown as the black solid curve) is based on a market-timing
strategy using the Arbitrage-Based Recovery Theorem. Concretely, we
invest in the one-month risk-free asset and in the S&P 500 total return
index so that the portfolio weight of the S&P 500 total return index
is proportional to the Sharpe ratio of its one-month return, calcu-
lated by the Arbitrage-Based Recovery Theorem. To make the second

than 96% of our observation dates. In the few instances when the skewness
premium is negative and/or the kurtosis premium is positive, their magnitude
is always very small.

(buy-and-hold) and the third (market-timing) strategies more directly
comparable, we choose the constant of proportionality in the third
strategy so that the average (over the observation period) portfolio
weight of the market index is equal to one. We re-evaluate the port-
folio weights monthly (on each observation date), and re-balance our
portfolio accordingly. The difference between the wealth paths of the
market-timing strategy and the other two strategies can be attributed
to the effect of market timing based on the Arbitrage-Based Recovery
Theorem. As we see in Fig. 9, the market-timing strategy outperforms
not only the rolled-over (locally) risk-free portfolio, but also the total
return market index.21

7.4. Density tests

Now, we test whether realized S&P 500 index levels on the option
exercise dates are indeed drawn from our model-implied distributions.
Following Jackwerth and Menner (2020), we perform several density
tests and mean-prediction tests. Our null hypothesis is that the S&P 500
index levels observed on the option exercise dates are realizations of a
random variable with our model-implied probability density function.

To perform our density tests, first we observe the S&P 500 index
level on each option exercise day.22 Then, we transform our model-
implied physical probability density functions into cumulative distri-
bution functions (CDFs). For each option, we determine the CDF value
corresponding to the realized S&P 500 level. Under our null hypothesis,
these CDF values are drawn from a uniform distribution with support
[0, 1], and they are independent of each other. To test this hypothesis,
we perform the Berkowitz test, two versions of the Knüppel test, and
the Kolmogorov–Smirnov test.

7.4.1. Berkowitz test
To perform the test of Berkowitz (2001), we first transform our

observed (‘‘realized’’) CDF values using the inverse of the cumulative
distribution function of the standard normal distribution. I.e., denoting
our CDF value observations by 𝑥𝑡, we perform the transformation

𝑧𝑡 = 𝛷−1 (𝑥𝑡
)

, (31)

where 𝛷 denotes the CDF of a standard normally distributed random
variable. Then, under the null hypothesis, our observed 𝑧𝑡 values follow
standard normal distributions and they are independent of each other.
This implies that in the AR(1) model

𝑧𝑡 − 𝜇 = 𝜌
(

𝑧𝑡−1 − 𝜇
)

+ 𝜀𝑡, (32)

under the null hypothesis we have 𝜇 = 0, 𝜌 = 0, and 𝑉 𝑎𝑟 (𝜀𝑡
)

= 1.
Using our 𝑧𝑡 observations, we obtain the maximum likelihood estimates
of 𝜇, 𝜌, and 𝑉 𝑎𝑟 (𝜀𝑡

)

(denoted by 𝜇̂, 𝜌̂, and 𝑉 𝑎𝑟 (𝜀𝑡
)

), and perform a
likelihood ratio test where we compare the AR(1) model (32) with
parameters 𝜇̂, 𝜌̂, and 𝑉 𝑎𝑟 (𝜀𝑡

)

to the same model with parameters 𝜇 = 0,
𝜌 = 0, and 𝑉 𝑎𝑟 (𝜀𝑡

)

= 1. We find that the 𝑝-value of this test is 0.340.

21 Our market-timing strategy invests in the stock market index heavily
(taking highly leveraged positions) when the Sharpe ratio (implied by the
Arbitrage-Based Recovery Theorem) is high, and less heavily (characterized by
a balanced mix of the stock market index and the risk-free asset) during periods
with a low Sharpe ratio. Consequently, during low-Sharpe-ratio periods, our
wealth path closely tracks the S&P 500 total return index. On the other hand,
during high-Sharpe-ratio periods, our wealth path exhibits higher volatility
than the S&P 500 total return index, and these are the periods when the
gap between the two wealth paths suddenly increases or decreases. This can
be seen by comparing Figs. 7 and 9: the gap between the two wealth paths
increases around 2002, 2012, and 2020, and it decreases around 2008, all
of which periods are characterized by a high Sharpe ratio. Effectively, our
featured market-timing strategy attempts to identify and reap the benefits of
high-Sharpe-ratio periods.

