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 A B S T R A C T

Financial benchmarks such as LIBOR underpin the pricing of trillions of dollars of contracts around the world. 
We evaluate the quality of benchmark prices using a state-space model to separate information from noise. 
Applying the method to LIBOR benchmarks and their replacements, we find that alternative reference rates 
(ARRs) are less noisy in four of the five currencies. However, the USD ARR is considerably more noisy, 
resulting in billions of dollars of noise-related wealth transfers between contract counterparties. We show 
that benchmark reforms such as expanding the reference market and using a trimmed mean can reduce noise 
in ARRs.

1. Introduction

Noise makes financial markets possible, but also makes them imperfect.
Fischer Black (1986) ‘‘Noise’’ [p. 530]

Benchmark prices are important. In financial markets, benchmarks 
such as the London Inter-Bank Offered Rate (LIBOR) underpin hundreds 
of trillions of dollars worth of contracts. Good benchmarks substantially 
increase welfare (Duffie et al., 2017), promote efficient resource al-
location, and reduce costs for market participants. But how does one 
tell whether a benchmark is any good? How much information is in a 
particular benchmark price? How noisy are benchmarks? We address 
these issues by decomposing a benchmark price into information and 
noise components. Using a state-space model, we estimate the noise 
in LIBOR and compare that to alternative reference rates (ARRs) that 
have replaced LIBOR. We show that on the whole, ARRs tend to be less 
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1 In the US the LIBOR market footprint (as of Q4 2020) is over ten times the value of the US GDP for the year 2020: $223 trillion vs. $21 trillion (New York 
Fed, 2021)

noisy than LIBOR, but with economically important exceptions such as 
the USD ARR.

Following multiple LIBOR manipulation scandals and decreasing 
liquidity in the inter-bank market after the 2008–2009 crisis, these 
systemically important interest rate benchmarks have undergone a 
major transformation, phasing out LIBOR by the end of 2021, replaced 
by ARRs. Given that trillions of dollars of transactions and contracts 
are linked to these benchmarks, including swaps, futures, forwards, 
options, and consumer and business loans, it is critical to understand 
their information/noise content and the resulting wealth transfers.1 For 
example, a mere 1 basis point benchmark error due to a temporary 
distortion or noise when $10 trillion of contracts fix on that bench-
mark, could lead to $1 billion incorrectly transferred between contract 
counterparties. Noise also interferes with the market’s ability to price 
risks accurately and allocate them efficiently.

To estimate the noisiness of benchmarks, we build on the approach 
of Menkveld et al. (2007) by using the state-space representation of 
sequentially set benchmark rates. The efficient benchmark rate is an 

Available online 26 March 2025 
0304-405X/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

Received 14 June 2022; Received in revised form 23 January 2025; Accepted 28 January 2025



J. Brugler et al.

unobserved state variable that follows a random walk. The observed 
rate also includes a stationary component that is a noise term uncor-
related with the state innovations. This modeling approach allows for 
sequential rate-setting regimes during different intraday time periods. 
We use Monte Carlo simulations to validate our empirical model before 
applying it to evaluate benchmark quality.

Our analysis of LIBOR and ARR benchmarks of five major curren-
cies yields several key results. First, we find that in four out of five 
currencies, moves from LIBOR to transaction-based benchmarks result 
in less noisy benchmarks. This finding is in line with the predictions 
of Duffie and Dworczak (2021), who advocate for transaction-based 
benchmarks to replace submission-based LIBOR. Specifically, the noise 
as a portion of the total benchmark variance, or the ‘‘noise share’’, in 
CHF SARON, EUR ESTR, GBP SONIA, and JPY TONAR is lower than in 
the corresponding LIBOR counterpart.

In contrast, we find that the newly established USD ARR (SOFR) is 
much noisier than USD LIBOR. Unlike the other benchmarks, SOFR is 
based on collateralized repo transactions, which makes it vulnerable 
to extreme spikes based on the supply and demand of the underlying 
collateral. For example, there are instances in the data where SOFR 
spikes more than a full percentage point in a single day before reverting 
to its prior level.

To assess the economic significance of noise in interest rate bench-
marks, we use our model to calculate the wealth transfers between 
contract counterparties that occur because of temporary pricing errors 
(noise) in the benchmark rates. Each day, we extract the estimated 
noise component of the reference rates and match it to the notional 
value of overnight interest rate swaps (OIS) fixing on that rate. We find 
that the value of noise-related transfers is substantial. For example, if 
during 2020, all OIS were based on LIBOR, a total of $77 billion would 
change hands between contract counterparties as a direct result of noise 
in the benchmark. In contrast, if the ARRs were used instead of LIBOR, 
the equivalent number would be smaller in most currencies, but much 
larger overall (total of $166 billion) because of the high level of noise 
in SOFR. These estimates are adjusted for the netting of long and short 
positions using entity-netted notional values. The annual value of these 
noise-related wealth transfers using ARRs equates to approximately 
0.38% of the total outstanding notional value of OIS contracts and an 
even bigger proportion of entity-netted notional value.

We also find that well-designed reforms can significantly reduce 
noise in benchmarks. For example, GBP SONIA experienced a decline 
in noise share from 54.7% to 11.7% following the SONIA reform of 
April 23, 2018. In this reform, the reference market was expanded so 
that the benchmark would be based on a higher volume of transactions 
and mean trimming was introduced. However, many benchmark design 
choices involve trade-offs. For example, a broad reference market can 
benefit a benchmark by being more liquid, but can be detrimental if it 
increases the heterogeneity of transactions.

While our results quantify one of the advantages of the ARRs, 
namely the tendency for most of the ARRs to be less noisy than the 
LIBORs that they replaced, there are downsides of the ARRs. One that 
has been highlighted in recent papers is that the ARRs eliminate or 
at least substantially reduce the bank credit risk component that was 
present in LIBOR. For example, SOFR is based on secured repo funding 
transactions collateralized by US treasuries and all ARRs are overnight 
rates. Having credit risk in LIBOR helped banks transfer funding risk 
to borrowers, thereby lowering loan rates — as bank credit risk rose, 
LIBOR increased, raising the cost of funds for borrowers with floating 
rate loans or lines of credit (Kirti, 2022). In contrast, ‘‘risk-free’’ ARRs 
such as SOFR tend to fall when markets are stressed, encouraging 
borrowers to draw on their credit lines precisely when bank funding 
costs spike. That effect may reduce ex-ante incentives to provide bank 
credit (Duffie et al., 2022). From a policy perspective, such downsides 
of ARRs must be weighed up against the pricing efficiency benefits that 
we document and the robustness against manipulation that motivated 
the transition to ARRs.

As a practical application, measuring the noise content of different 
benchmark prices or rates can help inform better benchmark design. 
While Duffie and Dworczak (2021) propose a theory of optimal bench-
mark design, our study tackles the empirical evaluation of benchmarks. 
Because each of the major currencies (CHF, EUR, GBP, JPY, USD) 
has a slightly different ARR design, comparing how these currencies’ 
LIBOR-to-ARR transitions fared under each currency’s unique regime 
provides insights for benchmark design. Moreover, our approach could 
be applied to evaluating benchmarks in other settings, like FX fixings, 
equity price benchmarks, futures settlement benchmarks, and so on.

This paper contributes to several strands of literature. We build 
on the theoretical papers on optimal benchmark design. Duffie and 
Stein (2015) argue that LIBOR manipulation scandals highlight the 
need for LIBOR reforms. The specifics of those reforms are examined 
in the theoretical papers on robust benchmark design (Duffie et al., 
2017; Duffie and Dworczak, 2021), as well as in the empirical papers 
analyzing whether LIBOR alternatives are better than the original 
LIBOR rates (Schrimpf and Sushko, 2019; Klingler and Syrstad, 2021). 
Several papers focus on US LIBOR markets alone. For example, Fassas 
(2021) studies price discovery in US money markets using Hasbrouck 
(1995) information shares. Indriawan et al. (2021) show that the SOFR 
aligns with the Federal Reserve’s policy target more closely than LIBOR. 
To the best of our knowledge, our paper is the first to analyze the 
information and noise content of all the major LIBOR and ARR rates, 
and estimate the noise-related wealth transfers in those markets.

