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 A B S T R A C T

We propose a statistical methodology for jointly estimating the pricing kernel and conditional physical return 
densities from option prices. Pricing kernel estimates show that negative stock market returns are significantly 
more painful to investors in low-volatility periods. Density estimates reflect a significantly positive risk–return 
trade-off, suggest that Martin’s (2017) lower bound on the equity premium is violated in high-volatility periods, 
and provide new evidence on the variance premium’s predictive power for excess returns as well as the co-
movement between higher return moments. Lastly, we show that leading macrofinance models are at odds 
with basic features of conditional stock market risks and risk pricing.

Stock market risks and their pricing are important for investors 
and policymakers alike. Unfortunately, conditional risks beyond volatil-
ity are challenging to estimate and expected returns are even more 
challenging to estimate. Our understanding of conditional risk and its 
relation to expected returns is therefore far from complete. In this 
paper, we propose an empirical framework for jointly estimating con-
ditional expected returns, conditional risk, and conditional risk prices 
based on index options and return data.

Our estimator is based on the fact that the pricing kernel’s projec-
tion onto returns equals the ratio of risk-neutral and physical return 
densities, scaled by the risk-free rate (see, e.g., Cochrane 2005), 

𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] =
1
𝑅𝑓
𝑡

𝑓 ∗
𝑡 (𝑅𝑡+1)
𝑓𝑡(𝑅𝑡+1)

. (1)
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We extract risk-neutral return densities, 𝑓 ∗
𝑡 (𝑅𝑡+1), from index option 

prices based on the seminal result of Breeden and Litzenberger (1978). 
Next, we map them to physical return densities, 𝑓𝑡(𝑅𝑡+1), based on 
Eq. (1) and a polynomial approximation of the projected pricing kernel, 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]. Finally, we estimate polynomial parameters by maxi-
mizing the likelihood of realized returns, which are drawn from each 
𝑓𝑡(𝑅𝑡+1). To account for the possibility that risk and risk prices co-move, 
we allow the polynomial’s shape to vary with volatility. Our approach 
yields maximum likelihood estimates of the projected pricing kernel 
and conditional return density on different dates.

The pricing kernel’s projection onto stock market returns reveals 
how investors’ marginal utility varies with returns. Fig.  1 plots our
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Fig. 1. Volatility and the projected pricing kernel. We plot the projected pricing 
kernel for the 10th and 90th percentile of conditional stock market volatility. The 
pricing kernel is measured at a monthly horizon, parameterized by Eqs. (4) and (5) 
with a polynomial order of 𝑁 = 2, and estimated over the 1990–2023 sample. Shaded 
areas represent pointwise 90% confidence bounds, computed based on a block bootstrap 
with a block length of 21 trading days.

estimate for the 10th and 90th percentile of return volatility.1 The 
steeper curve in periods of low volatility shows that negative returns 
are significantly more painful to investors when they occur in calm 
markets. For example, monthly returns of −10% coincide with an 
average marginal utility of 3.68 when they occur in periods of low 
volatility, but only a value of 1.32 when they occur in periods of high 
volatility. A battery of robustness tests illustrates that this finding is not 
sensitive to our parametric assumptions.

Time-variation in the projected pricing kernel drives a wedge be-
tween the dynamics of conditional return moments under the physical 
and risk-neutral probability measures. In particular, the flattening pro-
jection in times of high volatility lowers risk premia and thereby 
reduces the difference between physical and risk-neutral moments. 
It therefore plays a key role in our estimation of conditional return 
densities from option prices. We explore the economic implications of 
our estimates based on three applications.

Our first application examines the risk–return relation in the time 
series. A large literature has found mixed and statistically weak results 
(e.g., French et al. 1987 and Glosten et al. 1993) and has failed to 
reach a consensus on the existence of a risk–return trade-off. However, 
an important limitation of most prior studies is that they rely on 
realized returns as a proxy for expected returns. In his presidential 
address, Elton (1999) points out that realized returns reflect large 
and potentially serially correlated innovations that are likely to bias 
inference about expected returns. A few prior papers have assessed the 
risk–return relation based on an explicit estimate of expected returns 

1 A number of influential papers have documented the puzzling fact that 
the projected pricing kernel is a non-monotonic function of returns; see, Aït-
Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002). 
Our estimates imply the same non-monotonicity in the positive return region, 
as we show in the online appendix. The main text focuses on the negative 
return region to draw attention to the novel fact we document – covariation 
with volatility – and away from the existing fact. Martin and Papadimitriou 
(2022) show that pricing kernel non-monotonicity arises as an equilibrium 
outcome in a model with heterogeneous beliefs.

(Guo and Whitelaw 2006, Ludvigson and Ng 2007, Pástor et al. 2008), 
and consistently found a significantly positive relationship. Our analysis 
complements this literature by examining the risk–return trade-off 
based on option prices. An advantage of this approach is that it allows 
us relate the risk–return relation to properties of the pricing kernel.

Our estimates imply that rising volatility affects expected returns 
through two opposing channels. It increases expected returns due to 
higher risk, as suggested by economic intuition, and it decreases ex-
pected returns due to lower risk prices, as shown in Fig.  1. Moreira 
and Muir (2017) previously argued for a countercyclical price of risk 
as an explanation for the missing risk–return trade-off. An important 
contribution of our paper is to provide an explicit estimate of risk prices 
(the projected pricing kernel) and the risk–return relation it implies. 
To that end, we consider different pricing kernel specifications and 
evaluate their fit to the data.

We show that, when return densities are estimated based on a log-
quadratic (or higher order) polynomial for the pricing kernel, the risk 
effect dominates the price effect and expected returns are positively 
related to conditional volatility. Statistically, the estimated regression 
slope is significant at the 5% or 1% level, depending on the assumed 
polynomial order. Economically, a one standard deviation increase in 
volatility raises expected returns by a sizable 3.8 percentage points per 
year. Hence, our estimates imply a strong risk–return trade-off despite 
countercyclical risk prices.

Two alternative specifications illustrate key drivers of this finding. 
First, when we estimate return moments based on a (time-varying) log-
linear pricing kernel, we fail to find evidence of a significant risk–return 
trade-off. Second, when we estimate return moments based on a time-
invariat (log-quadratic) pricing kernel, which implies that increasing 
volatility is not accompanied by decreasing risk prices, we unsur-
prisingly find a much stronger risk–return trade-off. However, both 
alternatives provide a poor fit to the data and are statistically rejected 
at the 1% level in favor of the benchmark specification. Convexity 
and time-variation in the projected pricing kernel are therefore both 
critically important for identifying the empirical risk–return relation 
based on option prices.

Pricing kernel convexity has the additional implication that system-
atic skewness is a priced risk factor, as shown theoretically by Harvey 
and Siddique (2000). Their study documents a sizable premium for 
systematic skewness risk in the cross section of stock returns. We pro-
vide corroborating time series evidence based on bivariate risk–return 
regressions for the market. Specifically, we show that, when return 
moments are estimated based on a log-quadratic (or higher order) poly-
nomial for the pricing kernel, expected excess returns are significantly 
related to conditional skewness after controlling for volatility. A one 
standard deviation decrease in skewness (which makes skewness more 
negative) increases expected returns by about 1 percentage point per 
year. However, skewness is not significantly related to expected returns 
when return moments are estimated based on a log-linear pricing 
kernel, in line with Harvey and Siddique’s (2000) theoretical results. To 
our knowledge, these findings represents the first time-series evidence 
on the relation between systematic skewness risk and expected returns.

As a second application, we use our estimates to provide a critical 
assessment of prior findings about conditional risk and risk premia 
in Martin (2017), Johnson (2019), and Gormsen and Jensen (2023).

Martin (2017) shows that, under the ‘‘negative correlation condi-
tion’’ (NCC) Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] ≤ 0, the market’s risk-neutral variance 
serves as a lower bound for its expected excess return. If the NCC is 
violated, risk neutral variance instead provides an upper bound. Martin 
does not test the NCC empirically, but verifies that it holds in a variety 
of asset pricing models. We test the condition empirically by comparing 
our estimate of expected excess returns to Martin’s bound. We find that, 
as a result of time-variation in the projected pricing kernel, the NCC 
is violated in periods with large volatility spikes. Specifically, Martin 
(2017) shows that the condition holds for an investor who is fully 
invested in the market, as long as the investor’s risk aversion exceeds 

Journal of Financial Economics 171 (2025) 104106 

2 



D. Schreindorfer and T. Sichert

one at all times. This situation is equivalent to the projected pricing 
kernel maintaining a sufficiently steep slope. However, as Fig.  1 shows, 
the kernel flattens in times of high volatility, which induces large 
NCC violations during the financial crisis of 2008 and the Covid-19 
pandemic of 2020. Our estimates therefore show that Martin’s bound 
overstates the extent to which risk premia spike during economic crises. 
Simulation evidence suggests that the detected NCC violations cannot 
be explained by estimation noise.

Bollerslev et al. (2009) show based on OLS regressions that the 
variance premium is a significant predictor of excess stock market 
returns. Johnson (2019) challenges this seminal finding by showing 
that the predictive relation is not robust to WLS estimation, which 
is statistically more efficient than OLS because it under-weights noisy 
return realizations in periods of high volatility. Based on Johnson’s 
evidence, the variance premium’s predictive power appears spurious. 
However, the findings in Bollerslev et al. (2009) and Johnson (2019) 
are both subject to the aforementioned (Elton, 1999) critique, because 
they rely on realized returns as a proxy of expected returns. Our 
estimates allow us to revisit this issue by regressing expected (rather 
than realized) excess returns on the variance premium. We find a highly 
significant relation, in line with Bollerslev et al.’s original OLS finding.

Gormsen and Jensen (2023) study time-variation in higher mo-
ments. One of their key findings is that stock market returns become 
more left-skewed in times of low volatility, which has important impli-
cations for regulatory value-at-risk measures. A caveat is that Gormsen 
and Jensen’s conclusions about (physical) returns are based on risk-
neutral volatility and skewness estimates, whose dynamics may differ 
from those of their physical counterparts. Our estimates show that 
rising volatility affects physical skewness via two channels. First, it is 
associated with an increase in risk-neutral skewness, as documented 
by Gormsen and Jensen (2023). This channel increases physical skew-
ness. Second, it is associated with a flattening pricing kernel, which 
reduces the difference between risk-neutral and physical moments. This 
channel decreases physical skewness. We find that the two channels 
quantitatively offset each other. As a result, physical skewness is not 
significantly correlated with volatility. However, in line with Kozhan 
et al.’s (2013) observation that the returns of variance and skew-
ness swaps are strongly correlated, we find significant co-movement 
between ex ante measures of variance and skewness premia. This co-
movement explains why Gormsen and Jensen (2023) find a strong 
correlation between risk-neutral variance and skewness measures.

As a third application, we investigate the ability of macrofi-
nance models to capture basic features of conditional stock market 
risk and risk prices, as reflected in 𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]. 
Our analysis considers eleven different models with a variety 
of economic mechanism, including external habits (Campbell and 
Cochrane 1999, Bekaert and Engstrom 2017), long-run risks (Bansal 
and Yaron 2004, Drechsler and Yaron 2011, Schorfheide et al. 2018), 
rare disasters (Barro 2009, Wachter 2013, Gabaix 2012), incomplete 
markets (Constantinides and Ghosh 2017), disappointment aver-
sion (Schreindorfer 2020), and slow-moving beliefs about volatility 
(Lochstoer and Muir 2022). We summarize the typical shape and the 
amount of time-variation in 𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] with a small set 
of moments and examine the models’ ability to replicate them in finite 
sample simulations. The results are disillusioning. None of the models 
come close to capturing basic properties of 𝑓𝑡(𝑅𝑡+1) or 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]. 
The models fail to capture asymmetries in the conditional return 
distribution and the projection’s steep slope. Additionally, they are 
at odds with the amount of cyclical variation in both functions. These 
findings are troubling because it is arguably the models’ main objective 
to explain the nature and pricing of stock market risks.

Related Estimation Approaches. Our estimation approach builds 
on several prior estimators of conditional return densities and the 
pricing kernel.

The most common approach to conditional density estimation as-
sumes a parametric density and models its parameters as functions of 

covariates (Hansen 1994). In a similar spirit, we model parameters 
of the projected pricing kernel as functions of conditional volatility. 
However, our methodology has several advantages. First, we specify 
conditional return densities as transformation of risk-neutral densities, 
which can be extracted non-parametrically from option prices. As 
a result, our density estimates can take on a much broader set of 
shapes than commonly used parametric families, such as the Normal, 
Student-𝑡, or skewed Student-𝑡 distribution. Second, it leverages the 
rich conditioning information in risk neutral densities. This makes 
it easier to identify time-variation in higher return moments. Third, 
our methodology estimates conditional return densities jointly with 
the projected pricing kernel. This enables us to quantify the relative 
importance of risk and risk prices for fluctuations in risk premia.

In modeling the logarithm of the projected pricing kernel as a 
polynomial, we build on Rosenberg and Engle (2002). Our study differs 
from theirs along two key dimensions. First, Rosenberg and Engle 
model the physical return density as a GARCH process, whereas our 
methodology requires no parametric assumptions about the physical 
probabilities. Instead, we extract risk-neutral densities from option 
prices and transform them to conditional physical densities based on 
a parametric pricing kernel. Second, Rosenberg and Engle estimate the 
parameters of their pricing kernel polynomial separately for every day 
in their sample. Instead, we model them as (time-invariant) functions 
of volatility. Doing so allows us to formally test for time-variation in 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] by evaluating the hypothesis that the pricing kernel’s 
volatility-dependence parameter equals zero.

We also build on estimation approaches that take the risk-neutral 
distribution as given, parameterize the projected pricing kernel, and 
estimate parameters via a criterion function based on realized re-
turns. Bliss and Panigirtzoglou (2004) maximize the 𝑝-value of a 
Berkowitz test for uniformity and independence of returns, whereas
Linn et al. (2018) minimize a generalized method of moments criterion 
for moments of the inverse conditional CDF of returns. We follow the 
same general idea, but recognize that estimation can be performed 
based on a more conventional maximum likelihood approach. In par-
ticular, once a functional form has been specified for 𝐸[𝑀|𝑅], it can 
be used to map the option-implied risk-neutral distribution to an analo-
gous physical distribution, based upon which the likelihood function of 
returns can be computed. Compared to Bliss and Panigirtzoglou (2004) 
and Linn et al. (2018), an important advantage of our approach is that 
it implies conditional return densities that integrate to a probability 
mass of one.2

A contemporaneous and independently developed paper by Kim 
(2022) also studies time-variation in the projected pricing kernel. Kim 
builds on the GMM approach of Linn et al. (2018) and shows how 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] varies with different macroeconomic covariates, includ-
ing volatility.3 Apart from proposing a different estimation approach, 
our study differs from Kim’s in its applications. We evaluate what our 
estimates imply about the risk–return trade-off, prior findings on con-
ditional risk and risk premia, and macrofinance models, whereas Kim 
(2022) studies a conditional version of the equity premium decompo-
sition in Beason and Schreindorfer (2022) and uses his approach for 
out-of-sample prediction of market returns. Lastly, we show that, de-
spite being more parsimonious, our approach for modeling the kernel’s 
volatility dependence provides a significantly better fit to the data than 
Kim’s.