22 More precisely, since the options are AM-settled, we observe the closing
level of the S&P 500 index on the previous trading day.
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Fig. 9. Wealth evolution under three different investment strategies, starting with $1 on January 19, 1996. On the vertical axis, we show the wealth on a logarithmic scale.
According to the first investment strategy (blue dashed curve), the total wealth is invested in the one-month risk-free asset and upon maturity it is always reinvested in the actual
one-month risk-free asset. The second strategy (red dotted curve) corresponds to a buy-and-hold investment policy, where the total wealth is invested in the S&P 500 total return
index on January 19, 1996, and it is kept there indefinitely. The third investment policy (black solid curve) is based on a market-timing strategy using Arbitrage-Based Recovery.
Concretely, we invest in the one-month risk-free asset and in the S&P 500 total return index so that the portfolio weight of the S&P 500 total return index is proportional to the
recovered Sharpe ratio of its one-month return. We choose the constant of proportionality such that the average (over the observation period) portfolio weight of the market index
is equal to one. We re-evaluate the portfolio weights monthly (on each observation date), and re-balance our portfolio accordingly. The difference between the wealth paths of
the market-timing strategy and the other two strategies can be attributed to the effect of market timing based on the Arbitrage-Based Recovery Theorem. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Hence, at the standard significance levels, we cannot reject the null
hypothesis that the Arbitrage-Based Recovery Theorem recovers the
true probability distributions.

7.4.2. Knüppel test
Next, we perform two versions of the test of Knüppel (2015). To this

end, we transform our ‘‘realized’’ CDF values (denoted by 𝑥𝑡) according
to

𝑦𝑡 =
√

12 × (

𝑥𝑡 − 0.5) . (33)

Under the null hypothesis, 𝑦𝑡 follows a uniform distribution with sup-
port

[

−
√

3,
√

3
]

. We calculate the first three empirical raw moments
of our observed 𝑦𝑡 values, and form the 3 × 1 column vector 𝑫3 of
differences between the empirical and theoretical moments. We also
estimate the covariance matrix 𝜴3 of 𝑦𝑡−𝑚1, 𝑦2𝑡 −𝑚2, and 𝑦3𝑡 −𝑚3, where
𝑚𝑖 denotes the 𝑖th theoretical raw moment. Under the null hypothesis,
the test statistic

𝛼3 = 𝑇 ×𝑫′
3𝜴

−1
3 𝑫3 (34)

asymptotically follows a 𝜒2 distribution with three degrees of freedom.
Performing the test, we find that the 𝑝-value is 0.284. Hence, at the
usual significance levels the Knüppel test with three moments does not
reject the null hypothesis that our recovery approach indeed recovers
the true probability distributions. Repeating the Knüppel test with the
first four moments (instead of the first three), we find that the 𝑝-value
is 0.080, which is just below the ten percent significance threshold.

7.4.3. Kolmogorov–Smirnov test
To perform the Kolmogorov–Smirnov test, we determine the maxi-

mum difference between the empirical cumulative distribution function
implied by our ‘‘realized’’ physical CDF values and the theoretical cu-
mulative distribution function of the uniform distribution with support
[0, 1]. Under the null hypothesis, this maximum difference multiplied by
the square root of the number of observations asymptotically follows

the Kolmogorov distribution. Performing the test, we find that the 𝑝-
value is 0.179. This, again, suggests that at the standard significance
levels we cannot reject the null hypothesis that the Arbitrage-Based
Recovery Theorem recovers the true probability distributions.

7.5. Mean prediction tests

Besides carrying out density tests, we also test whether our model-
implied expected returns indeed predict the realized returns. Con-
cretely, we run the regression

𝑅𝑡 = 𝑎 + 𝑏𝜇𝑡 + 𝜖𝑡, (35)

where 𝑅𝑡 is the realized return at time 𝑡 (not accounting for dividends),
and 𝜇𝑡 is our model-implied expected return (again, without dividends).
Under the null hypothesis, the intercept is 𝑎 = 0 and the slope is
𝑏 = 1. Assuming 𝑏 = 1 and testing whether the intercept is statistically
significantly different from zero, we find a 𝑝-value of 0.2920. Assuming
a zero intercept and testing whether the slope is statistically signifi-
cantly different from one, our 𝑝-value is 0.2915. Finally, without any
restriction on our regression model, testing the joint hypothesis that
𝑎 = 0 and 𝑏 = 1, we find a 𝑝-value of 0.5593. Thus, neither of the
above three mean prediction tests rejects the null hypothesis that the
expected returns implied by the Arbitrage-Based Recovery Theorem are
indeed the true expected returns.