Several practitioner- and policymaker-focused studies consider the 
problem of constructing the term structure of ARRs from the overnight 
rates. Because ARRs, unlike LIBORs, are not forward-looking, Bai et al. 
(2022) highlight the challenges involved in publishing and referencing 
term ARRs. Heitfield and Park (2019) and Skov and Skovmand (2021) 
propose alternative models that rely on SOFR futures prices to construct 
forward-looking term reference rates that are conceptually similar to 
the term LIBOR rates. While we focus on overnight, rather than term 
rates, we highlight that the noise component of overnight rate enters 
the calculation of any constructed term rates based on ARRs. Therefore, 
our inference about noise in overnight ARRs applies to term ARRs as 
well.

The method in this paper uses the state-space model framework, 
adapted to the specific issue of separating noise from information in 
sequentially set prices and determining each price’s contribution to 
the efficient price. The empirical market microstructure literature has 
developed empirical methods to separate information from noise and 
attribute information shares in parallel markets (rather than sequential), 
most often using vector autoregressive models (see Baillie et al. 2002; 
Yan and Zivot et al. 2010; Putnins, 2013; and Hasbrouck, 2021). 
The state-space specification for sequential markets has the advan-
tage of not requiring that each day evolves as a sequence of sub-
periods, with each one corresponding to a benchmark. Rather, the 
model in state-space form keeps the different rate regimes distinct, 
similar to the 24-hour price discovery setting in Menkveld et al. (2007). 
Other market microstructure applications using state-space models in-
clude Hasbrouck (1999), Figuerola-Ferretti and Gonzalo (2010), Durbin 
and Koopman (2012), Hendershott and Menkveld (2014). The present 
study is also related to literature on price informativeness, which uses 
a variety of different models (e.g., Campbell & Shiller, 1988; Morck, 
Yeung, & Yu, 2000; Hasbrouck, 1993; and Brogaard, Nguyen, Putnins, 
& Wu, 2021).

2. State-space estimation of sequential benchmarks

Consider 𝑁 benchmark interest rates (‘‘reference rates’’) that are 
published sequentially, splitting the 24-hour period 𝑡 into 𝑁 phases, 
indexed by 𝜏. For example, the EUR ARR and EUR LIBOR are published 
on the same day 𝑡, but at different times 𝜏 (7 am and 11.55 am 
respectively). The set of benchmark interest rates share a common 
underlying efficient interest rate process, 𝑚𝑡,𝜏 , that evolves according 
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to a random walk with volatility that depends on the phase of the day, 
𝜏:

𝑚𝑡,𝜏+1 = 𝑚𝑡,𝜏 +𝑤𝑡,𝜏 (1)

𝑤𝑡,𝜏 ∼ 
(

0, 𝜎2𝑤𝜏

)

. (2)

Let 𝑦𝑡,𝜏 denote the interest rate for the benchmark published at 
period 𝑡, 𝜏. This benchmark interest rate is the sum of the efficient 
interest rate at that period, defined in Eqs. (1) and (2), and a pricing 
error (the noise component):
𝑦𝑡,𝜏 = 𝑚𝑡,𝜏 + 𝑠𝑡,𝜏 (3)

= 𝑚𝑡,𝜏−1 +𝑤𝑡,𝜏−1 + 𝑠𝑡,𝜏

where 𝑠𝑡,𝜏 ∼ 𝑁(0, 𝜎2𝑠𝜏 ) is a pricing error for the 𝜏
𝑡ℎ benchmark and 

𝑚𝑡,𝜏 and 𝑤𝑡,𝜏 are defined as above.2 In this structural model, each 
benchmark shares a common efficient interest rate process (𝑚𝑡,𝜏 ) that 
has a different efficient innovation variance (𝜎2𝑤𝜏

) and idiosyncratic 
pricing error variance (𝜎2𝑠𝜏 ) depending on the time of day, 𝜏. These 
variance terms are the key quantities of interest that characterize the 
quality of different benchmark interest rates.

Following Menkveld et al. (2007), the structural model in Eq. 
(3) has a state-space representation. The state vector is the efficient 
interest rate process 𝑚𝑡,𝜏 with time-varying volatility. The observation 
vector 𝐲𝑡,𝜏 has 𝑁 elements, one for each of the benchmarks published 
throughout a single trading day 𝑡. In a given time period, 𝑡, 𝜏, only the 
𝜏𝑡ℎ element of 𝐲𝑡,𝜏 is observed. All other elements of 𝐲𝑡,𝜏 contain missing 
values by construction. Noting that 𝑁 = 2 in our application of this 
model to LIBOR vs. ARRs, the remaining notation focuses on this case, 
but as per Menkveld et al. (2007), this can be easily extended to cases 
with 𝑁 > 2. The observation vector is: 

𝐲𝑡,𝜏 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑦𝑡,1
.

)

 if 𝜏 = 1

(

.
𝑦𝑡,2

)

 if 𝜏 = 2.

(4)

Using 𝑠 = 𝑡, 𝜏 to index time, Eqs. (3) to (4) can be written in state-space 
form as:
𝑚𝑠+1 = 𝑚𝑠 +𝑤𝑠 (5)

𝐲𝑠 = 𝐼2 × 𝑚𝑠 + 𝜀𝑠 (6)

where 𝑚𝑠 is the unobserved state in period 𝑠, 𝑤𝑠 is the state innovation 
(updating of the efficient interest rate) with distribution 𝑤𝑠 ∼  (0, 𝜎2𝑤𝑠

)
and 𝜎2𝑤𝑠

= (𝜎2𝑤1
, 𝜎2𝑤2

, 𝜎2𝑤1
, 𝜎2𝑤2

,…), 𝐲𝑠 is the 2 × 1 observation vector 
containing missing values in alternating positions each period, and 𝜀𝑠 is 
the 2 × 1 noise disturbance vector with distribution 𝜀𝑠 ∼  (0,𝐻) where 
𝐻 is a 2 × 2 diagonal matrix with (𝜎2𝑠1 , 𝜎

2
𝑠2
) on the diagonal elements. 

The state innovation and noise disturbance vectors are assumed to be 
mutually independent at all leads and lags. The design matrix is the 
two-dimensional identity matrix. The transition matrix and selection 
matrix are both equal to 1.

The system described by Eqs. (5) and (6) can be extended to include 
terms that allow benchmarks to differ by a fixed amount in each period, 
reflecting possible time-invariant differences in credit risk or liquidity. 
It can also be extended to capture the effects of control variables, 
such as each country’s central bank policy rate, or other time-varying 
controls, on each benchmark. These are captured respectively by in-
corporating a constant term 𝝁 = (𝜇1, 𝜇2)′ and 𝛽′𝐱𝐭 in the observation 
equation:

𝑚𝑠+1 = 𝑚𝑠 +𝑤𝑠 (7)

𝐲𝑠 = 𝝁 + 𝐼2 × 𝑚𝑠 + 𝛽′𝐱𝐭 + 𝜀𝑠 (8)

2 Note that 1 ⩽ 𝜏 ⩽ 𝑁 and when 𝜏 = 1, 𝜏 − 1 refers to benchmark 𝑁 of the 
previous day 𝑡 − 1.

where one element of 𝝁 is normalized to zero without loss of generality, 
such that the non-zero term captures the average spread between the 
two benchmarks.3 The parameter vector that loads onto the condition-
ing variables 𝐱𝑡 contains different estimates of the effect of these control 
variables on each of the 𝑁 benchmarks. Eqs. (7) and (8) represent the 
econometric model we use to estimate the variances of the innovations 
to the efficient interest rate process and noise for each benchmark.

The key parameters of the system represented in Eqs. (7) and (8) are 
the variances of the efficient interest rate innovations and noise in each 
publication period: 𝜎2𝑤𝜏

 and 𝜎2𝑠𝜏 , 𝜏 ∈ {1, 2,… , 𝑁}. Using these variance 
terms, we define the information share of benchmark reference rate 𝜏 as 
the proportion of total variation in the efficient interest rate impounded 
by benchmark 𝜏: 

𝐼𝑆𝜏 =
𝜎2𝑤𝜏

∑𝑁
𝑖=1 𝜎2𝑤𝑖

. (9)

Analogously, we define the noise share of benchmark reference rate 𝜏
as the noise in rate 𝜏 normalized by sum of noise in all reference rates: 

𝑁𝑆𝜏 =
𝜎2𝑠𝜏

∑𝑁
𝑖=1 𝜎2𝑠𝑖

. (10)

Noise shares express the amount of noise in a benchmark rate relative 
to the total noise in both LIBOR and the ARR. The calculation of noise 
shares from noise variances is effectively a within-currency normaliza-
tion. This normalization allows the metric to focus on relative noise 
of the different benchmark methodologies (LIBOR vs ARRs) by holding 
constant the factors that are unrelated to benchmark methodology that 
contribute to noise, such as differences in the underlying markets for 
overnight borrowing and variation through time.