2 Cuesdeanu and Jackwerth (2018) point out that Linn et al.’s (2018) 
estimation approach implies return density whose mass deviates substantially 
from one.

3 Similarly, Driessen et al. (2020) examine whether the projected pricing 
kernel varies with the Chicago Fed National Activity Index, but find relatively 
small effects and no not evaluate their statistical significance.
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1. Estimation

This section explains our estimation approach, discusses data sour-
ces, and illustrates the robustness and statistical significance of our 
estimates. Throughout, the pricing kernel in period (𝑡+1) is denoted by 
𝑀𝑡+1, the risk-free rate by 𝑅𝑓

𝑡 , the ex-dividend market return by 𝑅𝑡+1, 
risk-neutral objects by a ‘‘∗’’ - superscript, and objects that condition on 
investors’ information set at time-𝑡 by a ‘‘t’’- subscript. We later drop 
‘‘t’’- subscripts for readability when not needed for clarity.

1.1. Estimation approach

The absence of arbitrage opportunities implies Eq. (1) in the in-
troduction: The pricing kernel’s projection onto stock market returns 
equals the ratio of the conditional risk neutral and physical return 
densities, scaled by the risk-free rate. The projected pricing kernel 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] measures the mean of 𝑀𝑡+1 conditional on investors’ 
information set at time-𝑡 and conditional on a (potential) return out-
come at time-(𝑡 + 1). To estimate it empirically, we extract 𝑓 ∗

𝑡  from 
option prices for each day of the sample based on the classic result 
of Breeden and Litzenberger (1978). Our implementation is standard 
and follows Beason and Schreindorfer (2022). Next, we model the pro-
jection with a flexible parametric function of returns and conditional 
volatility, 𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃), and combine it with Eq. (1) to express the 
conditional physical density as 

𝑓𝑡(𝑅𝑡+1; 𝜃) =
𝑓 ∗
𝑡 (𝑅𝑡+1)

𝑅𝑓
𝑡 ×𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃)

. (2)

𝜎𝑡 ≡ Std𝑡[ln𝑅𝑡+1] denotes the conditional volatility of log returns 
and is part of investors’ time-𝑡 information set. Its estimation is de-
tailed in Appendix  A and discussed below. Given a functional form for 
𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃), the unknown parameter vector 𝜃 can be estimated by 
maximizing the log-likelihood of realized returns, 

𝐿𝐿(𝜃) =
𝑇
∑

𝑡=1
ln 𝑓𝑡(𝑅𝑡+1; 𝜃). (3)

A few comments may be useful. First, our notation highlights 𝑓𝑡’s 
dependence on the parameter vector 𝜃, but it is important to emphasize 
that the density does not belong to a known parametric family of 
distributions. Rather, it results from applying a (parametric) change-
of-measure to the (nonparametric) risk-neutral distribution 𝑓 ∗

𝑡 , whose 
shape is implied by the market prices of equity index options. Com-
pared to parametric models of 𝑓𝑡, our density estimates can therefore 
take on a wider variety of shapes. Obviously, it is unusual and perhaps 
even unique for a maximum likelihood estimator not to require any 
distributional assumptions. Second, with a slight abuse of notation, we 
use ‘‘𝑅𝑡+1’’ to denote both a potential return outcome (of which there 
are many each period) and an actual return realization (of which there 
is only one each period). Third, Eqs. (2) and (3) show that our esti-
mation of the projected pricing kernel can equivalently be interpreted 
as an estimation of the conditional return density. In particular, 𝜃 is 
chosen to find the densities 𝑓𝑡 that maximize the likelihood of realized 
returns, given the information in 𝑓 ∗

𝑡  and an assumed functional form for 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]. Many prior estimators of the pricing kernel do not allow 
for this dual interpretation because they are inconsistent with a return 
density that integrates to one; e.g., Bliss and Panigirtzoglou (2004) 
and Linn et al. (2018). Fourth, the term ‘‘projected’’ pricing kernel is 
taken from prior literature and should not be interpreted as a linear
projection. Rather, 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] is generally a nonlinear conditional 
expectation function of 𝑅𝑡+1 for any time-𝑡 information set. Apart from 
the market return, it averages over all shocks that affect the pricing 
kernel at (𝑡+1). Fifth, the maximum likelihood methodology makes our 
estimator statistically efficient and it incorporates conditioning infor-
mation from the entire risk-neutral distribution. Both features represent 
important advantages over moment-based estimation approaches of the 
pricing kernel. Sixth, the log-likelihood in Eq.  (3) has to be maximized 

numerically, which we implement based on Matlab’s fmincon routine. 
The optimization executes most efficiently if one provides fmincon 
with an analytical expression of the score vector (the log-likelihood’s 
gradient), which we derive in Section II of the online appendix.

1.2. Parameterization

To ensure positivity, we model the projection as an exponential 
polynomial, 

𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃) = exp

{

𝛿𝑡 +
𝑁
∑

𝑖=1
𝑐𝑖𝑡 × (ln𝑅𝑡+1)𝑖

}

, (4)

where the polynomial coefficients 𝑐𝑖𝑡 vary with volatility according to 

𝑐𝑖𝑡 =
𝑐𝑖

𝜎𝑏×𝑖𝑡
, (5)

and 𝜃 = (𝑏, 𝑐1,… , 𝑐𝑁 ) is a vector of unknown parameters. The time-
varying intercept, 𝛿𝑡, is calculated for each day of the sample to satisfy 
the theoretical restriction that 𝑓𝑡(𝑅𝑡+1; 𝜃) integrates to one, i.e., 𝛿𝑡 does 
not represent a free parameter.4,5 This restriction is crucial because the 
likelihood function is not well-defined for ‘‘densities’’ whose probability 
masses differ from one another (and from one).

We experimented with different functional forms for the time-
varying polynomial coefficients 𝑐𝑖𝑡, and found that (5) provides a very 
good fit (in terms of log-likelihood) despite its parsimony. Additionally, 
we found that the relationship between 𝑐𝑖𝑡’s and 𝜎𝑡 looks very similar 
when estimated based on the more flexible polynomial specification 
𝑐𝑖𝑡 = 𝑏0 + 𝑏1𝜎𝑡 + 𝑏2𝜎2𝑡 +⋯ (see Online Appendix I.B). This alternative is 
used to illustrate the robustness of our results in Section 1.6.

Lastly, it is worth noting that (5) nests two interesting special cases. 
For 𝑏 = 0, the projected pricing kernel equals a time-invariant function 
of returns, 

𝑀(𝑅𝑡+1; 𝜃) = exp

{

𝛿𝑡 +
𝑁
∑

𝑖=0
𝑐𝑖 × (ln𝑅𝑡+1)𝑖

}

, (6)

i.e., the graph of 𝐸[𝑀|𝑅] does not vary with volatility, apart from a 
small shift induced by 𝛿𝑡. For 𝑏 = 1, the projected pricing kernel equals 
a time-invariant function of standardized returns (up to a small shift due 
to 𝛿𝑡), 

𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃) = exp

{

𝛿𝑡 +
𝑁
∑

𝑖=0
𝑐𝑖 ×

( ln𝑅𝑡+1
𝜎𝑡

)𝑖
}

. (7)

In this case, the graph of 𝐸[𝑀|𝑅] scales horizontally and proportionally 
with volatility. Intermediate values of 𝑏 allow 𝐸[𝑀|𝑅] to change with 
volatility to varying degrees. To formally test whether 𝐸[𝑀|𝑅] varies 
with volatility, we evaluate the hypothesis 𝐻0 ∶ 𝑏 = 0. To test 
whether the 𝐸[𝑀|𝑅] is well-described by a time-invariant function of 
standardized returns, as in Eq.  (7), we evaluate the hypothesis 𝐻0 ∶ 𝑏 =
1.

4 The intercept equals 𝛿𝑡 = − ln𝑅𝑓
𝑡 + ln

(

∫ ∞
0 𝑓 ∗ × exp

{

−
∑𝑁

𝑖=1 𝑐𝑖𝑡 × (ln𝑅𝑡+1)𝑖
}

𝑑𝑅𝑡+1
)

, i.e., its value is implied by 𝑅𝑓
𝑡 , 𝑓 ∗

𝑡 , and the polynomial coefficients 
(𝑏, 𝑐1,… , 𝑐𝑁 ). We find 𝛿𝑡 for each date by evaluating this integral numerically.

5 Instead of computing 𝛿𝑡 based on the theoretical restriction ∫ 𝑓 = 1, 
one could add a time-varying intercept 𝑐0𝑡 to polynomial (4) and model 𝑐0𝑡
as a function of volatility. Since this approach does not guarantee ∫ 𝑓 = 1, 
however, it becomes necessary to add a penalty for violations of the restriction 
to the objective function. In turn, doing so requires the researcher to make a 
subjective choice on the relative importance of the restriction and the fit to 
realized returns. In the context of a moment-based estimation of the pricing 
kernel, a contemporaneous paper by Kim (2022) adds such a penalty term to 
his objective function, whereas Linn et al. (2018) simply ignore the theoretical 
restriction that probabilities add up to one.
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Table 1
Sensitivity of moments to parameters.
This table shows the sensitivity of conditional return moments (in rows) with respect 
to pricing kernel parameters (in columns). The sensitivity of moment 𝑖 with respect to 
parameter 𝑗 equals 𝑑𝑚𝑖

𝑑𝜃𝑗
× |

|

|

𝜃𝑗
𝑚𝑖

|

|

|

 and is evaluated at the point estimates for the 𝑁 = 2
specification from Table  2.
 𝑏 𝑐1 𝑐2
 Average 𝐸𝑡[𝑅𝑡+1] 1.85 −0.34 0.14
 Average Var𝑡[𝑅𝑡+1] −1.41 0.04 −0.23
 Average Skew𝑡[𝑅𝑡+1] 2.45 −0.08 0.35
 Average Kurt𝑡[𝑅𝑡+1] −1.44 0.01 −0.22
 𝑐𝑜𝑟𝑟(𝐸𝑡[𝑅𝑡+1] − 𝐸∗

𝑡 [𝑅𝑡+1],Var𝑡[𝑅𝑡+1]) −0.25 −0.07 0.01

1.3. Parameter identification

The pricing kernel controls the extent to which conditional real 
world probabilities differ from their risk-neutral counterparts. Specif-
ically, (2) shows that 𝑓𝑡(𝑅) takes on smaller values than 𝑓 ∗

𝑡 (𝑅) for 
return regions where 𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃) > 1∕𝑅𝑓

𝑡  and higher values where 
𝑀(𝑅𝑡+1, 𝜎𝑡; 𝜃) < 1∕𝑅𝑓

𝑡 . Individual elements of 𝜃 = {𝑐1,… , 𝑐𝑁 , 𝑏} are 
therefore identified if they alter the shape of 𝐸[𝑀|𝑅] in such a way that 
it better explains the relative likelihood of different return realizations. 
Since 𝑓 ∗

𝑡  does not vary with 𝜃, one can equivalently think of parameters 
as being identified by risk premia: An increase in the mean of 𝑓𝑡 is 
equivalent to a higher equity premium, an increase in the variance of 
𝑓𝑡 is equivalent to a higher (less negative) variance premium, etc.

Most elements of 𝜃 alter the shape of 𝑓𝑡 in multiple ways relative 
to that of 𝑓 ∗

𝑡 . This is illustrated quantitatively in Table  1, which shows 
the sensitivity of different 𝑓𝑡 moments to individual parameters. In what 
follows, we discuss the main sources of parameter identification. 𝑐1, the 
slope of 𝐸[𝑀|𝑅], controls the relative probabilities of negative and pos-
itive returns. If the slope is negative, for example, the left tail of 𝑓 ∗

𝑡  gets 
downweighted in computing 𝑓𝑡, whereas the right tail gets upweighted. 
𝑐1 is therefore identified by the mean of 𝑓𝑡 and the relative likelihood 
of negative returns. 𝑐2, the curvature of 𝐸[𝑀|𝑅], controls the relative 
probabilities of small and large absolute returns. If the curvature is 
positive, both extreme tails of 𝑓𝑡 get downweighted relative to the tails 
of 𝑓 ∗

𝑡 , whereas the center of the distribution gets upweighted. Hence, 𝑐2
is identified by the variance of 𝑓𝑡 and the relative likelihood of extreme 
returns. The mean of 𝑓𝑡 (equivalently, the equity premium) also con-
tributes to the identification of 𝑐2. Specifically, 𝐸𝑡[𝑅𝑡+1] is increasing in 
𝑐2 because 𝑓 ∗

𝑡  is left-skewed. Similarly, 𝑐3, 𝑐4, etc. are mainly identified 
by higher order moments of 𝑓𝑡. The scaling parameter 𝑏 controls how 
parameters of 𝐸[𝑀|𝑅] vary with volatility, and therefore the amount 
of time-variation in the probabilities of different returns. For 𝑏 = 0, 
the shape of 𝐸[𝑀|𝑅] is time-invariant and an increase in volatility is 
accompanied by an increase in the equity premium, which implies that 
the expected excess returns and volatility are positively correlated. For 
𝑏 > 0, an increase in volatility makes the slope of 𝐸[𝑀|𝑅] less negative 
and its curvature less positive. Both effects lower expected returns and 
thereby reduce the positive correlation between the expected excess 
returns and volatility. 𝑏 is therefore identified by the strength of the 
risk–return trade-off.

1.4. Data

Our empirical analysis is based on the S&P 500 index and a return 
horizon of one month (30 calendar days). Return data comes from the 
Center for Research in Security Prices (CRSP). Price quotes on SPX 
options for the estimation of 𝑓 ∗

𝑡  come from the Chicago Board Options 
Exchange (CBOE). Because this data limits our sample to the 34-year 
period from 1990 to 2023, we sample daily to maximize the efficiency 
of our estimates, i.e., we work with a daily sample of 𝑇 = 8, 553
overlapping monthly returns. The conditional volatility of log returns, 
𝜎𝑡, is estimated with the heterogeneous autoregressive (HAR) model 

of Corsi (2009), as detailed in Appendix  A.6 The estimation relies on 
intra-daily price quotes for S&P 500 futures, which were purchased 
from TickData. We use quotes for the large futures contract (ticker 
‘‘SP’’) from 1990 to 2002, and for the E-Mini Futures contract (ticker 
‘‘ES’’) from 2003 to 2023, i.e., we use data for the more actively traded 
futures contract in each part of the sample.