Our results confirm the findings of Martin (2017), who argues
empirically that his negative correlation condition is tight, i.e., that it
is close to zero. Our recovered probabilities correspond to the case
when Martin’s correlation is exactly zero. And just like Martin, we
cannot reject the hypothesis that the expected returns corresponding
to Martin’s zero correlation coincide with the true expected returns.

7.6. Empirical tests: summary and robustness checks

We summarize the results of our empirical tests in Table 5. For
comparison purposes, we also report the results of Jackwerth and
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Table 5
Empirical test 𝑝-values. From January 19, 1996 to May 19, 2022, we obtain the physical probability distributions of the 1-month return on the S&P 500 market index with
monthly frequency by applying the arbitrage-based recovery theorem, as shown in Fig. 5. We also collect the realized returns on the S&P 500 market index one month after each
observation date. We test the null hypothesis that the realized returns on the S&P 500 index are realizations of random variables with probability density functions implied by
the arbitrage-based recovery theorem. We perform four different density tests (Berkowitz test, Knüppel test with three and four moments, Kolmogorov–Smirnov test) and three
different mean prediction tests on the regression equation (35). For comparison purposes, we also report the results of Jackwerth and Menner (2020), who analyze alternative
recovery theorems performing the same tests and using very similar data to ours (concretely, their sample period is from April 1, 1986 to December 31, 2017). Furthermore, we
also perform the tests on the risk-neutral probabilities.

Ross basic Ross bounded Ross unimodal Ross stable Arbitrage-based recovery Risk-neutral probabilities

Jackwerth and Menner (2020) This paper

Berkowitz test 0.001 0.000 0.000 0.002 0.340 0.070
Knüppel test (3 moments) 0.000 0.012 0.000 0.028 0.284 0.070
Knüppel test (4 moments) 0.000 0.000 0.000 0.002 0.080 0.020
Kolmogorov–Smirnov test 0.020 0.049 0.044 0.045 0.179 0.022
Intercept test 0.652 0.001 0.001 0.002 0.292 0.022
Slope test 0.000 0.055 0.022 0.219 0.292 0.023
Joint intercept and slope test 0.000 0.000 0.000 0.000 0.559 0.011

Menner (2020).23 Furthermore, we also perform the tests on the risk-
neutral probabilities. Apart from the Knüppel test with four moments
(which has a 𝑝-value of 0.080), at the usual significance levels none of
our empirical tests reject the hypothesis that realized returns are drawn
from the probability distributions implied by the Arbitrage-Based Re-
covery Theorem. And although failing to reject the null hypothesis does
not translate into accepting the alternative hypothesis, comparing the 𝑝-
values of our recovery methodology to those of other recovery methods
(and also to the 𝑝-values of the risk-neutral probabilities), our results
are promising regarding the empirical plausibility and usefulness of the
Arbitrage-Based Recovery Theorem.

Since our recovery approach infers the Perron–Frobenius eigenvalue
and eigenvector of the Arrow–Debreu price matrix from a theoretical
recursive no-arbitrage restriction instead of reconstructing the entire
matrix and then solving an eigenvalue–eigenvector problem, most of
the robustness concerns of other recovery approaches do not apply
to Arbitrage-Based Recovery. For example, when implementing the
original form of Ross’s recovery theorem, one might be concerned about
how the state space is formed: should moneyness or log-moneyness be
used, should the grid be equidistant or not, how many states should
there be, what should be the ‘‘span’’ of the grid (i.e., what should
the boundary points of the grid be), etc. By contrast, Arbitrage-Based
Recovery is unaffected by how the discretized state space is formed
or what its boundaries are. Therefore, our robustness check focuses
on whether potentially relevant information is lost by excluding very
cheap options from our sample (as it is usually done in the literature),
and on whether the fineness of our grid has any significant effect on the
smooth state price density curve which might carry over to our results.

During our data cleaning procedure, we exclude options with lower
than $0.50 bid price. To check that this practice does not lead to
losing significant information (especially about the tail probabilities,
since we use only out-of-the-money options), we repeat our analysis by
excluding only those options the bid price of which is lower than $0.10
(instead of $0.50). As we see in Table 6, this does not change our results
significantly.

In our main analysis, we use a fine grid of 𝛥 = $0.1. To ensure that
the fineness of our grid does not have a significant effect on our state
price density curve (and therefore on our empirical tests), we repeat
our analysis using an even finer grid of 𝛥 = $0.033 and a much coarser
grid of 𝛥 = $5. As we show in Table 7, our 𝑝-values do not change
significantly.