For each benchmark 𝜏, we also define an information-to-noise ratio 
(𝐼𝑁): 

𝐼𝑁𝜏 =
𝜎2𝑤𝜏

𝜎2𝑤𝜏
+ 𝜎2𝑠𝜏

(11)

2.1. Model discussion

The state-space model defined in Section 2 is a version of the com-
mon levels model in Durbin and Koopman (2012), extended to allow 
time-varying volatility of the state vector disturbances. Menkveld et al. 
(2007) use a similar state-space approach to analyze the price discovery 
contributions of different markets trading cross-listed equities. In their 
case, the efficient price of each stock is an unobserved state variable.

In our context of benchmark interest rates for overnight borrow-
ing, the efficient interest rate process captures the evolution of the 
(unobserved) overnight risk-free rate. Klingler and Syrstad (2021) note 
that theoretically, overnight interest rates are virtually risk-free but 
in practice are subject to frictions that create deviations. We model 
this process by assuming each observed benchmark interest rate is the 
sum of the unobserved risk-free rate and additive noise components 
reflecting liquidity, regulatory, and (potentially) credit factors that can 
differ across benchmarks.4 This underlying data generating process 
implies that both elements of the design matrix are equal to one, rather 

3 This normalization is equivalent to a level shift in the state vector equal 
to the omitted term of 𝝁. Incorporating stochastic, time-varying credit risk 
and liquidity effects would lead to a more complicated model. Instead, we 
include control variables for credit risk and liquidity effects in our empirical 
implementation.

4 Although credit risk on overnight borrowing and lending is close to zero 
(see, e.g., Klingler and Syrstad, 2021), we allow for credit risk disturbances 
caused by fluctuations in overall economic conditions, which we capture 
through government bond returns, changes in CDS spreads, and the daily 
change in the ICE BofA High Yield Option-Adjusted Spreads (OASs).
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than just the first element, as would be the case in the standard common 
levels model.5

Expressing the data generating process in state-space form with 
Gaussian disturbances demonstrates how estimation can be carried 
out using Maximum Likelihood techniques and the Kalman filter. A 
particular advantage of this approach is that the Kalman filter directly 
handles the missing observations in each reference rate period. A 
necessary condition for the validity of the Kalman Filter is that the 
state disturbance and noise disturbance vector are independent of each 
other and serially independent at all leads and lags. In our model, 
this implies that the noise process in each reference rate contains no 
information about the underlying efficient process and vice versa.6 
Additionally, unlike a VAR representation, the Kalman filter generally 
requires Gaussian disturbances.

We use the exact diffuse prior for the initial conditions, as described 
in Chapter 5 of Durbin and Koopman (2012), and the L-BFGS algorithm 
for maximizing the log-likelihood function. We constrain all variance 
terms to be no smaller than 1e−7 to avoid regions where the likelihood 
function is undefined. We estimate all models twice, once using a 
maximum number of iterations of 1,000 to obtain start parameters for 
a second estimation using a maximum number of iterations of 10,000. 
In all cases, the estimation converges.

To validate that the proposed empirical methodology can reliably 
recover the structural model parameters, we simulate benchmark rates 
using a Monte Carlo procedure and then compare the estimated 𝐼𝑆, 
𝑁𝑆, and 𝐼𝑁 ratios to their theoretical true values. The baseline Monte 
Carlo simulations follow a structural model described in Section 2. 
Details of the simulation are presented in the Internet Appendix.

3. Assessing the quality of LIBOR vs. ARRs

3.1. Institutional details of the transition from LIBOR to ARRs

Bloomberg calls LIBOR ‘‘The world’s most important number’’, 
given its prominence as (i) the reference rate for financial contracts 
like swaps, loans, or mortgages and (ii) the benchmark rate used to 
gauge bank borrowing costs (Bloomberg, 2021). However, LIBOR fell 
out of favor following a series of rate manipulations by the rate-
submitting banks. The 2012–2015 litigation surrounding the LIBOR 
scandals sped up the coordinated effort by central banks, the Interna-
tional Organization of Securities Commissions (IOSCO), and the Bank 
for International Settlements (BIS) to replace LIBOR with alternative 
reference rates (ARRs). Policymakers set December 31, 2021 as the 
deadline for transition away from LIBOR.

Besides manipulation, regulators also raised concerns about the 
decreasing liquidity in LIBOR rate-setting transactions. For example,
Duffie and Stein (2015) highlight that the market for interbank un-
secured borrowing has been in decline in the aftermath of the Global 
Financial Crisis of 2008/09, mainly because regulators decided to limit 
unsecured inter-bank borrowing/lending activity. This in turn limited 
liquidity in the LIBOR rate-setting transactions. These dynamics created 
a gap between the relatively low value of transactions that determined
LIBOR and the extremely high value of outstanding contracts that
referenced LIBOR.7

5 The unrestricted common levels model also nests a multivariate Local 
Level model with separate, cointegrated state variables for each benchmark 
interest rate. In such a case, one of the state variables can be re-expressed as 
a linear function of the other state variable plus a noise term that cannot be 
separately identified from the disturbance term in the noise process.

6 Identification of permanent and noise components of time series under 
varying assumptions are discussed in Watson (1986) and Hasbrouck (2007).

7 For example, the 2018 presentation on GBP LIBOR transition mentions 
that in the 3-month GBP LIBOR (the most widely used of the GBP tenors) 
there was only GBP 187 million in daily deposits value, while the value of 

The shortcomings of LIBOR — related to both the methodology 
and lack of underlying liquidity/reference transactions — are the key 
reasons for the transition from LIBOR to ARRs. ARR design relies on 
the principles for robust benchmarks published by IOSCO in 2013. 
These principles recommend calculating benchmark rates using actual 
transactions data from deep, liquid markets as opposed to survey data 
from market participants. The benchmark administrators therefore de-
signed ARRs to (i) rely on overnight (O/N) money markets, which have 
greater volumes and more depth than longer-dated tenors such as three 
months, (ii) include transactions by non-bank wholesale counterparties 
including investment funds and insurance companies, and (iii) in some 
cases (e.g., SARON and SOFR) draw on secured rather than unsecured 
transactions. For a detailed overview of the market microstructure of 
LIBOR and ARR benchmarks, see the Internet Appendix Section 1.

The design of ARRs involves striking a balance between various 
trade-offs. For example, ARRs based on secured overnight lending 
markets, as is the case for SOFR and SARON, may be subject to 
additional rate volatility due to market conditions in investment-grade 
debt securities that are used as collateral in overnight borrowing. In 
other words, ARRs may be noisy, as they change for reasons not related 
to the actual cost of overnight borrowing. Policymakers in the various 
countries in our sample made different decisions regarding the design 
of their respective ARRs. Therefore, assessing the information and noise 
in the different ARRs compared to LIBOR presents a natural experiment 
that can inform benchmark design more broadly.

Table  1 summarizes the key details of LIBOR and the ARRs, and the 
relevant transition dates.8 We identify the key transition milestone for 
each ARR based on regulatory documents referenced in the notes to 
Table  1.

3.2. Assessing the quality of LIBOR and its replacements

ICE LIBOR, the LIBOR administrator,9 calculates LIBOR rates in five 
currencies: CHF, EUR, GBP, JPY, and USD. Hence, we focus on these 
five currencies. The relevant tenor is the O/N rate, as it matches the 
tenor of the ARRs (SARON, ESTR, SONIA, TONAR, and SOFR). We 
obtain daily data on these reference rates from Factset.

For each of the five currencies, we estimate the state-space model 
described in Section 2 with two interest rate series (LIBOR and the 
corresponding ARR), using daily data. Our main sample period starts 
two years prior to transition and ends on December 31, 2021, when 
LIBOR rates stop being published, except for USD. Overnight reference 
rates in all currencies closely track the prevailing policy rate set by 
the central bank in that currency. We therefore include the current 
level of the policy rate in the measurement equation, as discussed in 
Section 2, and provide robustness checks where we expand the controls 
to include government bond returns, credit risk and trading activity 
in OIS markets (discussed at the end of this section). We produce 
two estimates of information shares (𝐼𝑆), noise shares (𝑁𝑆), and 
information-to-noise ratios (𝐼𝑁): pre- and post- the major transition 
milestone. For the USD and EUR rates, only the post-transition estimate 
exists, given that SOFR and ESTR are newly created ARRs and therefore 
do not have pre-transition data.