The COVID-19 episode represents an important challenge for our 
estimation. The S&P 500 dropped −31.9% in the 30-day period follow-
ing 2020/02/19. This event was so extreme based on the economic 
environment at the time that our estimator assigns it an ex ante 
probability of only 0.000017% (1 event every 500,253 years),7 despite 
being designed to maximize the likelihood of returns. Clearly, this 
observation makes the overall sample non-representative. We therefore 
drop eight overlapping 30-day returns that follow the surrounding days 
between 2020/02/11 (whose conditional probability maps to 1 event 
every 8432 years) and 2020/02/21 (whose conditional probability 
maps to 1 event every 64,059 years) from the sample.

1.5. Estimation results

Table  2 shows estimates of the parameterized pricing kernel in 
Eqs. (4) and (5) and polynomial orders between 𝑁 = 1 and 𝑁 = 5. 
To account for autocorrelation that results from our use of overlapping 
return data, we rely on a block bootstrap with a block length of 21 
trading days for all statistical tests.

The first important feature of our estimates lies in time-variation of 
the projected pricing kernel, which is governed by the volatility-scaling 
parameter 𝑏. When we model the projected pricing kernel as a log-
linear (𝑁 = 1) polynomial, we fail to reject the hypothesis 𝐻0 ∶ 𝑏 = 0
at common significance levels. Log-linearity therefore suggests that the 
projection is time-invariant. However, the same hypothesis is rejected 
at the 1% level when we model the projection with a log-quadratic 
(𝑁 = 2) or higher-order (𝑁 ≥ 3) polynomial. To conclude that the 
shape of 𝐸[𝑀|𝑅] varies with volatility, it is therefore necessary to 
capture the projection’s convexity. We examine evidence for convexity 
below.

We also find that 𝐸[𝑀|𝑅] is well-described as scaling proportionally 
with volatility, as the volatility-scaling parameter 𝑏 is estimated to 
be close to (and insignificantly different from) one for all polynomial 
orders. As explained above, this implies that 𝐸[𝑀|𝑅] is approximately 
a time-invariant function of standardized returns.

The second important feature of our estimates lies in the fit of 
different polynomial orders. Based on the log-linear (𝑁 = 1) projection, 
we reject the hypothesis 𝐻0 ∶ 𝑐1 = 0 at the 1% level. This rejection 
is unsurprising because 𝑐1 = 0 implies a horizontal pricing kernel 
and zero risk premia – a poor description of the data. For the log-
quadratic (𝑁 = 2) specification, we similarly reject the hypothesis 
𝐻0 ∶ 𝑐2 = 0 at the 1% level, i.e., the 𝑁 = 2 specification is statistically 
preferred to the 𝑁 = 1 specification. The projected pricing kernel 
therefore features significant convexity. This finding mirrors (Harvey 
and Siddique, 2000), who find significant evidence for pricing kernel 
convexity in the cross-section of stock returns. Further increasing the 
polynomial order shows that the 𝑁 = 2 specification is not rejected in 
favor of 𝑁 = 3, 𝑁 = 3 is rejected in favor of 𝑁 = 4, and 𝑁 = 4 is 
not rejected in favor of 𝑁 = 5. To evaluate formally whether 𝑁 = 4
provides a better fit than 𝑁 = 2, one needs to test the joint hypothesis 
𝐻0 ∶ 𝑐3 = 𝑐4 = 0. Unfortunately, the bootstrap is unsuitable for 

6 Figure IA.III of the online appendix shows that we find similar time-
variation in 𝐸[𝑀|𝑅] when conditional volatility is measured by the VIX index 
instead. This approach has the advantage of not relying on a parametric time 
series model for volatility, but the disadvantage that the VIX index embeds a 
risk premium and therefore systematically overestimates volatility.

7 We compute the probability as ∫ −31.9%
−100% 𝑓𝑡(𝑅)𝑑𝑅 based on the conditional 

density 𝑓𝑡 on 2020/02/19.
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Fig. 2. Conditional density estimates for select days. We plot the estimated physical and risk-neutral return density for the days on which conditional volatility is closest to 
its 10th (left panel) or 90th (right panel) percentile. Estimates are based on the 𝐸[𝑀|𝑅] specification in Eqs. (4) and (5) and a polynomial order of 𝑁 = 2.

Table 2
Estimation results.
We estimate the projected pricing kernel in Eqs. (4) and (5) for different polynomial 
orders 𝑁 by maximizing the log-likelihood of realized returns, Eq. (3). Bootstrap tests 
account for autocorrelation based on a block bootstrap with a block length of 21 trading 
days.
 𝑁 1 2 3 4 5

 Log-likelihood 15,974 16,067 16,067 16,090 16,090
 Parameter Estimates
 𝑐1 −0.071 −0.072 −0.074 −0.117 −0.117
 𝑐2 – 0.087 0.090 0.015 0.015
 𝑐3 – – 0.000 0.016 0.016
 𝑐4 – – – 0.004 0.004
 𝑐5 – – – – 0.000
 𝑏̂ 1.168 0.980 0.976 1.080 1.079
 Bootstrap Tests (p-values in %)
 𝐻0 ∶ 𝑏 = 0 17.2 0.7 0.7 0.2 0.2
 𝐻0 ∶ 𝑏 = 1 90.5 92.0 91.3 80.7 81.1
 𝐻0 ∶ 𝑐𝑁 = 0 0.0 0.0 52.1 0.2 27.9

joint hypothesis tests and we are unaware of established methods for 
adjusting likelihood ratio tests for autocorrelation. We therefore rely on 
an ad hoc approach that adjusts the likelihood ratios in Table  2 for our 
effective sample size. In Appendix  B.1.4, we estimate that the effective 
sample size equals 804, i.e., approximately twice the number of months 
in our sample. Based on this effective sample size and our nominal 
sample size of 𝑇 = 8, 553, the adjusted likelihood ratio test statistic 
equals 𝐿𝑅 = −2

(

16, 067 × 804
8,553 − 16, 090 × 804

8,553

)

= 4.1836, which has 
a 𝑝-value of 12.35% (untabulated) under the asymptotic chi-squared 
distribution with two degrees of freedom. Because we fail to reject 
𝑁 = 2 in favor of 𝑁 = 4, we rely on the more parsimonious 𝑁 = 2
specification as our benchmark case. All subsequent results are based 
on this estimate, unless otherwise mentioned.

Fig.  1 in the introduction illustrates graphically how 𝐸[𝑀|𝑅] varies 
with volatility by plotting it for the 10th and 90th percentile of 𝜎𝑡
(𝑝10 and 𝑝90). The figure shows that the pricing kernel is considerably 
steeper when volatility is low. For example, for a monthly return of 
−10%, the projected pricing kernel equals 𝑀(𝑅𝑡+1 = −0.1, 𝜎𝑡 = 𝑝10; 𝜃) =
3.32 when volatility is low and 𝑀(𝑅𝑡+1 = −0.1, 𝜎𝑡 = 𝑝90; 𝜃) = 1.25 when 
volatility is high.

Fig.  2 shows conditional return densities for two dates. For compa-
rability with Fig.  1, we select days on which volatility is closest to its 

10th or 90th percentile. Because our 𝐸[𝑀|𝑅]-parameterization implies 
a smooth change-of-measure, 𝑓𝑡 inherits many of 𝑓 ∗

𝑡 ’s properties. It 
is unimodal, roughly bell-shaped, and its conditional volatility moves 
with that of 𝑓 ∗

𝑡 . Relative to 𝑓 ∗
𝑡 , however, 𝑓𝑡 has more probability 

mass in the center and less mass in the left tail. As a result, the 
physical density is less left-skewed and leptokurtic than its risk-neutral 
counterpart, the equity premium is positive, and the variance premium 
is negative.

Fig.  3 shows the time series of expected excess returns and condi-
tional higher moments. Mean and volatility are visibly countercyclical 
and positively correlated with one another. In contrast, conditional 
skewness and kurtosis appear roughly acyclical. Across the 8553 trad-
ing days in our sample, the conditional physical (risk-neutral) density 
has an average mean of 9.34% (0.92%) p.a., standard deviation of 
14.22% (18.34%) p.a., skewness of −0.63 (−1.54), and kurtosis of 4.49 
(10.92).

It is important to ask whether our estimation methodology reliably 
identifies expected returns. We address this question by regressing 
realized excess returns onto our estimate of expected excess returns,
𝑅𝑡+1 − 𝐸∗

𝑡 [𝑅𝑡+1] = 𝛽0 + 𝛽1
(

𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1]

)

+ 𝜀𝑡+1. (8)

Table IA.I of the online appendix shows that the regression slope 𝛽1 is 
significant at the 5% level for 𝑁 ≥ 2, but insignificant at common sig-
nificance levels for 𝑁 = 1. For polynomial orders 𝑁 ≥ 2, the regression 
yields 𝑅2 values between 1.29% and 1.30% and a Wald test fails to re-
ject the joint hypothesis 𝐻0 ∶ 𝛽0 = 0, 𝛽1 = 1 at the 5% significance level. 
These results suggest that our estimator reliably identifies expected re-
turns for log-quadratic and higher order specifications of the projected 
pricing kernel. Building on this observation, we use our expected return 
estimates to assess the risk–return trade-off in Section 2.

Another noteworthy feature of our estimates is the variance pre-
mium they imply. Var𝑡[𝑅𝑡+1] − Var∗𝑡 [𝑅𝑡+1] averages −5.3%2 per month 
for the 𝑁 = 1 specification, −12.6%2 for 𝑁 = 2, and between −12.6%2

and −12.3%2 for higher order polynomials. Which magnitude is more 
plausible? A simple estimate of the premium that does not depend on 
our estimate of the pricing kernel is 𝜎2𝑡 −

(

𝑉 𝐼𝑋𝑡
100

)2
, which averages 

−13.6%2 per month over our sample period. This comparison suggests 
that the log-linear (𝑁 = 1) specification is misspecified, in the sense 
that it generates an implausibly small variance premium.
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Fig. 3. Conditional return moments. This figure shows conditional return moments based on the 𝐸[𝑀|𝑅] specification in Eqs. (4) and (5) and a polynomial order of 𝑁 = 2.

1.6. Robustness

We perform four robustness tests. Parameter estimates for these tests 
are reported in Section III of the online appendix.

First, we model the projected pricing kernel’s volatility-dependence 
with the alternative specification 

𝑐𝑖𝑡 =
𝐾
∑

𝑘=0
𝑐𝑖𝑘 × 𝜎𝑘𝑡 , (9)

which assumes that coefficients of the 𝐸[𝑀|𝑅]-polynomial are them-
selves polynomials of volatility. The combination of (4) and (9) is 
equivalent to a bivariate polynomial in ln𝑅𝑡+1 and 𝜎𝑡 with a tensor 
product base.8 Table  3 reports log-likelihoods for 𝑁 = 2 and different 
polynomial orders 𝐾. Likelihoods fall below the one from our 𝑁 = 2
benchmark specification for 𝐾 ∈ {1, 2} and above it for 𝐾 ≥ 3. To 
formally compare the alternative specification to our benchmark, we 

8 𝐾 = 1 corresponds to the specification of Kim (2022), whose study is 
discussed under ‘‘Related Estimation Approaches’’ on page 8.

rely on Vuong’s (1989) likelihood-ratio test for non-nested models to 
test the null hypothesis that our benchmark Eq.  (5) and the alternative 
Eq.  (9) are equally close to the true data generating process against 
the alternative hypothesis that our benchmark specification is closer. 
The Vuong test penalizes models with more parameters analogous to 
the BIC and is commonly-used as a model-selection tool. Table  3 shows 
that the Null is rejected at the 1% level for any 𝐾, which implies that 
our benchmark specification is statistically preferred to the alternative. 
However, we illustrate in Section I.B of the online appendix that the 
functional relationship between 𝜎𝑡 and the polynomial coefficients 𝑐𝑖𝑡
converges to a shape that closely resembles the one implied by our 
benchmark as 𝐾 → ∞. This observation is noteworthy because our 
benchmark specification relies on a single parameter (𝑏) to control 
time-variation in 𝑐𝑖𝑡’s, whereas the alternative specification relies on 
𝑁 × 𝐾 parameters to do so. Of course, the fact that time-variation in 
polynomial coefficients 𝑐𝑖𝑡 looks similar to our benchmark for high 𝐾
implies that time-variation in the projected pricing kernel looks similar 
as well. We illustrate this fact for 𝐾 = 5 in the top-left panel of Fig.  4. 
Despite its parsimony, our benchmark specification therefore does not 
appear to restrict the projected pricing kernel’s volatility-dependence 
in an unrealistic manner.

Journal of Financial Economics 171 (2025) 104106 

7 



D. Schreindorfer and T. Sichert

Fig. 4. Robustness. We plot the projected pricing kernel for the 10th and 90th percentile of conditional stock market volatility. Top-left: 𝐸[𝑀|𝑅] is a 𝑁 = 2 polynomial with 
coefficients that depend on volatility via (9) with 𝐾 = 5. Top-right: 𝐸[𝑀|𝑅] is equivalent to the benchmark specification, but 𝜎𝑡 is orthogonalized with respect to different liquidity 
measures. Bottom-left: We model the distribution of standardized log returns ln𝑅𝑡+1∕𝜎𝑡 with a Normal Inverse Gaussian distribution, compute 𝑓𝑡(𝑅𝑡+1) via a change-of-variables, 
and obtain 𝐸[𝑀|𝑅] from (1). Bottom-right: The benchmark 𝐸[𝑀|𝑅] specification is estimated over the 2005–2023 subsample.