23 Jackwerth and Menner (2020) perform the same tests as we do, using very
similar data. Using data from April 1, 1986 to December 31, 2017, they have
380 observations, while our data is from January 19, 1996 to May 19, 2022
and we have 317 observations.

7.7. Effects of problem regularization

We find (Table 5) that the probabilities implied by Arbitrage-Based
Recovery seem to be substantially closer to the true probabilities than
the probabilities implied by alternative recovery approaches. Since
each of the listed recovery approaches attempt to extract the transitory
SDF component in a framework with a closed and bounded price pro-
cess as the only state variable, each approach should recover the same
SDF as long as the model environment is specified correctly. Under the
maintained assumptions, this recovered SDF should be the reciprocal of
the gross return. It is not possible to extract a ‘‘flexible’’ form of the SDF
(which is constrained only by the transition independence assumption),
and any attempt to do so should be futile.

Confronting this consideration with the results in Table 5, it is
very likely that the empirical implementation of the listed alternative
recovery approaches suffers from some form of model misspecification.
This is further confirmed by Jackwerth and Menner (2020), who in
their Fig. 5 show the SDFs on February 17, 2010 implied by the
different recovery approaches they study. While in absence of model
misspecification these implied SDFs should each be equivalent to the
reciprocal of the gross stock market return, in reality this is far from the
case. The SDF implied by the Ross basic approach features an inverted
U-shape, the SDF of the Ross bounded approach has a U-shape and
then an inverted U-shape at high moneyness levels, the Ross unimodal
approach features alternating U-shapes and inverted U-shapes along the
moneyness level in the implied SDF, while the SDF of the Ross stable
approach is mostly flat.

In the case of the Ross basic, Ross bounded, and Ross unimodal
approaches, the entire Arrow–Debreu price matrix needs to be con-
structed and, in absence of arbitrage opportunities, they should satisfy
the 𝑨𝐷𝑺 = 𝑺 identity. Again, the shapes of the recovered SDFs
in Jackwerth and Menner (2020) strongly suggest that this identity
is violated. Possible reasons of this violation can be the effects of
discretization (i.e., the price is allowed to take only discrete values),
truncation (the price process is assumed to be bounded), or failure of
the Markov property (i.e., the price process in reality is unlikely to
be Markovian). In the case of the Ross stable approach, although the
entire Arrow–Debreu price matrix does not need to be constructed per
se, one row of the matrix needs to be constructed for several different
maturities and as long as these rows are consistent with the assumed
model environment (e.g., time homogeneity and a Markovian price pro-
cess), the implied (one-period) SDF should be the reciprocal of the gross
stock market return. Besides Jackwerth and Menner (2020), further
discussion on the detrimental effects of the enforced regularization of
the problem (e.g., discretization and truncation) on the recovery results
can be found in Walden (2017) and Tran and Xia (2018).

Arbitrage-Based Recovery, unlike the other listed recovery
approaches, does not require constructing the entire Arrow–Debreu
price matrix (or one row of the matrix for different maturities) and
it also circumvents many of the regularization requirements of the
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Table 6
Empirical test 𝑝-values, excluding options with a bid price lower than $0.10 or excluding options with a bid price lower than $0.50. From
January 19, 1996 to May 19, 2022, we obtain the physical probability distributions of the 1-month return on the S&P 500 market index with
monthly frequency by applying the arbitrage-based recovery theorem, as explained in Section 7. We also collect the realized returns on the
S&P 500 market index one month after each observation date. We test the null hypothesis that the realized returns on the S&P 500 index are
realizations of random variables with probability density functions implied by the arbitrage-based recovery theorem. We perform four different
density tests (Berkowitz test, Knüppel test with three and four moments, Kolmogorov–Smirnov test) and three different mean prediction tests
on the regression equation (35). We also perform the tests on the risk-neutral probabilities.

Arbitrage-based recovery Risk-neutral probabilities

Excl. if Excl. if Excl. if Excl. if
Pb < $0.10 Pb < $0.50 Pb < $0.10 Pb < $0.50

Berkowitz test 0.330 0.340 0.064 0.070
Knüppel test (3 moments) 0.249 0.284 0.060 0.070
Knüppel test (4 moments) 0.062 0.080 0.016 0.020
Kolmogorov–Smirnov test 0.117 0.179 0.018 0.022
Intercept test 0.283 0.292 0.022 0.023
Slope test 0.282 0.292 0.023 0.023
Joint intercept and slope test 0.543 0.559 0.011 0.011

Table 7
Empirical test 𝑝-values, using grids with different levels of coarseness. From January 19, 1996 to May 19, 2022, we obtain the physical
probability distributions of the 1-month return on the S&P 500 market index with monthly frequency by applying the arbitrage-based recovery
theorem, as explained in Section 7. We also collect the realized returns on the S&P 500 market index one month after each observation date. We
test the null hypothesis that the realized returns on the S&P 500 index are realizations of random variables with probability density functions
implied by the arbitrage-based recovery theorem. We perform four different density tests (Berkowitz test, Knüppel test with three and four
moments, Kolmogorov–Smirnov test) and three different mean prediction tests on the regression equation (35). We also perform the tests on
the risk-neutral probabilities.