Table  2 Panel A presents these results using our main sampling 
periods. Our main sampling approach generates pre- and post-transition 

financial contracts referencing this 3-month borrowing benchmark was around 
GBP 30 trillion (Bank of England, 2018). In USD LIBOR, the Duffie and Stein 
(2015) report suggests that the 3-month USD LIBOR had an average of 25–30 
rate-setting transactions, but on the lowest-volume days, there could be as 
few as three to eight transactions. At the same time, the value of transactions 
referencing the 3-month USD LIBOR was in the order of trillions of dollars 
(e.g., USD 107 trillion in gross national value of OTC interest-rate swaps, 65% 
of which are linked to LIBOR).

8 We rely on the presentation from the Bank of England (2018).
9 See ICE (2018)
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Table 1
Details of LIBOR and ARRs in five major currencies.
 LIBOR pub-n ARR pub-n Transition ARR ARR  
 time (London) time (London) date administrator collateralization 
 CHF LIBOR SARON Oct 31, 2018 SIX Swiss Exchange Secured  
 11:55 am 5:00 pm  
 EUR LIBOR ESTR Oct 1, 2019 European Central Bank Unsecured  
 11:55 am 7:00 am  
 GBP LIBOR SONIA Apr 23, 2018 Bank of England Unsecured  
 11:55 am 9:00 am  
 JPY LIBOR TONAR Aug 31, 2018 Bank of Japan Unsecured  
 11:55 am 2:00 am  
 USD LIBOR SOFR Apr 2, 2018 New York Fed Secured  
 11:55 am 1:00 pm  
This table summarizes the key details about the LIBORs and alternative reference rates (ARRs) in five major currencies. The table relies on 
information from the Bank of England. The data on transition dates are sourced from the web pages of ARR administrators in the respective 
currencies.
Notes on transition dates
Oct 31, 2018 – SARON Futures start trading at Eurex. Source: https://www.snb.ch/en/ifor/finmkt/fnmkt_benchm/id/finmkt_NWG_milestones.
Oct 1, 2019 – ECB starts publishing ESTR. Source: https://www.ecb.europa.eu/paym/interest_rate_benchmarks/WG_euro_risk-free_rates/html/
milestones.en.html.
Apr 23, 2018 – SONIA reforms implemented, firms develop SONIA futures trading infrastructure. Source: https://www.bankofengland.co.uk/
markets/transition-to-sterling-risk-free-rates-from-libor.
Aug 31, 2018 – Cross-Industry Committee on Japanese Yen Interest Rate Benchmarks established. Source: https://www.boj.or.jp/en/
announcements/press/koen_2020/data/ko200219a1.pdf.
Apr 2, 2018 – The New York Fed starts publishing SOFR. Source: https://www.newyorkfed.org/medialibrary/microsites/arrc/files/libor-
timeline.pdf.

windows that differ in duration across currencies. To ensure our results 
do not reflect differences in sample periods, we conduct a robustness 
test in Panel B of Table  2 by using pre- and post-transition windows that 
are identical for all currencies. An additional reason for using an alter-
native pre-post window is that the calculation of LIBOR itself changed 
between April 25, 2018 and April 1, 2019. From April 25, 2018 to April 
1, 2019 IBA (ICE Benchmark Administration Limited) transitioned from 
the panel banks to making LIBOR submissions according to the updated 
VWAP (volume-weighted average price) methodology. Therefore, in 
the alternative estimation, we use the pre-transition period from July 
1, 2017 (when the FCA announced the commitment to phasing out 
LIBOR) to April 25, 2018 (the date of the LIBOR methodology change). 
The post-transition period starts on October 1, 2019 (the date of ESTR 
launch) and finishes on December 31, 2021 (the end of our sample, 
at which point LIBOR ceases to be published, except for in USD). The 
results using this alternative pre-post window are presented in Panel 
B of Table  2. Estimates using these alternative sample dates are very 
similar to those in Panel A of Table  2.

As a further robustness test, we expand the list of control vari-
ables to include proxies for credit risk and liquidity risk. Specifically, 
the set of conditioning variables includes government bond returns, 
changes in credit default swap (CDS) prices, changes in ICE BofA 
High Yield Option-Adjusted Spreads (OASs), and the weekly traded 
notional amount in OIS contracts. The estimated information shares 
and noise shares are similar using either set of variables (policy rates, 
bond returns, changes in CDS prices, OASs, and OIS trading activity, or 
just policy rates). These additional results are available in the Internet 
Appendix Section 3. The parameter estimates from the state-space 
model (rather than the quantities in Eqs. (9)–(11)) are also reported 
in the Internet Appendix Section 4.

In addition to period-specific estimates, we estimate and plot the 
time series evolution of noise shares (𝑁𝑆) in ARRs. The estimation 
procedure is as described above, except that we use a one-year rolling 
window to generate the estimates of 𝑁𝑆. For example, to obtain the 
𝑁𝑆 estimates for January 15, 2018, we use data from January 16, 2017 
to January 15, 2018; to obtain the 𝑁𝑆 estimates for January 16, 2018, 
we use the data from January 17, 2017 to January 16, 2018, and so 
on. Figs.  1–3 contain these time series. Fig.  1 presents results for CHF 
(SARON) in Panel A and GBP (SONIA) in Panel B. Fig.  2 presents results 
for EUR (ESTR) in Panel A and JPY (TONAR) in Panel B. Fig.  3 presents 
results for USD (SOFR). The lines in the plot are smoothed using Locally 
Weighted Scatter-plot Smoothing (LOWESS) with tuning parameter of 
one-fourth.

3.3. Designing robust benchmarks: From theory to practice

How noisy are the ARRs that replace LIBOR? Do ARRs become less 
noisy once they are set as official replacements of LIBOR (i.e., post-
transition)? While prior literature proposes optimal benchmark design 
principles, we empirically evaluate the noise in the different bench-
marks and discuss the trade-offs between various design features in 
practice.

Table  3 summarizes the design features of ARRs and provides a 
reference for our further discussion of how those trade-offs affect ARR 
noisiness.

The optimal benchmark design principles outlined in Duffie and 
Dworczak (2021) suggest that all else equal, more robust benchmarks 
are those that (i) are more costly to manipulate, and (ii) offer fewer 
incentives for manipulation. In practice, the cost of manipulation is 
greater when a benchmark is based on a more liquid underlying market.

Greater volumes in the underlying benchmark-setting market are 
also likely to reduce the noise in the benchmark because (i) in a deep 
market, individual trades that could cause temporary price distortions 
tend to have a smaller impact and (ii) averaging across many trades 
results in a smaller average noise term.

Consequently, given that ARRs have been designed to draw on 
deeper markets than the original LIBOR benchmarks, our First Hypoth-
esis is that ARRs should be less noisy than the corresponding LIBOR 
benchmark. For similar reasons, we expect ARRs that are based on 
more liquid underlying markets to be less noisy than ARRs based on 
less liquid underlying markets.

Our main results in Table  2 support the First Hypothesis. Four out 
of five ARRs are less noisy than LIBOR, suggesting that trade-based 
benchmarks based on deep underlying markets tend to be more robust. 
This finding supports the theory and main design principles in Duffie 
and Stein (2015), Duffie and Dworczak (2021).

The main exception is USD SOFR, which according to our estimates 
is a much noisier benchmark rate than USD LIBOR. It appears that 
the high level of noise in SOFR is linked to specific design choices. 
In particular, the decision to base the benchmark on collateralized 
repo transactions makes it vulnerable to extreme spikes based on the 
supply and demand of the underlying collateral (US treasuries and 
other investment-grade debt). One prominent example is the ‘‘SOFR 
surge event’’ on September 17, 2019 when SOFR jumped 282 bps 
in a single day. Because of high volumes of issuance and trading in 
investment-grade debt (USD 115 billion in the first half of September 
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Table 2
Benchmark quality estimates for LIBOR — ARR pairs.