Table 3
Bivariate polynomial — specification test.
We estimate the projected pricing kernel based on the bivariate polynomial specification 
in Eqs. (4) and (9) for 𝑁 = 2 and different polynomial orders 𝐾 by maximizing 
the log-likelihood of realized returns, Eq. (3). The Vuong (1989) test for non-nested 
models tests the null hypothesis that our benchmark model ‘‘b’’ (Eqs. (4) and (5) for 
𝑁 = 2) and this alternative model ‘‘a’’ are equally close to the true data generating 
process, against the alternative that the benchmark model is closer. To adjusted for 
autocorrelation due to overlapping data, we multiply log-likelihoods by the ratio of 
our effective and nominal sample sizes (804∕8, 553) in computing the test statistic 
𝑍 =

(

𝐿𝐿b−𝐿𝐿a
)

× 804
8,8553

−
# para a−# para b

2
ln(804)

√

804×𝜔
. The effective sample size is computed 

in Appendix  B.1.4. ‘‘𝐿𝐿𝑥 ’’ denotes the log-likelihood of the respective models 𝑥 ∈ {𝑎, 𝑏}
and 𝜔 is defined by setting 𝜔2 equal to the mean of the squares of the pointwise log-
likelihood ratios ln 𝑓b𝑡 (𝑅𝑡+1 )

𝑓a𝑡 (𝑅𝑡+1 )
. 𝑝-values are based on the test statistic’s asymptotic 𝑁(0, 1)

distribution.
 𝐾 1 2 3 4 5

 Log-likelihood 16,043 16,063 16,070 16,071 16,072
 Vuong test statistic 2.83 10.82 17.40 23.52 29.94
 Vuong 𝑝-value, % 0.23 0.00 0.00 0.00 0.00

Second, we orthogonalize 𝜎𝑡 with respect to proxies of option mar-
ket liquidity. This test addresses the potential concern that movements 
in 𝐸[𝑀|𝑅] reflect frictions in the options market that are positively 
correlated with stock market volatility. We proxy option market liquid-
ity by (1) daily option volume (across all maturities and strike prices), 
normalized by the average daily volume over the prior three month 
to remove the time trend in volume (following Chen et al. 2019), (2) 
daily open interest (across all maturities and strike prices), similarly 
normalized by the trailing three months average and (3) the bid–ask 
spread of the put option that is closest to being at-the-money and a 
maturity of 30 calendar days, normalized by the option’s midquote. 
We then regress 𝜎𝑡 on the three liquidity variables, scale the resulting 
regression residuals so that they have the same mean and variance 
as 𝜎𝑡, and re-estimate our benchmark specification of 𝐸[𝑀|𝑅] based 
on this liquidity-adjusted volatility measure. The estimated volatility-
scaling parameter of 𝑏̂ = 1.06 is very close to the benchmark estimate 
of 0.98 and it remains highly statistically significant with a 𝑝-value 
of 0.7%. The top-left panel of Fig.  4 shows that, as a result, the 
projected pricing kernel’s volatility-dependence closely resembles the 
one without liquidity controls.
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Third, instead of modeling 𝐸[𝑀|𝑅] as a polynomial, we model 
𝑓𝑡(𝑅𝑡+1; 𝜃) as a parametric density and obtain 𝐸[𝑀|𝑅] from (1) as 
the ratio of risk-neutral and physical densities, scaled by the risk-
free rate. Specifically, we parameterize the density of standardized log 
returns, 𝑔𝑡

(

ln𝑅𝑡+1
𝜎𝑡

; 𝜃
)

, with a normal inverse Gaussian (NIG) distri-
bution and compute the distribution of simple returns via a change 
of variables as 𝑓𝑡(𝑅𝑡+1; 𝜃) = 𝑔𝑡

(

ln𝑅𝑡+1
𝜎𝑡

; 𝜃
)

∕(𝜎𝑡 × 𝑅𝑡+1). The NIG dis-
tribution is unimodal, bell-shaped, allows for nonzero skewness and 
excess kurtosis, and depends on four parameters, which we estimate 
via maximum likelihood. This method for estimating the conditional 
distribution resembles the popular approach of scaling historical re-
turn innovations from a GARCH model with a current estimate of 
conditional volatility – see, e.g., Rosenberg and Engle (2002), Barone-
Adesi et al. (2008) and Christoffersen et al. (2013) — and shares 
its limitation that higher conditional moments (beyond volatility) are 
time-invariant by construction. In contrast, the parameterized pricing 
kernel in our benchmark specification allows all return moments to 
vary over time. The bottom-left panel of Fig.  4 shows that projected 
pricing kernel’s volatility-dependence for this alternative specification 
nevertheless closely resembles the one in our benchmark. The paramet-
ric assumptions we make about the projected pricing kernel therefore 
do not appear to be overly restrictive.

Fourth, we re-estimate the benchmark specification in the second 
part of the sample (2005–2023) to address concerns about a possible 
segmentation between index option and equity markets. In particu-
lar, Dew-Becker and Giglio (2022) argue that the two markets have 
historically been segmented, but also provide evidence suggesting that 
they have become well-integrated since about the mid 2000’s. If time-
variation in the estimated projected pricing kernel was a result of 
market segmentation, one would expect it to be substantially weaker in 
more recent data. The bottom-right panel of Fig.  4 shows that this is not 
the case. The projected pricing kernel’s volatility-dependence closely its 
full sample equivalent.

Overall, the robustness tests show that our main result is not sensi-
tive to the way 𝐸[𝑀|𝑅] is parameterized, the volatility-dependence of 
𝐸[𝑀|𝑅] does not reflect co-movement between volatility and liquidity 
in the options market, and it also does not appear to arise from market 
segmentation.

2. Implications for the risk–return trade-off

This section uses our conditional moment estimates to examine the 
risk–return trade-off in the time series of stock market returns.

2.1. Background

Economic intuition and mainstream asset pricing theories suggest 
that periods of elevated risk should coincide with higher risk premia, 
i.e., regressions such as 
𝐸𝑡[𝑅𝑡+1] − 𝐸∗

𝑡 [𝑅𝑡+1] = 𝛽1 + 𝛽2Std𝑡[𝑅𝑡+1] + 𝜀𝑡, (10)

should yield a positive slope coefficient. Yet a large literature fails to 
find evidence of a significant risk–return trade-off in the data when 
using realized returns 𝑅𝑡+1 as a proxy for unobserved expected returns 
𝐸𝑡[𝑅𝑡+1] (e.g., Glosten et al. 1993). An important shortcoming of this 
proxy, highlighted by Elton’s (1999) presidential address, is that 𝑅𝑡+1
features large and potentially serially correlated innovations that are 
likely to bias inference about expected returns. Our estimation ap-
proach allows us to address Elton’s critique because it equips us with 
an estimate of 𝐸𝑡[𝑅𝑡+1].

Before doing so, we confirm that one fails to detect a risk–return 
trade-off in our sample when relying on realized returns as a proxy. 
Specifically, we estimate 
𝑅𝑡+1 − 𝐸∗

𝑡 [𝑅𝑡+1] = 𝛽1 + 𝛽2Std𝑡[𝑅𝑡+1] + 𝜀𝑡, (11)

where Std𝑡[𝑅𝑡+1] is the conditional volatility of ex-dividend returns 
that is implied by our estimate of 𝑓𝑡(𝑅𝑡+1).9 For consistency with our 
conditional moment estimates, we compute realized excess returns as 
the difference between the ex-dividend return 𝑅𝑡+1 and its conditional 
risk-neutral expectation 𝐸∗

𝑡 [𝑅𝑡+1], rather than the difference between 
the cum-dividend return and its conditional risk-neutral expectation 
(which equals 𝑅𝑓

𝑡 ).10 Because realized returns are heteroscedastic, we 
estimate the regression via weighted least squares for efficiency by 
scaling regression residuals by 1∕Std𝑡[𝑅𝑡+1]. For ease of interpretation, 
we standardize the regressor by subtracting its unconditional mean and 
dividing by its unconditional standard deviation. Panel A of Table  4 
shows that the regression has little explanatory power (𝑅2 < 0.4%) and 
features an insignificant slope coefficient, regardless of the polynomial 
order 𝑁 we use for 𝐸[𝑀|𝑅] in the estimation. The economic magnitude 
of the estimated risk–return relation is relatively small as well. A one 
standard deviation increase in conditional volatility is estimated to 
raise excess returns by 1.2 to 1.3 percentage points per year, depending 
on the polynomial order. Hence, the classic finding of Glosten et al. 
(1993) continues to hold in our sample.

One interpretation of the Glosten et al. evidence is that the 
risk–return trade-off is weak or even non-existent (e.g., Moreira and 
Muir 2017 and Lochstoer and Muir 2022). From this perspective, 
our finding on time variation in the projected pricing kernel and the 
missing risk–return trade-off may appear like two sides of the same 
coin: If a rise in volatility does not lead to higher expected returns (a 
non-existent risk–return trade-off), it must be accompanied by lower 
risk prices (a flattening pricing kernel). Another interpretation is that 
the risk–return trade-off is masked by the (possibly non-IID) noise 
in realized returns. It is possible that expected returns, which are 
free from such noise, co-move significantly with conditional volatility 
despite the negative correlation between risk prices and volatility. Put 
differently, it is a quantitative question which of the two opposing 
channels dominates.

2.2. New estimates

We now explore this question by estimating risk–return trade-off 
regressions based on expected, rather than realized returns. The con-
ditional moments 𝐸𝑡[𝑅𝑡+1] and Std𝑡[𝑅𝑡+1] are taken from estimations 
with a range of different polynomial orders 𝑁 for the projected pric-
ing kernel. Statistical tests are bootstrapped to account for first-stage 
estimation error in conditional moments.11 Appendix  B.2 address ad-
ditional econometric concerns about the regression slope 𝛽2 with an 
extensive simulation study. This simulation evidence suggests that 𝛽2
is consistent and essentially unbiased in finite samples. It also shows 

9 Prior literature on the risk–return trade-off has used both volatility 
and variance as regressors. In unreported results, we estimated analogous 
regressions based on variance and found nearly identical results, in terms of 
both magnitude and significance of the regression slope (using standardized 
variance as a regressor).
10 Our measure of excess returns differs from the traditional measure by the 
risk premium for the dividend yield. Because S&P 500 companies announce 
dividends on average three weeks in advance of the ex dividend date (Table 1 
in Schulz 2016), however, this difference is negligible at the monthly horizon 
we focus on. Quantitatively, 𝑅𝑡+1 − 𝐸∗

𝑡 [𝑅𝑡+1] averages 8.33% p.a. over our 
1990–2023 sample, whereas cum-dividend returns on the S&P 500 in excess of 
the one-month Treasury rate (from Ken French’s data library) average 8.49% 
p.a.
11 Specifically, we create 10,000 artificial samples based on a bootstrap 
with block length 21 (the overlap of our daily estimates). In each sample, 
we estimate the projected pricing kernel, compute the mean and volatility of 
the conditional return density for each day, and estimate risk–return trade-
off regressions based on the resulting moment estimates. 𝑝-values of the 
regressions’ slope coefficients in Table  4 are based on these 10,000 bootstrap 
estimates.

Journal of Financial Economics 171 (2025) 104106 

9 



D. Schreindorfer and T. Sichert

Table 4
Risk–return trade-off regressions.
We estimate risk–return trade-off regressions for realized returns (Panel A) via WLS, with residuals scaled by 1∕Std𝑡[𝑅𝑡+1], and regressions for 
expected returns (Panels B–D) via OLS. Conditional moments are taken from estimations with various polynomial orders (𝑁) for the log projected 
pricing kernel and either allow the projection’s shape to vary with volatility (𝑏 ≠ 0) or not (𝑏 = 0). Returns are measured in annualized percent. 
Regressors are standardized by subtracting their unconditional mean and then dividing by their unconditional standard deviation. Hypothesis 
tests are based on a block bootstrap with a block length of 21 trading days. The sample spans 1990–2023.
 𝑏 ≠ 0 (estimated) 𝑏 = 0

 𝑁 1 2 3 4 5 2

 Panel A:𝑅𝑡+1 − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝛽1 + 𝛽2Std𝑡[𝑅𝑡+1] + 𝜀𝑡+1

 𝛽2 1.30 1.21 1.21 1.26 1.26 1.37
 𝑝-value, 𝐻0 ∶ 𝛽2 = 0, % 53.72 58.74 58.36 57.64 57.30 49.22
 𝑅2, % 0.38 0.33 0.33 0.34 0.34 0.33

 Panel B ∶ 𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝛽1 + 𝛽2Std𝑡[𝑅𝑡+1] + 𝜀𝑡

 𝛽2 3.18 3.77 3.78 3.42 3.42 6.32
 𝑝-value, 𝐻0 ∶ 𝛽2 = 0, % 30.68 1.16 1.02 0.36 0.08 0.00
 𝑅2, % 79.68 75.77 75.98 71.88 71.90 83.04

 Panel C ∶ 𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝛽1 + 𝛽2Std𝑡[𝑅𝑡+1] + 𝛽3Skew𝑡[𝑅𝑡+1] + 𝜀𝑡

 𝛽2 3.18 3.97 3.99 3.60 3.61 7.68
 𝑝-value, 𝐻0 ∶ 𝛽2 = 0, % 29.46 1.28 1.06 0.38 0.08 0.00
 𝛽3 0.00 −0.90 −0.90 −0.99 −0.99 −2.10
 𝑝-value, 𝐻0 ∶ 𝛽3 = 0, % 94.92 1.08 0.92 0.68 0.08 0.00
 𝑅2, % 79.68 79.85 80.08 77.69 77.73 88.40

 𝑃𝑎𝑛𝑒𝑙𝐷 ∶ 𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝛽1 + 𝛽2Std𝑡[𝑅𝑡+1] + 𝛽3Skew𝑡[𝑅𝑡+1] + 𝛽4Kurt𝑡[𝑅𝑡+1] + 𝜀𝑡

 𝛽2 3.16 3.79 3.97 3.26 3.27 8.17
 𝑝-value, 𝐻0 ∶ 𝛽2 = 0, % 32.30 1.28 1.12 0.20 0.08 0.00
 𝛽3 0.03 −1.13 −0.96 −1.84 −1.85 −1.59
 𝑝-value, 𝐻0 ∶ 𝛽3 = 0, % 99.18 0.46 0.62 0.04 0.00 0.00
 𝛽4 −0.05 −0.45 −0.18 −1.19 −1.19 1.15
 𝑝-value, 𝐻0 ∶ 𝛽4 = 0, % 98.66 59.88 47.44 7.88 18.74 0.10
 𝑅2, % 79.69 80.35 80.23 80.58 80.60 89.41

that our estimation and bootstrap testing methodology reliably detects 
a risk–return trade-off when one exists in population and reliably fails 
to detect it if the true 𝛽2 equals zero.