Arbitrage-based recovery Risk-neutral probabilities

𝛥 = $0.033 𝜟 = $0.1 𝛥 = $5 𝛥 = $0.033 𝛥 = $0.1 𝛥 = $5

Berkowitz test 0.339 0.340 0.321 0.070 0.070 0.066
Knüppel test (3 moments) 0.284 0.284 0.261 0.069 0.070 0.064
Knüppel test (4 moments) 0.080 0.080 0.069 0.020 0.020 0.018
Kolmogorov–Smirnov test 0.177 0.179 0.178 0.022 0.022 0.022
Intercept test 0.292 0.292 0.293 0.022 0.022 0.022
Slope test 0.292 0.292 0.293 0.023 0.023 0.023
Joint intercept and slope test 0.559 0.559 0.561 0.011 0.011 0.011

other approaches. Instead, it directly infers the SDF from a theoretical
recursive no-arbitrage restriction which the asset price must satisfy,
and it requires only the one-period Arrow–Debreu prices (or state price
densities) as an input, which can be obtained from observed one-
period option prices readily along the lines of Breeden and Litzenberger
(1978).

8. SDF decomposition and arbitrage-based recovery

The empirical literature (Alvarez and Jermann, 2005 and Bakshi
et al., 2018, among others) documents that the permanent component
of the stochastic discount factor is very volatile and it is considerably
more important (from an asset pricing perspective) than the transitory
component. At first sight, our results in Section 7 might seem to
contradict these findings. In this section, we show that there is no
contradiction and our empirical results can be reconciled with the
well-documented importance of the permanent SDF component.

8.1. Empirical significance of the permanent SDF component

As Alvarez and Jermann (2005) show, the unconditional volatil-
ity of the permanent SDF component relative to the unconditional
volatility of the SDF itself is at least as large as

E
[

log
(

𝑅𝑡+1
𝑅𝑡+1,∞

)]

E
[

log
(

𝑅𝑡+1
𝑅𝑡+1,1

)]

+ 𝐿
(

1
𝑅𝑡+1,1

) , (36)

where the unconditional volatility of a random variable 𝑥𝑡+1 is defined
as 𝐿

(

𝑥𝑡+1
)

≜ log
[

E
(

𝑥𝑡+1
)]

− E [

log
(

𝑥𝑡+1
)]

, 𝑅𝑡+1 is the gross one-period
return on any traded asset, 𝑅𝑡+1,∞ is the gross one-period return on
the long bond (as defined in Section 4), and 𝑅𝑡+1,1 is the gross one-
period risk-free rate corresponding to the period from 𝑡 to 𝑡 + 1. Now,
we estimate this lower bound using our data. We observe the monthly

gross returns (including dividends) on a value-weighted portfolio of all
stocks listed on the NYSE, AMEX, or NASDAQ from 31 January, 1947
to 29 December, 2023, with monthly frequency. We also observe the
one-month risk-free rates and the monthly realized returns on the long
bond.24 We find that the lower bound is 0.7352, which is very close
to the values of 0.7673 and 0.7755 obtained by Alvarez and Jermann
(2005) using data from December 1946 to December 1999. Hence, the
permanent SDF component is very volatile and it plays a significant role
in pricing assets.

8.2. True transitory SDF component vs. recovered SDF

Arbitrage-Based Recovery – along with the empirical implemen-
tation of other recovery approaches – assumes a framework with a
stationary, closed and bounded price process. The inferred SDF is equiv-
alent to the transitory SDF component of this featured financial market.
However, importantly, if the assumed model is not correctly specified