Panel A. Benchmark quality estimates around the major transition milestones
 Currency ARR Period IS NS IN IS NS IN  
 (LIBOR) (LIBOR) (LIBOR) (ARR) (ARR) (ARR) 
 CHF SARON Oct 31, 2016–Oct 31, 2018 55.2% 80.9% 1.33% 44.8% 19.1% 4.44% 
 CHF SARON Oct 31, 2018–Dec 31, 2021 20.5% 98.9% 0.78% 79.5% 1.13% 72.6% 
 EUR ESTR n/a – – – – – –  
 EUR ESTR Oct 1, 2019–Dec 31, 2021 26.1% 80.5% 0.64% 73.9% 19.6% 7.00% 
 GBP SONIA Apr 23, 2016–Apr 23, 2018 25.9% 45.3% 33.1% 74.1% 54.7% 54.0% 
 GBP SONIA Apr 23, 2018–Dec 31, 2021 69.7% 88.3% 0.12% 30.3% 11.7% 0.38% 
 JPY TONAR Aug 31, 2016–Aug 31, 2018 43.6% 100.0% 2.90% 56.4% 0.05% 98.8% 
 JPY TONAR Aug 31, 2018–Dec 31, 2021 54.4% 99.2% 3.61% 45.6% 0.85% 78.4% 
 USD SOFR n/a – – – – – –  
 USD SOFR Apr 2, 2018–Dec 31, 2021 0.13% 0.00% 50.0% 99.9% 100% 0.61% 

Panel B. Robustness test using alternative transition milestones
 Currency ARR Period IS NS IN IS NS IN  
 (LIBOR) (LIBOR) (LIBOR) (ARR) (ARR) (ARR) 
 CHF SARON Jul 1, 2017–Apr 23, 2018 27.1% 83.0% 1.13% 72.9% 17.0% 13.1% 
 CHF SARON Oct 1, 2019–Dec 31, 2021 21.0% 98.8% 1.08% 79.0% 1.25% 76.4% 
 EUR ESTR n/a – – – – – –  
 EUR ESTR Oct 1, 2019–Dec 31, 2021 26.1% 80.5% 0.64% 73.9% 19.6% 7.00% 
 GBP SONIA Jul 1, 2017–Apr 23, 2018 46.7% 50.8% 94.1% 53.3% 49.2% 94.9% 
 GBP SONIA Oct 1, 2019–Dec 31, 2021 99.8% 90.6% 61.9% 0.16% 9.38% 2.41% 
 JPY TONAR Jul 1, 2017–Apr 23, 2018 63.6% 99.0% 4.45% 36.4% 1.02% 72.1% 
 JPY TONAR Oct 1, 2019–Dec 31, 2021 53.9% 96.9% 4.95% 46.1% 3.14% 57.9% 
 USD SOFR n/a – – – – – –  
 USD SOFR Oct 1, 2019–Dec 31, 2021 0.11% 0.01% 50.0% 99.9% 100.0% 6.91% 
This table reports information shares (𝐼𝑆), noise shares (𝑁𝑆), and information-to-noise ratios (𝐼𝑁) for five pairs of LIBOR rates and alternative reference rates (ARRs). The 
sequential price state-space model and estimation details are described in Section 2. The estimation windows are in the ‘‘Period’’ column. In Panel A, the pre-transition period 
covers two years prior to the transition from LIBOR to ARR in each respective currency, and the post-transition period corresponds to the time from the transition milestone until 
December 31, 2021 (the date of cessation of LIBOR). Table  1 notes explain the transition dates. In Panel B, the pre- and post-transition periods are the same for all currencies. The 
pre-transition period is from July 1, 2017 (when the FCA announced the commitment to phasing out LIBOR) to April 25, 2018 (the date of LIBOR methodology change for GBP). 
The post-transition period starts on October 1, 2019 (the date of ESTR launch) and finishes on December 31, 2021 (the end of our sample). We do not estimate the pre-transition 
price discovery shares for SOFR and ESTR, as they are newly established ARRs and therefore have not existed prior to transition.

2019), dealers accumulated excess long positions in investment-grade 
bonds (usually used as collateral in repo transactions). This increased 
dealers’ demand for short positions (e.g., borrowing overnight), and 
pushed the repo rate up. This imbalance was reflected in a sharp jump 
in SOFR the next morning, as SOFR takes the median value of repo rates 
from the previous day. As a result of this design choice, SOFR has the 
highest noise share among the ARRs that we examine (see Table  2).

The high level of noise in SOFR is even apparent in a simple 
visual inspection of SOFR vs. USD LIBOR. For example, in Fig.  3, 
which presents the time series of SOFR, one can see that SOFR often 
and substantially departs from USD LIBOR in temporary spikes before 
returning back to the USD LIBOR level.

Our Second Hypothesis, based on Duffie and Stein (2015) is that 
all else equal, more homogeneous underlying markets lead to less noise-
prone benchmarks. The simple intuition is that a benchmark of apples 
and oranges could fluctuate between the price of apples and the price 
of oranges on a given day depending on how many transactions happen 
in apples vs. oranges, in contrast to a benchmark of apples only or 
oranges only. This Second Hypothesis highlights one of the benchmark 
design trade-offs — defining a very broad underlying market so that it 
includes many transaction types may increase the overall volume of the 
underlying reference market (beneficial according to Hypothesis 1), but 
in doing so increase the heterogeneity of the transactions (detrimental 
according to Hypothesis 2).

Consistent with our Second Hypothesis, SARON, which has one 
of the most homogeneous underlying markets because the underlying 
transactions are completed by banks only, unlike in other rates, has 
one of the lowest noise shares across benchmarks ( Table  2). This 
is particularly the case in the post-transition period when underlying 
volumes grew.

Our Third Hypothesis is that the statistical methods used in bench-
mark calculation matter and trimming outliers when computing the 
benchmark rate leads to less noisy benchmarks (e.g., Youle (2014) 
and Eisl et al. (2017)). A test of this hypothesis, although not a perfect 
test, is the reform of GBP SONIA. In the reform, GBP SONIA added 
outlier trimming in its benchmark methodology post-transition. Table 
2 shows that from pre-reform to post-reform, the noise share in SONIA 
went down from 54.7% to 11.7%, consistent with our Third Hypothesis. 
One reason this is not a perfect test of the hypothesis is that the reform 
also included a wider range of transactions in the benchmark to make 
a deeper underlying market. According to our First Hypothesis, the 
deeper underlying market could also have contributed to the decrease 
in noise and we are unable to separate these two potential drivers of 
the decrease.

The last hypothesis that follows from theory is about manipulation 
incentives. The incentive to manipulate a benchmark is directly pro-
portional to potential profits to be made from ARR-linked derivatives 
(e.g., (Duffie and Stein, 2015)). Therefore, our Fourth Hypothesis is 
the greater the ratio of derivatives volume to underlying benchmark 
market volume, the greater the incentives to manipulate and thus the 
higher the level of noise in the benchmark rate. Some ARRs have 
developed large and liquid derivative markets and therefore would 
offer plentiful incentives for manipulation.

Testing this hypothesis, however, is challenging. The main imped-
iment is that the LIBOR manipulation litigation was an extremely 
high-profile event, with extensive media coverage and billions of dol-
lars of fines (even some jail sentences). Given the deterrence effect, 
it is unlikely that traders would attempt to manipulate the LIBOR 
replacements in the near term following the LIBOR manipulations.
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Fig. 1. LIBORs, ARRs, and noise shares in ARRs for CHF and GBP.
This figure plots the time series of LIBORs and alternative reference rates (ARRs), overlayed with the noise shares in ARRs for SARON (CHF) and SONIA (GBP). We estimate the 
noise shares using the sequential price state-space model described in Section 2 with a one-year rolling window shifted daily to generate the estimates of 𝐼𝑆 and 𝑁𝑆 as the daily 
time series. The lines in the plot are smoothed using Locally Weighted Scatter-plot Smoothing (LOWESS) with tuning parameter of one-fourth. The vertical dashed line represents 
transition dates as per Table  1.

3.4. Benchmark implementation trade-offs

As noted in the previous subsection, the practical implementation of 
benchmarks involves trade-offs between multiple factors. In this subsec-
tion, we discuss the main design choices for interest rate benchmarks 
and, where possible, what our results imply about these choices. Many 
of these design choices apply to financial benchmarks more broadly.

The design choices include the benchmark type (trade-based or not), 
the choice of underlying market (bank-only or bank-and-wholesale), 
the collateralization (relying on collateralized transactions or not), the 
aggregation window (overnight or other tenors), statistical stabilization 
(whether outliers are excluded or not), whether to discard small trades 
or not, the weighting scheme (equal-weighted, volume-weighted or 

other), the multiplicity of benchmarks (whether there are multiple 
alternative benchmarks or not), and the role of regulatory clarity.