Panel B of Table  4 shows OLS estimates of regression (10). The 
hypothesis 𝐻0 ∶ 𝛽2 = 0 is associated with a 𝑝-value of 30.96% 
when conditional moments are estimated with a log-linear (𝑁 = 1) 
projection, i.e., this case yields no evidence of a significant risk–return 
trade-off. However, it is important to recall from Section 1.5 that the 
log-linear specification of 𝐸[𝑀|𝑅] is rejected (at the 1% level) in favor 
of a log-quadratic specification, and the latter is therefore likely to yield 
more reliable conditional moment estimates. Indeed, Table  4 shows 
that, for 𝑁 = 2 and higher polynomial orders, the risk–return trade-
off is statistically significant. The hypothesis 𝐻0 ∶ 𝛽2 = 0 is rejected at 
the 5% significance level for all 𝑁 ≥ 2 and at the 1% level for 𝑁 ≥ 4. 
The implied risk–return trade-off is economically significant as well. 
Based on the 𝑁 = 2 estimates, a one standard deviation increase in 
conditional volatility raises expected excess returns by 3.77 percentage 
points per year.

The time-variation we document in the projected pricing kernel is 
therefore not equivalent to the absence of a risk–return trade-off. To the 
contrary, convex specifications of the projection allow us to establish 
that a significantly positive risk–return trade-off exists in the data. This 
relation is undetectable in short samples of realized returns due to 
their large amount of (possibly non-IID) noise. The relation can also 
not be established based on a log-linear specification of the projected 
kernel. The reason is that ‘‘𝑏’’, the parameter governing time variation 
in the projection and the strength of the risk–return trade-off, is poorly 
identified in the 𝑁 = 1 case, as shown in Table  2.12

12 It is worth noting that, more generally, the risk–return slope estimate 𝛽2
(shown in panel B of Table  4) is closely related to the estimate of ‘‘𝑏’’ (shown 
in Table  2), which governs time-variation in the projected pricing kernel. First, 
𝑏̂ displays little variation across different polynomial orders (it is always close 
to 1) and 𝛽2 therefore displays little variation across polynomial orders as 

Section 1 showed that the shape of the projected pricing kernel 
varies significantly over time. To quantify the extent to which this 
time-variation dampens the risk–return relation, we report risk–return 
regressions for return moments from a time-invariant specification of 
the projection (which imposes 𝑏 = 0) in the last column of Table 
4. For the expected excess return regression in Panel B, the slope 
coefficient increases from 3.77 with time-variation to 6.32 without 
time-variation, whereas the regression’s 𝑅2 increases from 75.77% 
to 83.04%. Time-variation in the projected pricing kernel therefore 
dampens the risk–return relation substantially, but does not render it 
statistically or economically insignificant.

2.3. The role of higher moments

Up to this point, we have followed the prior risk–return trade-off 
literature in measuring risk by the second moment. This approach is 
rooted in a large literature on measuring and modeling conditional 
volatility, and a lack of comparable tools for conditional higher mo-
ments. Our methodology allows us to break with the tradition of 
equating risk and volatility because it equips us with an estimate of 
the entire conditional return density 𝑓𝑡(𝑅𝑡+1). We do so by adding the 
conditional skewness and kurtosis of returns as explanatory variables 
to the risk–return regression, 

𝐸𝑡[𝑅𝑡+1]−𝐸∗
𝑡 [𝑅𝑡+1] = 𝛽1+𝛽2Std𝑡[𝑅𝑡+1]+𝛽3Skew𝑡[𝑅𝑡+1]+𝛽4Kurt𝑡[𝑅𝑡+1]+𝜀𝑡.

(12)

As before, we estimate the regression via OLS and standardize all 
regressors for ease of interpretation. Panel C of Table  4 shows results 

well (it always lies between 3 and 4). Second, the precision of 𝑏̂ increases 
monotonically in the polynomial order 𝑁 , and the precision of 𝛽2 therefore 
does so as well. For 𝑁 = 1, both 𝑏 and 𝛽2 are poorly identified and therefore 
insignificantly different from 0.
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Fig. 5. The Martin (2017) lower bound. We plot Martin’s (2017) lower bound (top panel) and the difference between expected excess returns and the lower bound (bottom 
panel) in percent p.a. Both objects are based on the estimation with a log-quadratic (𝑁 = 2) projected pricing kernel.

for a regression based on volatility and skewness, whereas Panel D 
adds kurtosis as a third regressor as in (12). Mimicking the findings 
for univariate regressions, estimates based on the log-linear (𝑁 = 1) 
specification of the projected kernel suggest that neither volatility nor 
higher moments are significantly related to expected excess returns. For 
higher order polynomials, however, conditional skewness is statistically 
significant at the 5% level for 𝑁 ≥ 2 and at the 1% level for 𝑁 ≥ 5, con-
trolling for volatility. Compared to the univariate specification, adding 
skewness as a second regressor increases 𝑅2 by 4–6 percentage points. A 
one standard deviation decrease in conditional skewness (which makes 
returns more left-skewed) increases expected excess returns by about 1 
percentage point per year, holding volatility constant. In contrast, Panel 
D shows that conditional kurtosis is insignificant for all polynomial 
orders with the exception of 𝑁 = 4, where it is marginally significant 
with a 𝑝-value of 7.88%. It is possible and perhaps plausible that 
conditional kurtosis is estimated with less precision than conditional 
skewness, which provides a potential explanation for the insignificant 
relation between kurtosis and expected returns.

Our finding that conditional skewness is significantly related to 
expected returns in the time series is consistent with Harvey and 
Siddique’s (2000) finding that conditional skewness commands a sig-
nificant risk premium in the cross-section of stock returns. It is also 
supports the view that left tail risks are a key determinant of the 
equity premium (Beason and Schreindorfer 2022) and cross-sectional 
differences in expected returns (Ang et al. 2006).

3. Implications for prior work

In this section, we use our estimates to provide a critical assessment 
of prior findings about conditional risk and risk premia. Specifically, we 
re-examine Martin’s (2017) lower bound on the equity premium, Boller-
slev et al.’s (2009) and Johnson’s (2019) evidence on the variance pre-
mium’s predictive power for excess returns, and Gormsen and Jensen’s 
(2023) finding on co-movement between higher return moments.

3.1. Martin (2017)

Martin (2017) shows that the absence of arbitrage opportunities 
implies 

𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1] =

Var∗𝑡 [𝑅𝑡+1]

𝑅𝑓
𝑡

− Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1]. (13)

If the second term on the RHS is non-positive, 
Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] ≤ 0, (14)

which Martin (2017) refers to as the ‘‘negative correlation condition’’ 
(NCC), then Var

∗
𝑡 [𝑅𝑡+1]

𝑅𝑓
𝑡

 represents a lower bound on the expected excess 
return. Otherwise it represents an upper bound. Martin does not evalu-
ate the NCC empirically, but confirms that it holds in a variety of asset 
pricing models. The resulting lower bound, which Martin argues to be 
approximately tight empirically, suggests that the equity premium is 
more volatile, more right-skewed, and fluctuates at a higher frequency 
than suggested by traditional estimates based on valuation ratios.

Relative to our in-sample estimate of expected excess returns, Mar-
tin’s estimate has the advantage of being available in real time. It only 
requires an estimate of the risk-neutral return variance from option 
prices, but no additional parameter estimates. Its disadvantage is that 
the lower bound is only valid if the NCC holds. Furthermore, the bound 
only reveals the equity premium if the NCC holds with equality, i.e., if 
the bound is tight. Our estimates make it feasible to evaluate the 
NCC empirically and thereby re-examine Martin’s bound. Fig.  5 shows 
our estimate of Martin’s lower bound, Var

∗
𝑡 [𝑅𝑡+1]

𝑅𝑓
𝑡

, in the top panel and 
the difference our estimate of expected excess returns and the lower 
bound, Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1], in the bottom panel. The NCC states that 
Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] is negative, which is the case whenever expected 
excess returns (shown in the top panel of Fig.  3) exceed the lower 
bound. A number of observations are noteworthy.

First, expected excess returns exceed the lower bound on 8465 (or 
99.0%) of the 8553 days in our sample. Our estimates therefore suggest 
that the NCC nearly always holds.
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Table 5
Predicting excess returns with the variance premium.
We use the variance premium to predict either realized excess returns (Panel A) or expected excess returns (Panels B and C). Conditional 
moments are taken from estimations with various polynomial orders (𝑁) for the log projected pricing kernel and either allow the projection’s 
shape to vary with volatility (𝑏 ≠ 0) or not (𝑏 = 0). Realized return regressions are estimated based on either OLS or WLS, as indicated in 
column one, whereas expected return regressions are estimated via OLS only.
 𝑏 ≠ 0 (estimated) 𝑏 = 0

 𝑁 1 2 3 4 5 2

 Panel A ∶ 𝑅𝑡+1 − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝜆1 + 𝜆2

(

Var𝑡[𝑅𝑡+1] − Var∗𝑡 [𝑅𝑡+1]
)

+ 𝜀𝑡+1

 OLS 𝜆2 −5.25 −6.15 −6.15 −6.09 −6.09 −5.81
 𝑝-value, 𝐻0 ∶ 𝜆2 = 0, % 14.20 3.18 3.06 2.66 2.80 12.18
 𝑅2, % 0.97 1.33 1.33 1.30 1.30 1.18
 WLS 𝜆2 −2.68 −3.72 −3.73 −3.23 −3.23 −5.33
 𝑝-value, 𝐻0 ∶ 𝜆2 = 0, % 24.70 11.34 11.38 12.28 11.90 9.22
 𝑅2, % 0.73 1.12 1.12 1.01 1.02 1.18

 Panel B ∶ 𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝜆1 + 𝜆2

(

Var𝑡[𝑅𝑡+1] − Var∗𝑡 [𝑅𝑡+1]
)

+ 𝜀𝑡

 OLS 𝜆2 −2.83 −4.16 −4.17 −3.81 −3.82 −6.50
 𝑝-value, 𝐻0 ∶ 𝜆2 = 0, % 27.92 0.00 0.04 0.00 0.00 0.00
 𝑅2, % 63.48 92.28 92.29 89.40 89.38 87.81

 Panel C ∶ 𝐸𝑡[𝑅𝑡+1] − 𝐸∗
𝑡 [𝑅𝑡+1] = 𝜆1 + 𝜆2

(

Var𝑡[𝑅𝑡+1] − Var∗𝑡 [𝑅𝑡+1]
)

+ 𝜆3Std𝑡[𝑅𝑡+1] + 𝜀𝑡

 OLS 𝜆2 −0.98 −3.92 −3.91 −3.31 −3.31 −4.01
 𝑝-value, 𝐻0 ∶ 𝜆2 = 0, % 28.16 0.00 0.04 0.04 0.04 0.00
 𝜆3 2.43 0.27 0.28 0.59 0.59 3.14
 𝑝-value, 𝐻0 ∶ 𝜆3 = 0, % 41.40 79.32 78.20 26.58 25.66 0.12
 𝑅2, % 82.83 92.36 92.38 89.98 89.96 95.43

Second, the correlation between Martin’s lower bound and our 
estimate of the market’s risk premium equals 87.6% and the two series 
share similar fluctuations at higher frequencies. This co-movement is 
not mechanical despite the fact that both measures rely on information 
from index options. In particular, Martin connects the equity premium 
to options data via theory, whereas we do so based on a purely sta-
tistical criterion function. Our estimates therefore provide independent 
support for Martin’s claim that the equity premium fluctuates at higher 
frequencies than implied by traditional estimates based on valuation 
ratios.

Third, our estimate of expected excess returns has a time series 
average 8.43% p.a., compared to only 3.90% for the lower bound, 
which suggests that the bound is far from tight. Indeed, Martin’s bound 
falls below 2.78% p.a. on half of the days in our sample, whereas 
the median of our expected excess return estimate equals 7.40% p.a. 
This evidence is only suggestive about the bound’s tightness, but it 
confirms the result of a formal statistical test based on realized returns 
in Back et al. (2022). A potential reason for this finding is that the 
bound, if interpreted as being tight, implies that variance is the only 
dimension of risk investors care about. This condition holds for log 
utility, but not for more general utility functions. Theoretically, it 
is well-known that log utility is quantitatively inconsistent with the 
equity premium and a range of other asset market puzzles. Empirically, 
there is strong evidence that market skewness is a key driver of cross-
sectional differences in expected returns (Harvey and Siddique 2000) 
and, as we saw in the previous section, time-variation in the equity 
premium. It is therefore perhaps not surprising that we find the bound 
not to be tight empirically.

Fourth, our estimates show that days with NCC violations are not 
randomly distributed. Instead, almost all of them occur either during 
the 2007–2008 financial crisis or during the COVID-19 pandemic in 
2020. These are precisely the periods for which Martin’s bound implies 
the largest spikes in the market risk premium. At its peak, the bound 
exceeds our estimate of the equity premium by 18.5% p.a. during the 
financial crisis (on October 10th, 2008) and by 28.0% p.a. during the 
COVID-19 pandemic (on March 16th, 2020). It therefore appears that 
Martin’s bound considerably overstates the extent to which the equity 
premium spikes during economic crises.13

13 See Bakshi et al. (2024) for related empirical evidence on NCC violations.

The NCC violations we document are a direct consequence of time-
variation in the projected pricing kernel. In particular, Martin (2017) 
shows that the condition holds for an investor who is fully invested 
in the market, as long as the investor’s risk aversion exceeds one at 
all times. This situation is equivalent to the projected pricing kernel 
remaining sufficiently steep at all times. However, our estimates imply 
that the pricing kernel becomes very flat during times of extreme 
volatility.

Of course, it is possible that our methodology delivers imprecise 
estimates during times of extreme volatility. The NCC violations we 
detect may therefore simply reflect estimation error. We evaluate this 
possibility in two ways. The first approach relies on the Monte Carlo 
experiment in Appendix  B.2, which was previously used to examine 
the statistical properties of the risk–return slope 𝛽2. Specifically, we 
simulate 5000 finite samples and use them to compute the probability 
that the NCC holds (for true 𝑓𝑡 moments, which are known in the sim-
ulation), conditional on our estimate of Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] exceeding 
thresholds of 18.5% p.a. (as in 2008) or 28.0% p.a. (as in 2020). 
The conditional probabilities of these ‘‘false positives’’ equal 5.1% and 
3.2%, respectively. The second approach relies on the same bootstrap 
methodology that we previously used to compute standard errors. 
Specifically, we simulate 10,000 (block) bootstrap samples, estimate 
pricing kernel parameters in each, and use the resulting conditional 
return moments to check for NCC violations in each sample. This exper-
iment shows that 92.6% of bootstrap samples contain NCC violations.14 
Both approaches suggest that it is unlikely that the NCC violations we 
detect empirically are the result of estimation error.

Overall, our estimates confirm Martin’s (2017) finding that the 
equity premium is more volatile and fluctuates at higher frequencies 
than implied by traditional estimates. However, they also suggest that 
the equity premium is considerably less right-skewed than implied by 
his lower bound, because we find the bound not to be tight during times 
of low volatility and to be violated during times of very high volatility.