24 For the stock market returns, the sources of our data are the CRSP Stock
File Indexes. Our risk-free rates are from the CRSP Treasuries Monthly Riskfree
Series. For the returns on the long bond from January 1947 to December 1985,
we use the yield curve data in McCulloch and Kwon (1993). To obtain the
monthly long bond returns, at the end of each month we calculate the price
of a zero-coupon bond with maturity in 𝜏 years, then one month later we
calculate the price of a zero-coupon bond with maturity in 𝜏 − 1 years and 11
months (by linearly interpolating between the 𝜏-year and the 𝜏-minus-one-year
yields). For each monthly return, we use the longest possible maturity (i.e., 𝜏)
such that the necessary yield curve data is available to calculate the return via
the above procedure. From January 1986 to December 2023, we use the yield
curve data provided by the Board of Governors of the Federal Reserve System
obtained using the methodology of Gurkaynak et al. (2007). We calculate the
monthly returns on the long bond using the same procedure as above, now
using a maturity of 𝜏 = 30 years.
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Fig. 10. Realized values of the inferred SDF and realized values of the transitory component of the true SDF. The SDFs are projected on the space spanned by the monthly
non-annualized gross stock market index return. The inferred SDF is implied by Arbitrage-Based Recovery, and its realized values are equal to the reciprocals of the monthly
non-annualized gross stock market index returns. The realized values of the transitory component of the true SDF are equal to the reciprocals of the monthly non-annualized gross
returns on the long bond. The observation period is from January 1947 to December 2023, and the observation frequency is monthly.

(e.g., if the price process is not stationary in reality), then the inferred
SDF might not be equivalent to the true transitory SDF component.
The inferred SDF may partially absorb both the true transitory SDF
component and the true permanent SDF component. Consequently,
the inferred SDF might be very similar to the true SDF (and hence
it might be hard to reject statistically using market data) even if the
true SDF has a significant permanent component. This observation can
help reconcile the empirical success (in the sense of Section 7) of our
recovery approach with the empirical significance of the permanent
SDF component (as we found in Section 8.1).

Example 1. For demonstration purposes, consider an economy with
only two assets: a stock (paying no dividend) and a locally risk-free
security. The stock price follows a geometric Brownian motion. The
risk-free rate and the market price of risk are constant. In this economy,
the SDF corresponding to a holding period 𝜏 is exp

[

−𝑟𝑓 𝜏 − 𝜆2𝜏∕2
−𝜆

(

𝑊 P
𝑡+𝜏 −𝑊 P

𝑡
)]

, where 𝑟𝑓 is the continuously-compounded risk-free
rate, 𝜆 is the market price of risk, and 𝑊 P

𝑡 is a Wiener process under
the physical probability measure P. The transitory SDF component is
equivalent to the risk-free discount factor (i.e., to exp

(

−𝑟𝑓 𝜏
)

), and this
is also equivalent to the reciprocal of the return on the long bond
(since the risk-free rate is constant). The permanent SDF component
is equivalent to exp

[

−𝜆2𝜏∕2 − 𝜆
(

𝑊 P
𝑡+𝜏 −𝑊 P

𝑡
)]

. The lower bound in
(36) is equal to one, and the unconditional volatility of the SDF is
equal to the unconditional volatility of the permanent SDF component.
However, if we apply our Arbitrage-Based Recovery approach in this
economy, our inferred SDF is the reciprocal of the gross stock return,
i.e., exp

[

−𝜇 𝜏 + 𝜎2𝜏∕2 − 𝜎
(

𝑊 P
𝑡+𝜏 −𝑊 P

𝑡
)]

, where 𝜇 and 𝜎 are the drift
and the volatility parameters of the stock return process, respectively.
Clearly, our inferred SDF absorbs a part of the true permanent SDF
component. For example, using reasonable parameter values of 𝜇 = 0.1,
𝜎 = 0.2, and 𝜆 = 0.4, the SDF implied by Arbitrage-Based Recovery
has the same geometric mean as the permanent component of the true
SDF, while the former’s geometric volatility is half of the latter’s. Hence,
in this economy, our inferred SDF can indeed be deemed to absorb a
substantial part of the permanent component of the true SDF.

The standard assumption of recovery approaches that the price
process is bounded, closed, and stationary, is not supported empirically.
To show that this indeed causes the inferred SDF to be substantially
different from the transitory component of the true SDF, we plot the
realized values of the inferred SDF against the realized values of the
transitory component of the true SDF (Fig. 10). The SDFs are projected
on the space spanned by the monthly non-annualized gross stock
market index return. The inferred SDF is implied by Arbitrage-Based
Recovery, and its realized values are equal to the reciprocals of the
monthly non-annualized gross stock market index returns. The realized
values of the transitory component of the true SDF are equal to the
reciprocals of the monthly non-annualized gross returns on the long
bond. The observation period is from January 1947 to December 2023,
and the observation frequency is monthly. Further details on our data
and on how we construct the long bond returns can be found in
Footnote 24.