Benchmark type. The move to trade-based benchmarks and away 
from survey-based ones is at the core of the transition from LIBOR to 
ARRs. In line with (Duffie and Dworczak, 2021), we find that trade-
based benchmarks are less noisy, especially as underlying transaction 
markets become more liquid over time. Indeed, the time series of 
ARR noise shares (Figs.  1–3) show a downward trend in ARR noise 
post-transition, as ARRs accumulate more depth in their underlying 
markets. All ARRs except SOFR experience a significant reduction in 
noise post-transition, while SOFR noise goes down only slightly.

Choice of underlying market. The choice of which transactions 
to include in calculating the benchmark affects the volume of rate-
setting transactions (the broader the range of transactions, the greater 
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Fig. 2. LIBORs, ARRs, and noise shares in ARRs for EUR and JPY.
This figure plots the time series of LIBORs and alternative reference rates (ARRs), overlaid with the noise shares in ARRs for ESTR (EUR) and TONAR (JPY). We estimate the noise 
shares using the sequential price state-space model described in Section 2 with a one-year rolling window shifted daily to generate the estimates of 𝐼𝑆 and 𝑁𝑆 as the daily time 
series. The lines in the plot are smoothed using Locally Weighted Scatter-plot Smoothing (LOWESS) with a tuning parameter of one-fourth. The vertical dashed line represents 
transition dates as per Table  1.

the volume), but also affects the heterogeneity of counterparties and 
reasons to transact. Therefore, broadening the transaction base by 
including wholesale and interbank transactions in the transaction pool 
may introduce additional noise to ARRs. Among the rates we study, 
the CHF SARON is the only rate that only includes bank transactions. 
Other rates include both bank and wholesale transactions, and have on 
average higher noise shares than SARON (see Table  2). Our empirical 
findings suggest that the narrower pool of counterparties in the SARON 
rate does not substantially increase the noisiness of SARON.

Collateralization. Secured rates are those derived from transac-
tions that require collateral. On one hand, the absence of collateral 
introduces heterogeneity to transactions and can thus increase noise be-
cause the different transaction counterparties may have different credit 
risks. On the other hand, the presence of collateral can introduce noise 

from the underlying collateral markets themselves. Our estimation re-
sults illustrate the latter effect — SOFR is a very noisy benchmark with 
noise shares that remain high since its launch, reflecting substantial 
spikes in SOFR that subsequently revert back. This dynamic is likely a 
consequence of supply and demand in the market for investment-grade 
securities that are used as collateral in secured repo transactions (such 
as the ‘‘SOFR surge event’’ discussed in Section 3.3). In the second half 
of 2021, high noise share estimates for SOFR also reflect a relatively 
stable USD LIBOR (many days with the same LIBOR rate at the zero 
bound).

Aggregation window. The period of time over which transac-
tions are aggregated to determine the benchmark rate determines the 
breadth and heterogeneity of those transactions. A longer aggregation 
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Fig. 3. LIBORs, ARRs, and noise shares in ARRs for USD.
This figure plots the time series of LIBORs and alternative reference rates (ARRs), overlayed with the noise shares in ARRs for SOFR (USD). We estimate the noise shares using 
the sequential price state-space model described in Section 2 with a one-year rolling window shifted daily to generate the estimates of 𝐼𝑆 and 𝑁𝑆 as the daily time series. The 
lines in the plot are smoothed using Locally Weighted Scatter-plot Smoothing (LOWESS) with tuning parameter of one-fourth.

Table 3
Summary of ARR methodology.
 Trade-based? SOFR ESTR SONIA (pre-reform) SONIA (post-reform) SARON TONAR

 Trade Trade Trade Trade Transactions and 
binding quotes

Trade  

Underlying market
 Counterparties banks

and wholesale
banks
and wholesale

banks
and wholesale

banks
and wholesale

banks banks
and wholesale

 Secured? yes no no no yes no  
 Underlying volumea $1 trn $45 bn $14 bn $57 bn $3.5 bn $40 bn  
 Tenor overnight overnight overnight overnight overnight overnight  
 Aggregation window 7 h

(7:00–14:00
CT)

8 h
(8:30–17:30
GMT+2)

n/a 18 h
(00:00–18:00
GMT+1)

9.5 h
(8:30–18:00
GMT+2)

n/a  

 Weighting volume-
weighted 
median

volume-
weighted 
trimmed mean

n/a volume-
weighted 
trimmed mean

volume-
weighted 
mean

volume-
weighted 
mean

 Price trimming no yesd n/a yesd yese n/a  
 Volume trimming no yesf no yesg noh n/a  

Contracts fixing on the rate
 $ Notional derivativesb $200 bn $4.69 bn n/a $7,913 bn $27.67 bn $248 bn  
 Contract-to-market ratioc 0.20 0.10 n/a 138.82 7.91 6.20  
 Other
 Other benchmarks? yesi yesj n/a no no yesk  
 ARR start Apr 2018

new
Oct 2019
new

March 1997
existing

Apr 2018
reformed

Aug 2009
existing

2016
existing

This table summarizes the key design features of alternative reference rates (ARRs), using the data from regulatory reports and the websites of rate administrators.
Notes on ARR methodology choices
a Underlying volume data is for the year 2019, collected from the websites of rate administrators. Data availability is limited for other years.
b We present the notional $ value traded in derivatives fixing on the rate, in USD billion, for 2019. We use notional traded because ISDA does not provide dollar volume numbers. We use 
2019 for comparability because underlying market ARR volumes are for 2019 only.
c Contract-to-market ratio is $ notional derivatives divided by underlying volume.
d In ESTR and SONIA, they remove the top and bottom 25% of volume-weighted rates, after sorting rates from lowest rate to highest rate.
e In SARON, they apply a quote filter: eliminate quotes from outside +/−3bps from midpoint; trade filter: eliminate prices outside +/−50 bps of average trade price on completed trades.
f In ESTR, a pro-rata calculation is applied to volumes that span the thresholds for trimming to ensure that exactly 50% of the total eligible volume is used in the calculation of the 
volume-weighted mean.
g In reformed SONIA, the trimmed mean is calculated as the volume-weighted mean rate, based on the central 50% of the volume-weighted distribution of rates.
h In SARON, the volume of quotes is limited to CHF 100 million.
i In USD, AMERIBOR is an unsecured rate calculated by AFX, since 2015, now with $2bn underlying transactions.
j In EUR, EURIBOR is a daily reference rate, published by the European Money Markets Institute, based on the averaged interest rates at which Eurozone banks borrow unsecured funds 
from counterparties in the euro wholesale money market (or interbank market). It has existed since 1999.
k In JPY, TIBOR is the daily reference rate derived from the interest rates that banks charge to lend funds to other banks in the Japanese interbank market. There are two types of TIBOR 
rates—the European TIBOR rate (since 1998) and the Japanese Yen TIBOR rate (since 1995).
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window means more volume and greater cost of manipulation, there-
fore, lower noise. On the other hand, a shorter window could have the 
benefit of less heterogeneity in the transactions. Across the ARRs we 
examine, most have a similar window of 7–9 h, while the reformed 
SONIA rate aggregates transactions over 18 h (see Table  3).

Statistical stabilization. Statistical stabilization techniques, such 
as rate trimming, should be noise-reducing because they eliminate 
outliers. The positive effect is especially pronounced if applied to a 
broad heterogeneous market but could be detrimental if applied to a 
narrow market with only a few transactions. Two rates that apply the 
statistical trimming techniques in our sample are SONIA and ESTR. 
SONIA was successfully reformed, with one of the key new features 
being a switch to the volume-weighted trimmed mean methodology. 
As shown in Table  2, the noise share of SONIA went down from 54.7% 
to 11.7% post-reform. In the time series of SONIA noise shares (Panel B 
Fig.  1), we also observe that outliers in the data became less common 
after the reform, leading to lower noise shares in SONIA relative to 
GBP LIBOR. ESTR, being a newly launched rate, does not have a pre-
transition NS estimate, but post-transition, ESTR is also less noisy than 
EUR LIBOR, with 19.6% noise share.

Weighting or discarding small trades. To discard small trades is 
to use only the substantial transactions for price formation, taking to 
the limit the argument in Duffie and Dworczak (2021), who suggest 
a volume-weighting scheme that places small weight on small trans-
actions. However, discarding small transactions altogether reduces the 
breadth of the underlying market. So if a given market experiences little 
manipulation because of non-market forms of deterrence (e.g., legal 
threat, monitoring), then discarding the small trades could be detrimen-
tal to market quality. Duffie and Dworczak (2021) conclude that, absent 
manipulation, equal weighting is optimal in that it is the statistically 
most efficient way of computing the benchmark rate.