14 Note that this approach faces a joint hypothesis problem: We are evalu-
ating whether the projection varies sufficiently with volatility to admit NCC 
violations in high volatility states, and whether volatility reaches sufficiently 
high levels to trigger those violations. Theoretically, any positive value of 
the volatility-scaling parameter 𝑏 (which 99.3% of bootstrap samples feature) 
implies that the NCC is violated in states of (perhaps unrealistically) high 
volatility.
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Table 6
Co-movement of higher moments.
This table examines co-movement between conditional variance and conditional skewness. Conditional moments are taken from estimations with 
various polynomial orders (𝑁) for the log projected pricing kernel and either allow the projection’s shape to vary with volatility (𝑏 ≠ 0) or not 
(𝑏 = 0). We regress risk-neutral (physical) skewness on risk-neutral (physical) variance in Panel A (Panel B), and regress the skewness premium 
on the variance premium in Panel C. The specification in Panel A is not affected by our estimates and therefore identical across columns. All 
regressions are estimated via OLS. For comparability with Gormsen and Jensen (2023), variance is expressed in annualized percent.
 𝑏 ≠ 0 (estimated) 𝑏 = 0

 𝑁 1 2 3 4 5 2

 Panel A ∶ Skew∗
𝑡 [𝑅𝑡+1] = 𝛾1 + 𝛾2Var∗𝑡 [𝑅𝑡+1] + 𝜀𝑡

 𝛾̂2 0.060
 𝑝-value, 𝐻0 ∶ 𝛾2 = 0, % —————————————————-∣ 0.00 ∣———————————
 𝑅2, % 9.71

 Panel B ∶ Skew𝑡[𝑅𝑡+1] = 𝛾1 + 𝛾2Var𝑡[𝑅𝑡+1] + 𝜀𝑡

 𝛾̂2 0.024 0.015 0.016 0.009 0.009 0.133
 𝑝-value, 𝐻0 ∶ 𝛾2 = 0, % 56.64 31.12 32.32 25.20 13.48 0.00
 𝑅2, % 1.13 3.00 3.07 1.97 1.99 34.32

 Panel C ∶ Skew∗
𝑡 [𝑅𝑡+1] − Skew𝑡[𝑅𝑡+1] = 𝛾1 + 𝛾2(Var∗𝑡 [𝑅𝑡+1] − Var𝑡[𝑅𝑡+1]) + 𝜀𝑡

 𝛾̂2 0.337 0.104 0.103 0.118 0.118 0.010
 𝑝-value, 𝐻0 ∶ 𝛾2 = 0, % 10.48 1.18 1.02 1.62 0.38 12.68
 𝑅2, % 8.23 4.44 4.44 4.23 4.23 0.22

3.2. Bollerslev et al. (2009) and Johnson (2019)

In a seminal paper, Bollerslev et al. (2009) show that the variance 
premium Var𝑡[𝑅𝑡+1] − Var∗𝑡 [𝑅𝑡+1] is a significant predictor of realized 
excess stock market returns 𝑅𝑡+1 − 𝐸∗

𝑡 [𝑅𝑡+1] in OLS regressions. Sub-
sequent work has confirmed this finding in other asset markets and 
used it as an empirical target for equilibrium asset pricing models. 
In an important challenge to this literature, Johnson (2019) shows 
that ‘‘regardless of variable construction, forecast horizon, sampling fre-
quency, sample period, or country, [weighted least squares] estimates of 
the relation between [the variance premium] and future market returns are 
not statistically significant ’’ (p. 3), which indicates that ‘‘the significant 
OLS estimates may be false positives driven by a few periods with high 
expected volatility.’’ (p. 1). Panel A of Table  5 replicates both the original 
Bollerslev et al. and Johnson findings in our 1990–2023 sample. In OLS 
regressions, the slope coefficient on the variance premium is significant 
at the 5% level for 𝑁 ≥ 2. The 𝑁 = 1 estimator produces insignificant 
results but, as we saw in Section 1.5, it produces misspecified variance 
premium estimates and is statistically rejected in favor of higher-order 
polynomials. In WLS regressions that scale residuals by 1∕Std𝑡[𝑅𝑡+1], 
the slope coefficient is insignificant at common significance levels and 
its point estimate is noticeably smaller than the corresponding OLS 
estimate. As shown by Johnson (2019), statistically efficient estimates 
based on realized returns therefore suggest that expected excess returns 
are not (linearly) related to the variance premium.

Of course, the Elton (1999) critique on the use of realized returns 
as a proxy of expected returns applies here as well. We therefore re-
run the regressions with our estimates of expected excess returns on the 
left hand side. Panel B shows that, in this case, the variance premium 
is significant at the 1% level (with a 𝑝-value of 0.0%) for 𝑁 ≥ 2. 
This finding suggests that WLS regressions for realized returns produce 
misleading conclusions about expected returns.

It is worth noting that the variance premium is a substantially better 
predictor of expected excess returns than conditional volatility, with 
𝑅2 values around 90% for the regressions in Panel B, compared to 𝑅2

values between 70% and 80% for the risk–return trade-off regressions 
in Table  4. In fact, Panel C of Table  5 shows that conditional volatility 
becomes insignificant when the variance premium is added as a second 
regressor to the regression. This finding mimics similar OLS evidence 
based on realized excess returns in Bollerslev et al. (2009). The intuitive 
reason is that risk premia reflect fluctuations in both the amount and 
price of risk. As a result, the equity premium and the variance premium 
co-move more closely with each other than each one of them co-moves 
with conditional volatility. Overall, our findings confirm (contradict) 
prior OLS (WLS) evidence on the predictive power of the variance 
premium.

3.3. Gormsen and Jensen (2023)

Gormsen and Jensen (2023) study time-variation in the shape of 
the distribution of stock market returns. Using both ex ante risk-neutral 
moments extracted from option prices and ex post moments based on 
realized high-frequency returns, they show that stock market returns 
become more left-skewed in times of low volatility. The authors explore 
the implications of this finding for asset pricing models with rare 
disasters and note that it has important implications for regulators, 
because it ‘‘suggest[s] that [value-at-risk] measures only based on variance 
are likely to understate the true risk of portfolios that contain equities. More 
importantly, this mistake is going to be largest during good times with low 
variance and high prices, which are potentially periods where regulators 
should worry about overaccumulation of risk in the economy.’’ (pp. 4–5). 
Panel A of Table  6 replicates Gormsen and Jensen’s finding in our 
sample by showing that risk-neutral variance is a positive and highly 
significant predictor of risk-neutral skewness. Because risk-neutral mo-
ments do not depend on our estimate of the pricing kernel, this result 
does not vary with the polynomial order 𝑁 .

Of course, what matters for risk management applications is co-
movement between conditional physical moments. Evidence based on 
ex post realized moments or risk-neutral moments is only suggestive 
in this context. In particular, while it is well-known that realized 
variance is a good proxy for conditional variance, the literature has 
not established an analogous result for realized skewness. Inference 
about conditional skewness based on realized skewness can therefore 
be misleading.15 Additionally, risk-neutral moments reflect both phys-
ical moments and moment risk premia and co-movement between 
risk-neutral moments could reflect time-variation in risk premia. It 
is therefore important to examine co-movement between conditional 
physical variance and skewness based on explicit estimates of these 
moments. We do so in Panel B of Table  6. In line with Gormsen and 
Jensen’s finding on risk-neutral moments, we find that the relation be-
tween conditional physical variance and skewness is positive. Different 
from their results, however, we find the relationship to be insignificant, 
regardless of the polynomial order 𝑁 we use in the estimation. More 
importantly, point estimates of the regression slope are substantially 
smaller than those for risk-neutral moments.16 Hence, our estimates do 

15 A useful example of this issue occurs in the rare disaster model of Wachter 
(2013). In that model, the realized variance and skewness of daily returns 
within a month are negatively correlated, as shown by Gormsen and Jensen 
(2023), whereas the conditional variance and skewness of monthly returns are 
positively correlated, as we show in Section 4.
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Table 7
Conditional risk and risk pricing in macrofinance models.
This table shows small sample moments of log returns (subscript ‘‘𝑟’’) and the log projected pricing kernel (subscript ‘‘𝑚’’). 𝜎𝑡,𝑥 and 𝑠𝑘𝑒𝑤𝑡,𝑥 denote the conditional volatility 
and skewness of 𝑥 ∈ {𝑟, 𝑚}. Data moments are taken from the 𝑁 = 2 estimation. Model moments are shown for the models of Campbell and Cochrane (1999), Bekaert and 
Engstrom (2017), Bansal and Yaron (2004), Drechsler and Yaron (2011), Schorfheide et al. (2018), Barro (2009), Wachter (2013), Gabaix (2012), Constantinides and Ghosh 
(2017), Schreindorfer (2020), and Lochstoer and Muir (2022). Model moments represent medians of each statistic across 100,000 simulated samples of length 𝑇 = 804 months, the 
effective size of our empirical sample. See Appendix  B.1.4 for a discussion on the effective sample size of our sub-sampled data. NA indicates moments that are undefined due to 
division by zero. Asterisks indicate 1-sided 𝑝-values of the data moments under the null of the model, computed based on the same finite sample simulation.
 Habits Long-Run Risks Rare Disasters Other

 Data CC99 BE17 BY04 DY11 SSY18 B09 G12 W13 CG17 S20 LM22

 Risk
 𝐸 [

𝜎𝑡,𝑟
]

14.4 16.7*** 16.5*** 16.5*** 17.7*** 14.0 12.5*** 12.9*** 20.8** 9.0 13.6*** 20.8***

 𝐸 [

Skew𝑡,𝑟
]

−0.8 0.0*** −1.7*** 0.0*** −0.6*** 0.0*** −38.1*** −2.7*** −13.7*** −2.1*** −0.8*** −0.3***

 Std [𝜎𝑡,𝑟] 6.3 1.6*** 3.5*** 1.7*** 5.4 2.4*** 0.0*** 0.7*** 6.6 12.2* 0.0*** 5.6***

 𝑐𝑜𝑟𝑟 [Skew𝑡,𝑟 , 𝜎𝑡,𝑟
]

−0.05 NA 0.97*** NA −0.60*** NA NA −0.95*** 0.97*** 0.51** NA 0.95***

 Risk Pricing
 𝐸

[

𝜎𝑡,𝑚
𝜎𝑡,𝑟

]

4.1 2.1*** 2.7*** 2.0*** 1.7*** 3.1*** 1.5*** 2.2*** 1.2*** 0.9*** 4.1*** 4.6***

 𝐸
[

Skew𝑡,𝑚

Skew𝑡,𝑟

]

−8.5 NA −0.9*** NA −7.7 NA −1.0*** −30.1** −0.9*** −6.2*** −11.5*** 0.8***

 Std
[

𝜎𝑡,𝑚
𝜎𝑡,𝑟

]

1.2 0.9 0.5*** 0.0*** 0.5*** 0.6*** 0.0*** 0.1*** 0.0*** 0.3*** 0.0*** 2.2***

 𝑐𝑜𝑟𝑟
[

𝜎𝑡,𝑚
𝜎𝑡,𝑟

, 𝜎𝑡,𝑟
]

−0.84 0.88*** −0.75** NA 0.86*** −0.58*** NA −0.76 NA 0.78*** NA −0.50***

* 𝑝 < 0.1.
** 𝑝 < 0.05.
*** 𝑝 < 0.01.

not support the idea that stock market returns become more left skewed 
in good times.

To reconcile the difference between Gormsen and Jensen’s finding 
on risk-neutral moments and our finding on physical moments, we 
examine moment risk premia. Specifically, Panel C shows that the 
variance premium Var∗𝑡 [𝑅𝑡+1] − Var𝑡[𝑅𝑡+1] is a positive and statistically 
significant predictor of the skewness premium Skew∗

𝑡 [𝑅𝑡+1]−Skew𝑡[𝑅𝑡+1]
for 𝑁 ≥ 2. This finding confirms similar evidence in Kozhan et al. 
(2013), who show that returns on variance and skewness swaps (ex-post 
measures of variance and skewness premia) are significantly positively 
correlated.17 The positive relation between risk neutral variance and 
skewness documented by Gormsen and Jensen (2023) therefore appears 
to be driven by co-movement in moment risk premia, rather than 
co-movement in conditional physical moments. Overall, our findings 
suggest that co-movement between variance and skewness does not 
present a challenge for regulatory value-at-risk measures.

The last column of Table  6 illustrates that time-variation in the 
projected pricing kernel is critical for this conclusion. Specifically, 
when we estimate return moments based on the pricing kernel spec-
ification without time-variation (𝑁 = 2, 𝑏 = 0), we fail to replicate 
the evidence in Kozhan et al. (2013) and, as a result, find significant 
co-movement between the physical variance and skewness of returns. 

16 Our analysis is based on estimates of conditional skewness. A potential 
concern is therefore that the smaller regression slope estimate for physical 
moments results from attenuation bias. In particular, Fig.  3 shows that skew-
ness estimates are noticeably more noisy in the pre-1996 part of our sample. 
We therefore re-ran the regression in Panel B of Table  6 in the 1996–2023 sub-
sample. For 𝑁 = 2, the estimated regression slope equals 0.016, which is quite 
similar to the 0.015 estimate in the full sample. Attenuation bias therefore does 
not appear to explain our finding.
17 Another way to examine differences between the dynamics of physical 
and risk-neutral return moments is to test the hypothesis that the regression 
slope for risk-neutral moments (in Panel A of 6) equals the regression slope 
for physical moments (in Panel B of 6). In untabulated results, we find that a 
bootstrap test (using a bootstrap block length of 21) rejects this hypothesis at 
the 1% significance level for all polynomial orders 𝑁 . This finding supports 
the view that co-movement between risk-neutral moments results primarily 
from co-movement between risk premia.

However, it is important to recall that this specification is statistically 
rejected at the 1% level in favor of the time-varying benchmark, and 
that its implications should therefore not be interpreted as a reasonable 
description of the data.

4. Implications for macrofinance models

The primary objective of most macrofinance models is to explain 
the characteristics and pricing of stock market risks. The two functions 
𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] represent an almost ideal diagnostic tool for 
such models because they provide a complete description of conditional 
risks in returns and investors’ attitude towards them. The goal of this 
section is to provide a broad overview of existing models’ ability to 
match basic facts about stock market risks and risk prices, as reflected 
in 𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1].