If the inferred SDF were equivalent to the transitory component
of the true SDF, the observations in Fig. 10 would all be on a line
with unit slope. We find that in reality the case is vastly different.
We also calculate the correlation between the inferred SDF and the
transitory component of the true SDF, and we find that their correlation
is only 0.0595. Based on the sample autocorrelation function, we find
no evidence of autocorrelation in the differences between the realized
reciprocals of the stock market index return and the long bond return,
although we find some evidence of weak positive autocorrelation (with
a coefficient around 0.2) in the absolute differences.

Since we find empirically that our inferred SDF (pricing the S&P 500
stock market index return) is very different from the transitory com-
ponent of the true SDF, the fact that the permanent SDF component
is very relevant for pricing assets (as we show in Section 8.1) does
not contradict the empirical success of our Arbitrage-Based Recovery
approach.

The fact that Arbitrage-Based Recovery implies an SDF which is not
generally equivalent to the true transitory SDF component can also be
argued at a more fundamental level. Consider the (true) SDF projected
on the space spanned by any arbitrary return (i.e., not necessarily the
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stock market index return). Then, the transitory component of this SDF
is the same, regardless of which return spans the space. To see this, note
that the transitory SDF component is always equal to the reciprocal of
the gross return on the long bond. And just like there is one unique
one-period risk-free rate in the economy, there is one unique 𝑘-period
risk-free rate in the economy for any arbitrary positive 𝑘 integer as well.
Hence, regardless of which return spans the space, the SDF processes
corresponding to those spaces will imply the same 𝑘-period risk-free
rate for any arbitrary positive 𝑘 integer. This holds both at time 𝑡
and at time 𝑡 + 1. Thus, observing a time series of realized transitory
SDF components, we observe the same realizations, regardless of which
return spans the space. And since the time series of realized returns
on different stocks will obviously be different (and Arbitrage-Based
Recovery always identifies the inferred SDF with the reciprocal of the
spanning stock return) but the true transitory SDF components are the
same, the inferred SDFs clearly cannot all be equivalent to the true
transitory SDF component.

At this point it is worth referring back to Corollary 2, according to
which the conditional probabilities implied by Arbitrage-Based Recov-
ery are equivalent to the probabilities used by a pseudo-representative
investor with log-utility over the terminal wealth, who fully invests her
wealth in the market. Actually, the conditional probabilities implied
by Arbitrage-Based Recovery could also be obtained in a standard
representative agent framework, where the representative investor has
logarithmic utility over terminal wealth, and the market constitutes all
wealth. In such a model, the SDF is the reciprocal of the gross return
on the stock market. The derivation of this SDF does not hinge upon
the stock price being the only state variable, it does not assume a
stationary environment, and it does not rely on our additional arbitrage
condition. Importantly, it does not assume or imply that the permanent
SDF component is constant, the framework is silent on this. Since
the implied conditional probabilities of such a representative investor
framework are the same as what our Arbitrage-Based Recovery implies,
our results in Section 7 can also be interpreted as empirical tests of such
a representative investor framework. This log-utility representative
investor model is also consistent with the results of Martin (2017) in
the sense that the implied expected stock market return is exactly the
same as the lower bound of Martin (2017). Interpreting our results from
the perspective of such a representative investor framework, there is
no (seeming) tension between our empirical results and the literature’s
findings on the empirical relevance of the permanent SDF component.

9. Conclusion

We develop a novel recovery theorem based on no-arbitrage princi-
ples. Our Arbitrage-Based Recovery Theorem requires the observation
of option prices only for one single maturity and only for the current
state of the world. To test how well our theorem works empirically,
we use more than 26 years of S&P 500 options data with monthly
observation frequency, and perform several density tests and mean
prediction tests. Using the same tests and very similar data to ours,
the literature tends to reject the empirical validity of other, competing
recovery theorems. In contrast with this, none of the commonly used
density tests and mean prediction tests rejects the empirical validity
of the Arbitrage-Based Recovery Theorem at the standard five percent
significance level, and the vast majority of the tests cannot even reject
it at a very conservative 15% significance level. After conducting our
empirical exercise, we demonstrate that our results do not contradict
the findings of Alvarez and Jermann (2005), among others, that the
permanent component of the stochastic discount factor is empirically
very volatile.
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Appendix A

In this appendix, we describe our procedure of attaching tails to the
risk-neutral probability density functions in Section 7.