Contract value fixing on the rate. Contract value, or the contract-
value-to-underlying-market-volume ratio, captures the incentive to ma-
nipulate a benchmark. This incentive depends on the value or volume 
of benchmark-linked derivatives. When benchmark-linked derivative 
volume exceeds the underlying benchmark-forming volume of trans-
actions, the benefit-to-cost of manipulation is high. Among the bench-
marks we study, the newly launched benchmarks like SOFR and ESTR 
tend to have lower contract-to-market ratios because the derivative 
markets have not accumulated sufficient volume.

Multiplicity of benchmarks. In several currencies (USD, EUR, 
JPY), two alternative benchmarks co-exist. The two-benchmark ap-
proach, as in the case of USD AMERIBOR co-existing with SOFR, 
EURIBOR with ESTR, and TIBOR with TONAR, could be beneficial 
by decreasing the contract-to-market ratio, and therefore reducing 
incentives for manipulation. On the other hand, the multiplicity of 
benchmarks could lead to segmentation and reduce the underlying 
market liquidity of the benchmark. Empirically, we observe high noise 
shares in USD SOFR, but relatively low noise shares in TONAR and 
ESTR, suggesting that the multiplicity of benchmarks in these rates is 
not a major factor affecting ARR noisiness.

Regulatory clarity. The time series patterns support the notion 
that transparent regulatory action around the reference rate transition 
tends to increase the legitimacy of ARRs and bring in extra liquidity 
in both the underlying and derivatives markets. For example, the noise 
share in CHF SARON (Panel A Fig.  1) shows a clear downward trend in 
2020–2021. That trend coincides with the Swiss National Bank (SNB) 
making a transition from LIBOR to SARON in managing liquidity in 
the money market (i.e., targeting SARON instead of LIBOR to be in 
line with the SNB policy rate). The Bank of Japan (BOJ), on the other 
hand, has not provided the same degree of clarity on the JPY LIBOR 
transition. For example, Bloomberg (2020) reports that regulators have 
only started publishing data on the term structure of TONAR in 2021 
and a functioning curve in mid-2021. This difference may explain the 
upwards-trending noise levels in JPY TONAR (Panel B Fig.  2).

4. Wealth transfers due to noise in LIBOR and ARRs

We have shown in the previous section that the LIBOR replacements 
(ARRs) are rather noisy in USD and significantly less noisy in GBP, 
CHF, JPY, and EUR. ARR noise shares also vary over time, driven by 
factors such as methodology changes (e.g., adopting the trimmed mean 
calculation as in the case of SONIA).

One of the reasons noise matters is because reference rates deter-
mine payments on trillions of dollars of financial instruments such 
as interest rate swaps, forward rate agreements, interest rate options, 
cross-currency swaps, interest rate futures, business loans, bonds, and 
securitized products.10 Given the large number and total value of 
contracts using the benchmark rates, even a small distortion in the 
benchmark rates due to noise can result in substantial noise-driven 
wealth transfers between contract counterparties. For example, on a 
day when $10 billion of net exposure (after accounting for long and 
short positions of each entity) fixes on a benchmark rate, a mere one 
basis point error in the benchmark due to noise can result in $1 million 
of incorrect wealth transfers.

4.1. Data

Our empirical method allows us to estimate the daily series of 
pricing errors and calculate the value of wealth transfers that occur 
because of noise in reference rates. To arrive at the value of noise-
driven wealth transfers, we use (i) model-derived noise estimates and 
(ii) data on entity-netted notional (ENN) value of contracts tied to the 
OIS rates. The total notional amounts are publicly available from the 
Commodity Futures Trading Commission (CFTC) and the ENN estimates 
are from McPhail et al. (2023).11

We correct for netting between long and short positions in the inter-
est rate swap market using CFTC estimates of Entity-Netted Notionals 
(ENN) (McPhail et al., 2023), which are approximately 1/120 of total 
notional outstanding.12 We use ENN in our calculations because many 
intermediaries offset outstanding positions by entering a new offsetting 
position rather than canceling the initial position.

Using only OIS-linked contracts rather than all maturities of interest 
rate benchmarks means that we obtain a lower-bound estimate of the 
total value of wealth transfers. OIS-linked contracts account for about 
14% of the total interest rate swaps notional according to CFTC data 
for 2020. By currency, OIS-linked notional value represents 9% of USD 
swaps, 14% of EUR, 31% of GBP, and 4% of JPY. The data on CHF are 
not available from CFTC.

Limiting our estimation to OIS-linked contracts has several advan-
tages. First, OIS contracts share the same tenor (O/N) as the LIBOR-ARR 
pairs used in the benchmark quality estimation. This means the noise in 
O/N rates directly affects floating leg payments in OIS contracts.13 Sec-

10 According to the New York Fed, the US LIBOR market footprint (as of 
Q4 2020) is $223 trillion in outstanding notional exposure. By asset class, 
the notional exposures include $171 trillion in outstanding OTC derivatives 
(interest rate swaps, forward rate agreements, interest rate options, and 
cross currency swaps), $43 trillion in outstanding exchange-traded derivatives 
(interest rate options and futures), $4.8 trillion in outstanding business loans, 
$1.4 trillion in consumer loans, $1.1 trillion in bonds, and $1.6 trillion in 
securitized products.
11 The data are available from CFTC (2023).
12 We derived this scaling factor from Table 3 of McPhail et al. (2023), which 
shows that the ratio of net notional to total notional in swaps is 784/94,680 
(1/120) for banks. We note that OIS are mostly used by banks, and therefore, 
ENN constitutes 1/120 of total notional and represents a better proxy for the 
quantity of risk transfers than total notional.
13 If we were to do the estimation for other tenors (e.g., 3-month or 6-month 
LIBOR vs. ARR), the compounding conventions in ARRs of longer tenors would 
complicate the estimation.
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Fig. 4. The time series of estimated wealth transfers in USD and EUR.
This figure plots the 8-week moving average of estimated wealth transfers in overnight interest swaps (OIS) due to noise in reference rates. Both vertical axes are in $million. 
Panel A (B) plots noise-related transfers in USD (EUR) OIS, calculated by multiplying the entity-netted notional outstanding by the estimate of noise for the end of that week. The 
data on OIS notional outstanding in each currency are from CFTC swaps reports. Estimation periods are as indicated in Table  2.

ond, OIS payments are simpler to estimate given they occur daily and 
not on specific roll dates. Finally, unlike other instruments (e.g., interest 
rate options, futures, syndicated loans, etc.), swaps have weekly data 
available from CFTC.

Among the various interest rate contracts that reference LIBOR or 
ARRs, interest rate swaps have by far the most substantial outstanding 
notional value. For example, in USD, they account for $99 trillion out 
of $152 trillion of total USD notional outstanding. In EUR, $92 trillion 
out of $132 trillion. In GBP, $44 trillion out of $54 trillion. In JPY, 
$35 trillion out of $37 trillion. And in CHF, $3.2 trillion out of $3.6 

trillion.14 We use the CFTC Swaps Report to obtain data on overnight 
index swaps (OIS), which allow market participants to exchange a 
floating rate (e.g., LIBOR or an ARR) for an agreed fixed rate.15

14 These data are as of 2020 Q2, as referenced in BIS Statistics on in-
terest rate derivatives notional amounts outstanding (Bank for International 
Settlements, 2020).
15 The interest rate payments are exchanged on reset dates (daily). The 
floating rate fixing dates determine which floating rate applies. For EUR and 
GBP OIS contracts, the standard floating leg fixing lag is 0 (the rate is fixed 
on the reset date). For CHF, the fixing date is one business day following the 
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Fig. 5. The time series of estimated wealth transfers in JPY and GBP.
This figure plots the 8-week moving average of the estimated wealth transfers in overnight interest swaps (OIS) due to noise in the reference rates. Both vertical axes are in 
$million. Panel A (B) plots noise-related transfers in JPY (GBP) OIS, calculated by multiplying the entity-netted notional outstanding by the estimate of noise for the end of that 
week. The data on OIS notional outstanding in each currency are from CFTC swaps reports. Estimation periods are as indicated in Table  2.

4.2. Estimation procedure

We estimate the wealth transfers as follows. First, from the empirical 
price discovery model, we obtain the time series of daily pricing (rate) 
errors in overnight LIBOR and ARR rates.16 Next, we match these daily 
benchmark error estimates with the ENN value of OIS contracts fixing 

reset date. For USD, the fixing date is one day prior to the reset date. The OIS 
contract duration can range from seven days to two years. IMM/ EOM Roll 
Dates do not apply to OIS. For detailed OIS contract specifications, see the 
Internet Appendix Section 2.

on the reference rate for each currency. We then compute the value of 
swap payments that are due to noise, assuming in one case that the cur-
rency’s OIS ENN is referencing LIBOR, and in a second case assuming 
that it is referencing the corresponding ARR. The difference between 
these two cases gives the ‘‘excess’’ noise-related wealth transfers.