This analysis complements (Moreira and Muir, 2017; Martin, 2017), 
who test macrofinance models based on their ability to match the 
empirical risk–return relation and risk-neutral return moments, re-
spectively. We add value by considering a broader set of models. 
Additionally, it is worth noting that many existing facts about stock 
market returns can be viewed as summary statistics of 𝑓𝑡(𝑅𝑡+1) and 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]. For example, the same risk-neutral return moments can 
arise from different combinations of risk (physical densities) and risk 
pricing (projected pricing kernels). Similarly, the same risk–return rela-
tionship can arise from different combinations of time-varying risk and 
time-varying risk pricing. Additionally, our estimates show that non-
normalities in 𝑓𝑡(𝑅𝑡+1) and non-linearities in 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] both play 
important roles in shaping the risk–return trade-off. By separating risks 
from risk prices on a state-by-state basis, 𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]
provide a more complete characterization of stock market premia than 
commonly reported summary statistics.

4.1. Conditional risk and risk pricing in macrofinance models

We consider eleven models with various economic mechanisms, 
including external habits (Campbell and Cochrane 1999, Bekaert 
and Engstrom 2017), long-run risks (Bansal and Yaron 2004, Drech-
sler and Yaron 2011, Schorfheide et al. 2018), rare disasters 
(Barro 2009, Wachter 2013, Gabaix 2012), incomplete markets 
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Fig. 6. The conditional distribution of returns in macrofinance models. We plot the conditional distribution of returns for the 10th and 90th percentile of conditional volatility.

(Constantinides and Ghosh 2017), disappointment aversion (Schrein-
dorfer 2020), and slow-moving beliefs about volatility (Lochstoer and 
Muir 2022). To save space, we refer to the models by the first initials 
of the authors’ last names and the publication year; e.g., the Campbell 
and Cochrane (1999) model is abbreviated ‘‘CC99’’, the Wachter (2013) 
model is abbreviated ‘‘W13’’, etc. We rely on Dew-Becker et al.’s (2017) 
calibration of the G12 model and Beason and Schreindorfer’s (2022) 
calibration of the CG17 model.18 All other models are calibrated as in 

18 Dew-Becker et al.’s version of the G12 model adds Gaussian innovations 
to consumption growth (which is constant absent disasters in the model’s 
original version), it assumes a normally distributed (rather than constant) 

the original studies. The calculation of 𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] in 
the models are detailed in Section IV of the online appendix.

Figs.  6 and 7 show 𝑓𝑡(𝑅𝑡+1) and 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1] for the 10th and 90th 
percentile of volatility and Table  7 summarizes key properties of the 
two functions via small sample statistics. To generate these statistics, 

disaster size, and it specifies the recovery rate of dividends as an 
autoregressive (rather than linearity generating) process. These modifications 
do not alter the model’s basic economics, but result in a pricing kernel that is 
a continuous (rather than discontinuous) function of the model’s state. Beason 
and Schreindorfer (2022) provide a monthly calibration of the CG17 model, 
which is calibrated at the quarterly frequency in the original study.

Journal of Financial Economics 171 (2025) 104106 

15 



D. Schreindorfer and T. Sichert

Fig. 7. The projected pricing kernel in macrofinance models. We plot the projected pricing kernel for the 10th and 90th percentile of conditional volatility.

we simulate 100,000 finite samples from each model, compute the 
statistic of interest in each sample, and report the median value across 
samples. We also generate an empirical 𝑝-value for each statistic: this 
represents the proportion of the 100,000 samples that generate values 
that are as or more extreme as observed in the data. In this context, 
it is worth noting that the models of Barro (2009) and Schreindorfer 
(2020) are IID and therefore feature no time-variation in conditional 
moments. This implies that even small differences between data and 
model moments result in 𝑝-values of zero.

The table shows moments of log returns and the log projected 
pricing kernel, which allows us to use log-normality and log-linearity as 
quantitative benchmarks. The conditional volatility and skewness of log 
returns and the log projected pricing kernel are denoted by (𝜎𝑡,𝑟,Skew𝑡,𝑟)
and (𝜎𝑡,𝑚,Skew𝑡,𝑚), respectively. We summarize the typical shape of 
the conditional return distribution by the average conditional moments 
𝐸
[

𝜎𝑡,𝑟
] and 𝐸 [

Skew𝑡,𝑟
] and time-variation in its shape by Std [𝜎𝑡,𝑟

] and 
𝑐𝑜𝑟𝑟

[

𝜎𝑡,𝑟,Skew𝑡,𝑟
]

. Log-normality implies that Skew𝑡,𝑟 is equal to zero 
in every period and that 𝑐𝑜𝑟𝑟 [𝜎𝑡,𝑟,Skew𝑡,𝑟

] is undefined. Typical devi-
ations from log-normality can therefore be quantified by 𝐸 [

Skew𝑡,𝑟
]
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and fluctuations and the cyclicality of such deviations by the combi-
nation of Std [𝜎𝑡,𝑟

] and 𝑐𝑜𝑟𝑟 [𝜎𝑡,𝑟,Skew𝑡,𝑟
]

. We summarize the projected 
pricing kernel’s typical shape by 𝐸 [

𝜎𝑡,𝑚∕𝜎𝑡,𝑟
] and 𝐸 [

Skew𝑡,𝑚∕Skew𝑡,𝑟
]

and time-variation in its shape by Std [𝜎𝑡,𝑚∕𝜎𝑡,𝑟
] and 𝑐𝑜𝑟𝑟 [𝜎𝑡,𝑚∕𝜎𝑡,𝑟, 𝜎𝑡,𝑟

]

. 
Log-linearity, i.e., the log projection being linear in log returns, im-
plies that 𝜎𝑡,𝑚∕𝜎𝑡,𝑟 equals the absolute value of the projection’s slope 
and that Skew𝑡,𝑚∕Skew𝑡,𝑟 is time-invariant and equal to −1. We can 
therefore quantify typical deviations from log-linearity (i.e. convexity) 
by 𝐸 [

Skew𝑡,𝑚∕Skew𝑡,𝑟
] and the projection’s steepness by 𝐸 [

𝜎𝑡,𝑚∕𝜎𝑡,𝑟
]

. 
Additionally, Std [𝜎𝑡,𝑚∕𝜎𝑡,𝑟

] quantifies the amount of time-variation in 
the projection’s slope and 𝑐𝑜𝑟𝑟 [𝜎𝑡,𝑚∕𝜎𝑡,𝑟, 𝜎𝑡,𝑟

] the degree of co-movement 
between the slope and volatility. Our empirical estimates show that 
the projection becomes flatter when volatility increases, i.e., they imply 
that this correlation is negative.

The results are easily summarized. None of the models come close 
to matching the typical shapes of 𝑓𝑡(𝑅𝑡+1) or 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1], and none 
come close to matching the amount of time-variation in either function.

Among the risk metrics summarizing 𝑓𝑡(𝑅𝑡+1), the conditional skew-
ness of returns is particularly problematic. For all eleven models, the 
empirical value of 𝐸 [

Skew𝑡,𝑟
] has a 𝑝-value below 1%. For the mod-

els with rare disasters (B09, W13, G12) or gamma-distributed shocks 
to state variables (BE17, CG17), conditional skewness is significantly 
too negative. The discrepancy is very visible in Fig.  6 for the latter 
group, but less visible for the former due to the low probability and 
extreme magnitude of disasters. For models that are conditionally 
log-normal (BY04, SSY18) or approximately so (CC99), conditional 
skewness equals zero. It also remains too close to zero for the modified 
long-run risks model of DY11, who add jumps to the model’s state 
variables. S20 matches the amount of conditional skewness up to 
the reported precision, but is nevertheless statistically rejected due 
to the combination differences in trailing decimals and being IID. 
Many models are also inconsistent with average volatility, 𝐸 [

𝜎𝑡,𝑟
]

, but 
this discrepancy is less concerning because one could re-calibrate the 
amount of ‘‘leverage’’ in dividends to match this moment.

Most models struggle with the amount of time-variation in condition 
risk, with Std [𝜎𝑡,𝑟

] values that fall significantly below the empirical 
estimate. The only models that come statistically close to matching the 
volatility-of-volatility (DY11, W13, CG17) do so via time-variation in 
the probability of jumps. This mechanism results in a counterfactually 
high correlation between conditional skewness and volatility, which 
lies outside of the 99% confidence interval for all three models.19 In 
sum, the models we consider all fail to explain the magnitude and 
time-variation of conditional return risks.

Among the risk price metrics summarizing 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1], the typ-
ical slope of the projected pricing kernel is most problematic. This 
shortcoming is easily visible in Fig.  7, which shows that 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]
is noticeably too flat in almost every model. Table  7 shows that the 
empirical estimate of 𝐸 [

𝜎𝑡,𝑚∕𝜎𝑡,𝑟
]

= 4.1 has a probability of less than 
1% in all eleven models. S20 matches the slope’s magnitude but is once 
again statistically rejected due to being IID. An important reason for 
most models’ inability to generate a sufficiently steep projection is that 
they imply almost no convexity, as apparent from the counterfactually 
low values of 𝐸 [

Skew𝑡,𝑚∕Skew𝑡,𝑟
]

. Two exceptions are G12, which 
implies a counterfactually large amount of convexity, and S20, which 
generates an economically plausible amount of convexity but is once 
again statistically rejected due to its IID nature.

19 Some readers may notice that we report a positive value for 
𝑐𝑜𝑟𝑟

[

Skew𝑡,𝑟, 𝜎𝑡,𝑟
] in the W13 model, while Gormsen and Jensen (2023) report 

a negative value. This difference results from the fact that we compute the 
conditional skewness of monthly returns, whereas Gormsen and Jensen (2023) 
compute the realized skewness of daily returns within months. The positive 
correlation we find arises from the fact that an increase in the disaster 
probability (i) increases conditional skewness (making it less negative) because 
the disaster outcome becomes less unusual, i.e., less of an outlier and (ii) 
conditional variance rises because extreme outcomes become more likely.

The models also struggle with the amount of variation in condition 
risk prices, with Std [𝜎𝑡,𝑚∕𝜎𝑡,𝑟

] values that are either zero or fall sig-
nificantly below the empirical estimate. The single exception is CC99, 
which generates a realistic amount of variation in the slope of the 
projection but a cyclicality pattern that contradicts the data. Like DY11, 
CC99 implies that the projected pricing kernel becomes steeper, rather 
than flatter, when volatility rises. Hence, the models we consider all fail 
to explain the magnitude and time-variation of conditional risk prices.

5. Conclusion

Option markets provide us with invaluable information about con-
ditional stock market risks and the pricing of such risks. Our paper 
proposes an empirical framework for jointly estimating conditional 
expected returns, conditional risks, and conditional risk prices based 
on index options and return data. We find that negative returns are 
substantially more painful to investors when they occur during low-
volatility periods, which plays a key role in inferring conditional return 
moments from option prices.

We explore the economic implications of our moment estimates 
through three applications. First, we decompose the risk–return trade-
off into two opposing channels: as risk increases, the price of risk 
decreases. Our results show that the risk effect dominates the price 
effect when the estimation is based on higher-order polynomials for the 
pricing kernel, leading to a positive and statistically significant risk–
return trade-off. Second, we revisit a number of key findings about 
conditional return moments and risk premia in prior work. Specifically, 
we show that (i) Martin’s (2017) lower bound on the equity premium 
is violated during high-volatility periods, (ii) contrary to WLS evidence 
in Johnson (2019), the variance premium is significantly related to ex-
pected returns and, (iii) co-movement between conditional risk-neutral 
volatility and skewness, as documented by Gormsen and Jensen (2023), 
is by driven by co-movement in risk premia rather than co-movement 
in underlying risks. Third, we find that eleven prominent macrofi-
nance models fail to capture basic features of conditional stock market 
risks and risk prices, such as the conditional skewness of returns, the 
steepness of the projected pricing kernel, and the amount of cyclical 
variation in both metrics.

Our approach can be extended and generalized in a number of 
ways. First, conditional return distributions are paramount for risk 
management purposes. Our methodology offers a way to quantify the 
probability of tail events from option prices, which could be valuable 
in value-at-risk estimations. Our paper has deliberately focused on in-
sample estimations to maximize power in detecting true predictive 
relationships (Inoue and Kilian, 2005; Campbell and Thompson, 2008; 
Cochrane, 2008; Hansen and Timmermann, 2015). In the context of 
risk management applications, however, it would be useful to explore 
out-of-sample implementations of our approach. Second, it would be 
interesting to apply our estimation methodology to other asset classes 
with active option markets, such as bonds, currencies, commodities, 
and international stock market indices. In ongoing research, Almeida, 
Freire, and Sichert (2025) are exploring an application to single stocks 
to better understand the dynamics of their expected returns and con-
ditional higher moments. Lastly, while our third application illustrated 
several shortcomings of existing macrofinance models, it also revealed 
which existing mechanisms are most promising for generating real-
istic risk and risk price dynamics. In our view, it would be most 
useful to explore models that allow stock market volatility to evolve 
independently from the volatility of macroeconomic fundamentals (as, 
e.g., in Gabaix 2012), as well as models that are able to generate 
high risk prices for tail events, either through frictions or tail-sensitive 
preferences.
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Appendix

This appendix details our time series model for conditional volatility 
and results from a simulation study of our estimator.

Appendix A. Conditional volatility estimation

We estimate the conditional volatility of log returns based on the 
heterogeneous autoregressive (HAR) model of Corsi (2009): 
𝑅𝑉 (21)

𝑡 = 𝛼 + 𝛽𝑚𝑅𝑉 (21)
𝑡−21 + 𝛽𝑤𝑅𝑉 (5)

𝑡−21 + 𝛽𝑑𝑅𝑉 (1)
𝑡−21 + 𝜖𝑡, (A.1)

where the realized volatility 𝑅𝑉 (1)
𝑡 = (

∑𝑁𝑡
𝑖=1 𝑟

2
𝑖𝑡)

0.5 equals the square root 
of the sum of 𝑁𝑡 squared intra-daily log returns on day 𝑡, and 𝑅𝑉 (ℎ)

𝑡 =
( 1ℎ

∑ℎ
𝑗=0 𝑅𝑉

(1)
𝑡−𝑗 )

0.5. Weekly (𝑅𝑉 (5)
𝑡 ) and monthly (𝑅𝑉 (21)

𝑡 ) volatility mea-
sures allow the model to capture the long-memory feature of stock 
market volatility. Returns are sampled every five minutes to compute 
𝑅𝑉 , which is commonly viewed as a good trade-off between sampling 
noise (which increases at low sampling frequencies) and microstructure 
noise (which decreases at low sampling frequencies). We sub-sample 
our estimator every minute, which reduces the noise without affecting 
the estimator’s bias, and add the squared log overnight return to each 
intra-daily variance estimate.

Intra-daily returns are computed from S&P 500 future prices, which 
we obtained from Tick Data Inc. In 1997, the Chicago Mercantile 
Exchange (CME) introduced the E-mini future (symbol: ES). Over time, 
the standard ‘‘large’’ futures contract (symbol: SP) lost market share to 
the E-mini, and eventually was discontinued in 2021. Since the dollar 
trading volume of the E-mini overtook that of the large contract during 
2002, we switch our RV calculation from the large contract to the mini 
in 2003.