Attaching left tails

To attach left tails to the risk-neutral probability density functions
below the lowest traded strike prices, we proceed as follows. Consider
an observation date. First of all, note that between the lowest and the
highest traded strike prices we have already obtained the risk-neutral
pdf by calculating the second derivative of the call price with respect
to the strike price, and then dividing this second derivative by risk-free
discount factor. In a similar vein, we also obtain the risk-neutral cdf
between the lowest and the highest traded strike prices by calculating
the first derivative of the call price with respect to the strike price,
dividing this first derivative by the risk-free discount factor, and adding
one.

Let us denote the lowest traded strike price by 𝑆𝑙, and the strike
price one grid point to the right from it by 𝑆𝑙+1. We calculate the risk-
neutral pdf and cdf values at 𝑆𝑙+1. Then, we attach the ‘‘reflected’’ (in
the sense explained below) right tail of a generalized extreme value
(GEV) distribution pdf to the risk-neutral pdf at 𝑆𝑙+1, as the left tail
of the risk-neutral pdf itself. Since the GEV distribution is uniquely
characterized by three parameters, we choose the GEV distribution
which satisfies the following three conditions:

• the GEV distribution pdf value at −𝑆𝑙+1 is equal to the risk-neutral
pdf value at 𝑆𝑙+1;

• the GEV distribution cdf value at −𝑆𝑙+1 is equal to one minus the
risk-neutral cdf value at 𝑆𝑙+1; and

• the GEV distribution cdf value at 𝑆 = 0 is equal to one.

Then, we reflect the obtained GEV distribution pdf on a vertical line
at −𝑆𝑙+1, and attach the reflected GEV pdf section below −𝑆𝑙+1 to the
previously obtained (‘‘tailless’’) risk-neutral pdf at the strike price 𝑆𝑙+1.

Attaching right tails

After adding left tails to the risk-neutral pdfs, we now similarly
attach right tails to them. Let us denote the highest traded strike price
on a particular observation date by 𝑆𝑟, the strike price one grid point to
its left by 𝑆𝑟−1, and the strike price one grid point to its right by 𝑆𝑟+1.
We calculate the risk-neutral pdf and cdf values at 𝑆𝑟−1. Then, we attach
the right tail of a GEV distribution pdf to the risk-neutral pdf at 𝑆𝑟−1,
as the right tail of the risk-neutral pdf itself. Concretely, we choose the
GEV distribution which satisfies the following three conditions:

• the GEV distribution pdf value at 𝑆𝑟−1 is equal to the risk-neutral
pdf value at 𝑆𝑟−1;

• the GEV distribution cdf value at 𝑆𝑟−1 is equal to the risk-neutral
cdf value at 𝑆𝑟−1; and

• the GEV distribution cdf value at 2 × 𝑆𝑟+1 is equal to one.

Modifying the tails to enforce no-arbitrage

After adding left and right tails to the risk-neutral density functions,
we still need to make sure that these density functions are arbitrage-
free. In other words, we must check whether the price (implied by the
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risk-neutral density function) of the future stock cash flow (i.e., divi-
dend plus post-dividend stock price) is equal to the current stock price.
Since we did not enforce this no-arbitrage condition when attaching
left and right tails, it is not necessarily the case that our risk-neutral
pdf at this stage is free of arbitrage. Therefore, we slightly modify the
attached left and right tails as follows.

First, we divide both tails into two equal sections. Then, on each
of the four sections (two on the left tail and two on the right tail) we
define a modifier function 𝑔(𝑆) ∶R>0 → R>0 as

𝑔 (𝑆) = 𝛼 × sin
(

𝑆 − 𝑆𝑎
𝑆𝑏 − 𝑆𝑎

× 𝜋
)

+ 1, (37)

where 𝛼 ∈ R is a scalar greater than minus one, and 𝑆𝑎 ∈ R>0 and
𝑆𝑏 ∈ R>0 are the lower and the upper end points of the section,
respectively. The modifier parameters (denoted by 𝛼 in (37)) of the
four sections can be different. To obtain the new left and right tails
of the risk-neutral density function, we multiply the original pdf values
on the tails by the modifier function of the respective section. Finally,
we choose the four modifier parameters so that neither the area under
the left tail nor the area under the right tail changes, but the expected
value implied by the new risk-neutral density function, multiplied by
the risk-free discount factor, is exactly equal to the current stock price
less the price of the dividend.25 Throughout our sample, the magnitudes
of the modifier parameters are small (close to zero), which suggests that
the new (‘‘modified’’ and arbitrage-free) risk-neutral density functions
are very similar to their ‘‘non-modified’’ counterparts.
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