We provide the estimates for the year 2020, as that is the only 
year with data available on all rates and all OIS contracts. The data on 

16 The pricing errors used to compute wealth transfers are obtained from the 
smoothed disturbance vector of the main state-space model that includes the 
central bank policy rate as a control variable.
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Table 4
Estimates of noise-related wealth transfers.
 Currency (1) Wealth (2) Wealth Difference (2-1), Notional ENN Notional (3) Wealth (4) Wealth Difference (4-3) 
 transfers, transfers, ARR-LIBOR outstanding outstanding transfers, transfers, ARR - LIBOR  
 LIBOR ($bn) ARR ($bn) ($bn) ($bn) ($bn) LIBOR(%) ARR(%) % of notional  
 % of notional % of notional  
 EUR 22.27 7.74 −14.53 10,407.82 86.73 0.2139% 0.0744% −0.1396%  
 GBP 46.12 7.69 −38.43 8,881.41 74.01 0.5192% 0.0865% −0.4327%  
 JPY 8.49 0.06 −8.43 462.32 3.85 1.8359% 0.0132% −1.8227%  
 USD 0.05 150.85 150.80 11,300.05 94.17 0.0004% 1.3349% 1.3345%  
 Total 76.92 166.34 89.42 31,051.60 258.76 0.64% 0.38% −0.27%  
This table presents the annual noise-related wealth transfers during the year 2020 in overnight index swaps (OIS). We calculate noise-related wealth transfers for 
four currencies: EUR, GBP, JPY, and USD (CHF data is missing from CFTC reports). We estimate the time series of pricing errors using the sequential state-space 
model. We calculate weekly wealth transfers by multiplying the entity-netted notional outstanding by the estimated noise term at the end of that week and then 
sum the weekly wealth transfers for the year 2020. For comparison, the table also reports the average weekly notional outstanding and entity-netted notional 
outstanding in OIS for each currency in 2020.

CHF notional are not available from CFTC, so we omit CHF from our 
calculations. That is not a substantial omission, as the CHF OIS market 
is significantly smaller compared to the rest of the currencies. Although 
we do not have the data on CHF OIS notional outstanding, one indica-
tion of a much smaller CHF market is that notional traded,as reported 
on ISDA’s website (International Swaps and Derivatives Association, 
2020), in CHF OIS is only about $11.49 billion weekly, on average over 
2019–2020, compared to $2,120.76 billion in USD, $454.14 billion in 
GBP, and $73.61 billion in JPY.

4.3. Results

Table  4 presents the results. The noise in LIBOR (ARRs) creates an 
estimated $77 billion p.a. ($166 billion p.a.) in wealth transfers be-
tween OIS contract counterparties in 2020. This number is substantial 
— it represents 30% (64%) of the average ENN in 2020, or 0.64% 
(0.38%) of the total notional. These estimates are a lower bound of the 
actual noise-related transfers, as we only consider swap contracts di-
rectly referencing overnight rates, as opposed to all types of derivatives, 
across all tenors. We also conservatively assume that OIS are mostly 
used by banks, which are more likely to net off long and short positions 
than other market participants. Across all rates, SOFR generates the 
highest dollar value of noise-related wealth transfers ($151 billion p.a.), 
driven by the high notional value of USD OIS and substantial noise in 
SOFR.

Due to their lower levels of noise, the ARRs for EUR, GBP, and JPY 
generate lower noise-related transfers relative to LIBOR. In contrast, 
USD SOFR creates a higher value of noise-related transfers compared 
to USD LIBOR and compared to all the other ARRs. Noise-related 
transfers between USD OIS counterparties would have amounted to 
approximately $151 billion less in 2020 if all USD OIS contracts were 
based on USD LIBOR compared to basing all such contracts on SOFR. 
In the other currencies, noise-related transfers would have been $15 
billion higher in EUR LIBOR compared to ESTR, $38 billion higher in 
GBP LIBOR compared to SONIA, and $8 billion higher in JPY LIBOR 
compared to TONAR.

To put these estimates into perspective, we express them relative to 
the notional dollar value of outstanding OIS. In LIBOR, JPY has the 
largest value of noise-related wealth transfers per dollar of notional 
(1.84%). In ARRs, USD has the largest value of noise-related wealth 
transfers per dollar of notional (1.33%). USD LIBOR, on the other 
hand, generates the least noise-related transfers per dollar of notional 
(0.04 bps). In terms of relative noisiness of LIBOR vs ARRs, EUR 
LIBOR generates 0.14% more noise-related transfers per dollar of OIS 
compared to ESTR, GBP LIBOR 0.43% more compared to SONIA, JPY 
LIBOR 1.82% more compared to TONAR. In USD, the opposite is true: 
1.33% more noise-related transfers occur in SOFR compared to USD 
LIBOR.

The purpose of these calculations is to consider the economic signifi-
cance of the wealth transfers by approximating their magnitudes, rather 
than to pin down precise values. Estimation errors from a number 
of sources are present, including imprecise data about the degree of 
netting and model mis-specification.

The overall conclusion is that noise in interest rate benchmarks 
is economically meaningful given the large wealth transfers that it 
creates between contract counterparties. Furthermore, the choice of 
benchmark has a material effect on the magnitude of these noise-related 
wealth transfers.

Figs.  4 and 5 show the time series dynamics of noise-related wealth 
transfers in OIS. In the time series, we observe an already familiar 
contrast between USD SOFR and the rest of the rates. For SOFR (Fig. 
4), noise-related transfers tend to be higher than for corresponding 
LIBOR. For ESTR, SONIA, and TONAR (Figs.  4, 5), on the other hand, 
we observe relatively lower noise-related transfers in ARRs relative to 
LIBOR post-transition.

5. Conclusions

We use a state-space model to separate information from noise in 
interest rate benchmarks and assess their quality.

We then apply the method to assess the quality of LIBOR and al-
ternative interest rate benchmarks (ARRs). We find that most ARRs are 
less noisy than their LIBOR counterparts, in line with the predictions 
in Duffie and Dworczak (2021), who propose trade-based benchmarks 
to replace submission-based LIBOR. The results also show that the noise 
shares of newly established ARRs tend to decrease through time as the 
new benchmarks gain adoption.

However, the replacement for USD LIBOR, SOFR, stands out as 
a much noisier interest rate benchmark compared to USD LIBOR. In 
contrast to the other benchmarks, SOFR is based on collateralized repo 
transactions, which makes it vulnerable to extreme spikes based on the 
supply and demand of the underlying collateral. As a result, there are 
instances in the data where SOFR spikes more than a full percentage 
point in a single day before reverting to its prior level.

We find that the noise in interest rate benchmarks creates economi-
cally meaningful wealth transfers between contract counterparties that 
would not occur but for the noise. For example, if during 2020, all 
overnight interest rate swaps (OIS) were based on LIBOR, $77 billion 
p.a. would change hands between contract counterparties as a direct 
result of temporary pricing errors (noise) in the benchmark. In contrast, 
if during that year all OIS contracts were based on the ARRs, the 
equivalent number would be smaller in most currencies, but much 
larger overall ($166 billion) because of the high level of noise in SOFR. 
These estimates are adjusted for the netting of long and short positions 
using entity-netted notional values. The annual value of these noise-
related wealth transfers using ARRs equates to approximately 0.38% of 
the total outstanding notional value of OIS contracts.
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Finally, we find that well-designed reforms can significantly reduce 
noise in benchmarks. For example, GBP SONIA experienced a decline 
in noise share from 54.7% to 11.7% following the SONIA reform of 
April 23, 2018. In this reform, the reference market was expanded so 
that the benchmark would be based on a higher volume of transactions 
and mean trimming was introduced. However, many benchmark design 
choices involve tradeoffs. For example, a broad reference market can 
benefit a benchmark by being more liquid, but can be detrimental if it 
increases the heterogeneity of transactions.

Overall our findings point to the importance of benchmark design, 
in particular for systemically important benchmarks that underpin large 
volumes of contracts. The methods in this paper provide a means 
for market designers to empirically test the outcomes of benchmark 
design variations or learn from benchmark designs that have been 
implemented in other markets.
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