Our volatility forecasts are out-of-sample and implemented based 
on an expanding estimation window. We start the sample in 1988, so 
that our first forecast on Jan 02, 1990 is based on a two year estimation 
window. The model forecasts volatility very well with an out-of-sample 
𝑅2
𝑂𝑂𝑆 of 60.4%.

Appendix B. A simulation study of our estimator

The applications in Sections II–IV rely on estimates of the pro-
jected pricing kernel. Naturally, these estimates are affected by esti-
mation noise and possible misspecification of the parametric function 
for 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]. In this appendix, we conduct an extensive Monte 
Carlo simulation study to assess the importance of these issues for our 
economic conclusions. Specifically, we examine statistical properties of 
the risk–return slope estimate 𝛽2 and the reliability of our detection of 
NCC violations.

B.1. Simulation design

Our simulation results are all based on 5000 finite samples.

B.1.1. Data generating process
The data generating process is designed to capture the non-linearity 

of 𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1], the non-normalities in 𝑓𝑡(𝑅𝑡+1), and the amount of 
time-variation in both functions. We estimate and a first-order vector 
autoregressive (VAR) model for the first four conditional moments of 
ln𝑅𝑡+1. We then simulate this model by drawing innovations from 
their joint empirical distribution. To ensure positivity of variance and 
kurtosis, we specify the VAR model for the natural logarithms of these 
moments, but include the mean and skewness without a log transforma-
tion. In each period of the simulation, the four moments are mapped to 
a density 𝑓𝑡(ln𝑅𝑡+1) based on the Normal Inverse Gaussian (NIG) distri-
bution of Barndorff-Nielsen (1977, 1978, 1997). The NIG distribution 
is well-suited for our purposes because it provides a unique mapping 
from the first four moments to its four parameters; see, e.g., Theorem 
2.2 in Eriksson et al. (2009). The conditional density of simple returns, 
obtained via the change-of-measure 𝑓𝑡(𝑅𝑡+1) = 𝑓𝑡(ln𝑅𝑡+1)∕𝑅𝑡+1, is used 
to generate return realizations for each simulation period. By charac-
terizing the return density based on four moments, our data generating 
process provides a realistic depiction of the shape of 𝑓𝑡(𝑅𝑡+1) at different 
points in time. By capturing the dynamics of these moments via a VAR 
model, it also provides a realistic depiction of how the shape of 𝑓𝑡(𝑅𝑡+1)
evolves over time.

To generate the conditional risk-neutral distribution, we map
𝑓𝑡(𝑅𝑡+1) to 𝑓 ∗

𝑡 (𝑅𝑡+1) based on the parametric 𝑁 = 2 estimate of 
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1], the simulated volatility series from the VAR model, and 
Eqs. (1), (4), and (5). The polynomial intercept 𝛿𝑡 in Eq.  (4) is set to 
ensure that 𝑓 ∗

𝑡 (𝑅𝑡+1) integrates to one in each simulation period, which 
implies that we do not need to specify 𝑅𝑓

𝑡 .

B.1.2. Estimated versus true return densities
In the empirical data, only the risk-neutral density 𝑓 ∗

𝑡 (𝑅𝑡+1) and 
return realization 𝑅𝑡+1 are observed. The conditional physical density 
𝑓𝑡(𝑅𝑡+1) and associated return moments have to be estimated. In the 
simulation, we observe the true return density 𝑓𝑡(𝑅𝑡+1), in addition 
to 𝑓 ∗

𝑡 (𝑅𝑡+1) and 𝑅𝑡+1. This allows us to compare properties of the 
true and estimated return densities. To do so, we follow our empirical 
estimation approach, i.e., we estimate the parameters of 𝐸[𝑀|𝑅] based 
on simulated data for 𝑅𝑡+1 and 𝑓 ∗

𝑡 (𝑅𝑡+1) and use them to compute an 
estimate of 𝑓𝑡(𝑅𝑡+1).

B.1.3. Calibrations
We consider two calibrations. Calibration 1 is based on our empiri-

cal parameter estimates of the projected pricing kernel and therefore 
features a positive risk–return trade-off. Calibration 2 increases the 
amount of time-variation in 𝐸[𝑀|𝑅] relative to the empirical estimates, 
such that there is no risk–return trade-off and the true 𝛽2 equals zero.20 
We compute the true value of the risk–return slope coefficient 𝛽2
by simulating the data generating process for 10 million periods and 
estimating regression (10) based on true rather than estimated 𝑓𝑡(𝑅𝑡+1)-
moments. The true value of 𝛽2 equals 3.96 in calibration 1 and, by 
construction, equals zero in calibration 2.

20 We do so by increasing the pricing kernel parameter ‘‘𝑏’’ in Eq.  (5) 
relative to its empirical estimate. The remaining pricing kernel parameters 
are estimated by maximizing the log-likelihood of realized returns, given the 
restricted value of 𝑏. To ensure internal consistency, we re-estimate the VAR 
based on the return moments that are implied by this alternative estimate of 
the projected pricing kernel.
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Fig. 8. Sampling Distribution of the Risk-Return Slope Coefficient. This figure shows the sampling distribution of the slope coefficient 𝛽2 in risk–return trade-off regression 
(10). The sampling distribution is generated based on a Monte Carlo simulation that closely mimics our empirical setting; see the main text for additional details. The true value 
of 𝛽2 is indicated by the dotted line, the mean of the sampling distribution by the solid line, and a symmetric 90% interval of the sampling distribution by the wider shaded 
region. We also plot the 90% interval of an alternative estimator 𝛽2 based on the true (but empirically unobservable) conditional return distribution 𝑓𝑡(𝑅𝑡+1). The calibration in 
the top panel is based on our empirical estimates and reflects a positive risk–return trade-off. The calibration in the bottom panel implies the absence of a risk–return trade-off, 
i.e., a true value of 𝛽2 = 0.

B.1.4. Effective sample size
A noteworthy shortcoming of our simulation design is that it does 

not allow us to mimic the daily sub-sampling approach that was used 
in the empirical data. Doing so would necessitate the simulation of 
daily returns, but our empirical estimates contain no information about 
return moments at this frequency. To simulate finite samples that 
can be meaningfully compared to the empirical data, it is therefore 
necessary to determine our effective sample size. The effective sample 
size equals the number of non-overlapping monthly observations that 
results in the same estimation precision as our daily sample of 8553 
overlapping monthly observations. We compute the effective sample 
size based on the precision of the risk–return trade-off regression slope 
𝛽2. Specifically, we first compute the standard error of 𝛽2 in overlapping 
data based on a block bootstrap with a block length of 21 (the average 
number of trading days per month). This estimate of the standard 
error, which we denote by 𝑆𝐸(𝛽2), accounts for autocorrelation due 
to overlapping data. Next, we compute the standard error of 𝛽2 in 
non-overlapping bootstrap samples of different sizes, i.e., samples that 
are generated with a bootstrap block length of one. Denote these 
estimates by 𝑆𝐸𝑇 (𝛽2). The effective sample size equals the number 
of non-overlapping observations 𝑇  that produces the same standard 
error as 𝑇 = 8, 553 overlapping observations, i.e., 𝑇  is defined by 
𝑆𝐸𝑇 (𝛽2) = 𝑆𝐸(𝛽2). Unless otherwise noted, all simulation results are 
based on this ‘‘effective sample size’’ of 𝑇 = 804 non-overlapping 
monthly observations.

B.2. Statistical properties of the risk-return slope 𝛽2

A number of plausible econometric concerns can be brought forth 
about our estimation of the risk–return trade-off. First, the indepen-
dent variable of regression (10) is estimated, which may render our 
estimator of the regression slope 𝛽2 inconsistent due to an errors-in-
variables problem. Second, the dependent and independent variable are 
determined jointly based on our estimation of 𝐸[𝑀|𝑅]. It is therefore 
conceivable that a misspecified pricing kernel induces covariation be-
tween conditional return moments that does not really exists, i.e., our 
non-zero estimate of the risk–return slope coefficient 𝛽2 may reflect a 
bias. One piece of evidence against the latter concern is that we find 
a very similar risk–return relationship based on different polynomial 
orders for 𝐸[𝑀|𝑅], including very flexible higher order polynomials. 
Nevertheless, it appears important to examine the statistical properties 
of 𝛽2 in more detail.

Fig.  8 illustrates the sampling distribution of 𝛽2 for different sample 
sizes. The top panel shows calibration 1 and the bottom panel calibra-
tion 2. The dotted line represents the true value of 𝛽2. Estimates of 
𝛽2 are computed based on estimated return densities, i.e., exactly as 
in the empirical data. Sampling variation in 𝛽2 therefore reflects both 
small sample variation in true 𝑓𝑡(𝑅𝑡+1) moments and estimation error 
in these moments. Fig.  8 depicts the mean of 𝛽2 with a solid line and 
values between the 5th and 95th percentiles of 𝛽2 with the wider of 
the two shaded areas. For both calibrations, 𝛽2 converges to 𝛽2 as the 
sample size approaches infinity. Hence, 𝛽2 is a consistent estimator.
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Table 8
Bootstrap Test of the Risk-Return Trade-Off in Simulated Data.
We simulate 5,000 finite samples with a length of 𝑇 = 804 months from the data generating process described in the text. For 
each simulated sample, we perform the same bootstrap test of 𝐻0 ∶ 𝛽2 = 0 in regression (10) as for the empirical sample. The 
order of the pricing kernel polynomial is set to 𝑁 = 2. This table reports the fraction of simulated samples for which 𝐻0 is 
rejected at different significance levels. The left panel reports results for the calibration with a positive risk–return trade-off 
(calibration 1), whereas the right panel reports results for calibration without a risk–return trade-off (calibration 2).
 Calibration 1 (with RRTO) Calibration 2 (without RRTO)
 Significance level 1% 5% 10% 1% 5% 10%  
 Rejection rate, % 64.9 85.2 91.3 1.5 7.0 12.6  

The figure shows that 𝛽2 is nearly unbiased in both calibrations. At 
the effective sample size of 𝑇 = 804, the bias equals −0.03 (compared 
to a true 𝛽2 value of 3.96) for calibration 1 and 0.04 (compared to 
a true 𝛽2 value of 0) for calibration 2. It also features high precision. 
At the effective sample size, calibration 1 (with a positive risk–return 
trade-off) implies a only 0.25% probability of obtaining a negative 𝛽2-
estimate. At the same sample size, calibration 2 (without a risk–return 
trade-off) implies a 0.59% probability of obtaining a 𝛽2-estimate that 
exceeds our empirical point estimate of 3.77. It is therefore highly un-
likely that the true data generating process does not feature a positive 
risk–return trade-off.

To understand how estimation error in 𝑓𝑡(𝑅𝑡+1) affects 𝛽2, we also 
compute an alternative (but empirically infeasible) estimator 𝛽2 based 
on moments of the true 𝑓𝑡(𝑅𝑡+1). Fig.  8 depicts values between the 5th 
and 95th percentiles of 𝛽1 with the narrower of the two shaded areas. 
This analysis shows that most variability in 𝛽2 reflects small sample 
variation in true 𝑓𝑡(𝑅𝑡+1) moments, rather than estimation error in these 
moments. For example, for a sample size of 𝑇 = 804, calibration 1 
implies that the 90% interval has a width of 2.86 for 𝛽2, compared 
3.92 for 𝛽2. This suggests that conditional return moments (and the 
projected pricing kernel) are estimated with relatively high precision 
in our empirical sample.

B.2.1. Bootstrap test of 𝛽2 = 0
We next examine the reliability of our bootstrap test of 𝐻0 ∶ 𝛽2 =

0. Like the empirical sample, each simulated sample is bootstrapped 
10,000 times (see Footnote 11 for details). Because the simulated 
monthly data is non-overlapping, we use a bootstrap block length of 
1, rather than the block length of 21 that was used in the overlapping 
empirical data. The null hypothesis is rejected in any given simulation 
if the bootstrapped 𝑝-value falls below the chosen significance level. 
Table  8 reports the rejection rates across the 5,000 simulated samples 
for both calibrations and a range of common significance levels.

When a risk–return trade-off exists in population (calibration 1), our 
estimation and testing methodology is likely to detect it. For example, 
the null hypothesis 𝐻0 ∶ 𝛽2 = 0 is rejected in 85.2% of simulated 
samples when testing at the 5% significance level. Hence, the test has 
fairly high power. When no risk–return trade-off exists in population 
(calibration 2), the bootstrap test is unlikely to incorrectly detect one. 
For example, the null hypothesis 𝐻0 ∶ 𝛽2 = 0 is incorrectly rejected in 
only 7.0% of simulated samples (a Type 1 error) when testing at the 5% 
significance level. Furthermore, a look across the different significance 
levels in Table  8 shows that the test is approximately correctly sized for 
the effective sample size of our data. This finding alleviates the biggest 
potential concern about our results: Our estimation of the projected 
pricing kernel (and conditional return moments) is quite unlikely to 
detect a risk–return trade-off if none exists in the true data generating 
process. In sum, our estimation and testing methodology provides a 
novel way to establish that a significantly positive risk–return trade-off 
exists in the data.

B.3. Detection of NCC violations

Lastly, we assess whether our detected NCC violations are genuine 
or the result of estimation noise. To that end, note the covariance term 

in the NCC equals
Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] = 𝐸𝑡[𝑀𝑡+1𝑅

2
𝑡+1] − 𝐸𝑡[𝑀𝑡+1𝑅𝑡+1]𝐸𝑡[𝑅𝑡+1]

= 𝐸𝑡[𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]𝑅2
𝑡+1] − 𝐸𝑡[𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1]𝑅𝑡+1]𝐸𝑡[𝑅𝑡+1],

where the last equality uses the law of iterated expectations. In each 
of the 5000 simulated samples, we use this expression to compute 
Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] based on the true versions of 𝑓𝑡(𝑅𝑡+1) and
𝐸𝑡[𝑀𝑡+1|𝑅𝑡+1], and also based on their estimated counterparts. Next, 
we compute the probability of the true Cov𝑡[𝑀𝑡+1𝑅𝑡+1, 𝑅𝑡+1] being non-
positive (the NCC holding), conditional on its finite sample estimate 
exceeding thresholds of 18.5% p.a. or 28.0% p.a. These thresholds 
reflect the magnitude of the NCC violations we detect in the empirical 
sample for the financial crisis and Covid-19 episode. The conditional 
probabilities equal 5.1% and 3.2%, respectively.
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