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A B S T R A C T

We devise a simple model of liquidity demand and supply to study dealers’ liquidity provision in currency
markets. Drawing on a globally representative data set of currency trading volumes, we show that at times
when dealers’ intermediation capacity is constrained the cost of liquidity provision increases disproportionately
relative to dealer-intermediated volume. Consequently, the otherwise strong and positive relation between
liquidity costs and trading volume diminishes significantly when dealers face tighter Value-at-Risk limits or
higher funding costs. Using various econometric approaches, we show that this nonlinear effect of dealer
constraints on market liquidity primarily stems from a reduction in the elasticity of liquidity supply, rather
than changes in liquidity demand.

1. Introduction

Financial intermediaries play a crucial role in maintaining the func-
tioning of modern financial markets. This is especially true for the
foreign exchange market (FX), where dealer banks are the primary
providers of market liquidity.1 However, dealer banks’ ability to pro-
vide liquidity in over-the-counter (OTC) markets heavily depends on
their balance sheet capacity to absorb and fund trading positions.
Constraints on dealers’ intermediation capacity can in turn reduce their
incentives to intermediate trades, increase liquidity costs, and generate
violations of no-arbitrage conditions.2
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1 To be clear, we focus on the role of FX dealer banks as liquidity providers rather than cross-market arbitrageurs. This is consistent with the role that these
institutions have played after the clampdown on proprietary trading in the aftermath of the Global Financial Crisis.

2 See ‘‘Holistic Review of the March Market Turmoil’’, Financial Stability Board, November 2020.

Against this backdrop, the key contribution of this paper is to shed
light on the link between the determinants of currency market liquidity
and dealer intermediation constraints. To this end, we build a simple
model of liquidity demand and supply and test its predictions by draw-
ing on a globally representative data set on FX trading volumes. We
find that the cost of providing FX liquidity increases disproportionately
more relative to trading volume when dealers face tighter constraints
on their intermediation capacity. More specifically, when the dealer
sector is more constrained due to higher funding costs and more restric-
tive Value-at-Risk (VaR) constraints the otherwise strong and positive
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correlation between the cost and the quantity of FX liquidity provision
weakens substantially. Guided by our theoretical framework and by
employing various econometric techniques, we show that this nonlinear
effect of dealer constraints on market liquidity primarily stems from a
reduction in the elasticity of liquidity supply, rather than changes in
liquidity demand.

In the context of the FX spot market, we first identify two liq-
uidity cost measures based on the well-known triangular no-arbitrage
condition that ties together triplets of exchange rates (e.g., EURCAD,
USDEUR, and USDCAD). The first measure captures violations in the
law of one price, which we label as VLOOP. Conceptually, VLOOP
quantifies the divergence of the mid-quote prices from the triangular
no-arbitrage relation. In line with the literature on intermediary asset
pricing, VLOOP can be interpreted as the shadow cost of intermediary
constraints.3 The second component captures the round-trip transaction
cost of performing a triangular arbitrage trade, which we label as
TCOST. It reflects the dealer’s realised compensation to take on inven-
tory risks stemming from imbalanced customers order flows. Against
this backdrop, VLOOP does not aim to measure executable arbitrage
opportunities or potential arbitrage profits. This is because in an OTC
market individual traders may face a different degree of trading fric-
tions in the form of, for instance, transaction costs, price impact, and
funding costs. Put differently, TCOST larger than VLOOP implies that
the differentials in midquotes are within the no-arbitrage bounds set
forth by bid–ask spreads.

Our model builds on the premise that tighter constraints reduce
dealers’ short-run flexibility to intermediate and provide liquidity to
customers (see, e.g., Duffie, 2010, 2023). The dealer sector faces two
types of constraints when intermediating customers’ order flows: (i)
debt funding costs 𝜂 to finance inventory positions that stem from ab-
sorbing directional customer order flows; and (ii) 𝑉 𝑎𝑅 limits that arise
from both regulatory and internal risk management practices (Adrian
and Shin, 2010). The first one represents a cost factor in the ‘‘produc-
tion’’ of market liquidity by dealers, while the second one is a hard
constraint that can directly restrict dealers’ intermediation capacity. In
particular, VaR limits can become binding for a 𝜔 fraction of dealers.
Taken together, dealers are less willing to intermediate in FX spot mar-
kets when their debt funding costs are higher and/ or VaR constraints
are stricter. Thus, when dealers face tighter constraints, the liquidity
supply curve becomes steeper, reflecting a decrease in the elasticity of
their liquidity supply. This leads to the first empirical implication: no-
arbitrage deviations (i.e., VLOOP) and transaction costs (i.e., TCOST)
are positively related to measures of dealer constraints.

Going a step further, our model sheds light on how dealer con-
straints shape the relation between the price and the quantity of cur-
rency market liquidity. When price-sensitive customers demand more
liquidity, both the price (i.e., VLOOP and TCOST) and the quantity
(i.e., dealer-intermediated volume) of liquidity increase in equilibrium.
When dealer constraints remain unchanged, the price and quantity
increase proportionately. In contrast, when dealer constraints tighten,
the price of liquidity increases disproportionately more relative to
the quantity. This nonlinear effect has two main drivers. On the one
hand, the more binding VaR constraints (captured by higher 𝜔) imply
that the unconstrained dealers need to accommodate a larger share of
customer order flows. On the other hand, the unconstrained dealers
are left to absorb the order imbalance at higher debt funding costs
(captured by higher 𝜂). As a result, an increase in customers’ demand
for liquidity leads to a more pronounced increase in the equilibrium
price compared to volume. This underpins our second, and most novel,
empirical implication: while liquidity costs and dealer-intermediated

3 In accord with this strand of literature (e.g., Adrian et al., 2014; Kisin and
Manela, 2016; Duffie, 2018; Fleckenstein and Longstaff, 2018; Du et al., 2022),
one may also refer to these shadow costs as ‘‘balance sheet costs’’ associated
with FX spot liquidity provision.

volumes exhibit a positive correlation in normal times, this connection
weakens significantly during times when dealer constraints are more
stringent.

We test these two predictions using a unique data set on global FX
spot trading activity from CLS Group. To measure dealer constraints in
line with our model, we construct empirical measures capturing the two
sources of dealer constraints. First, we employ dealers’ debt funding
costs to proxy for 𝜂 and second, we use dealers’ realised VaR and the
number of VaR breaches in a given quarter to capture the tightness
of the VaR constraint 𝜔. We study these measures separately and, for
conciseness, combined as a single metric of intermediary constraints
that we dub ‘‘DCM’’ (referring to Dealer Constraint Measure). To con-
struct DCM, we first create (cross-sectionally averaged) time-series of
debt funding costs, portfolio VaR, and the number of VaR breaches for
10 major FX dealer banks. We define the first principal component of
these time-series as our DCM measure of dealer constraints.4

The following three core findings arise from our empirical analysis:
First, the two liquidity cost measures VLOOP and TCOST tend to co-
move over time, albeit their correlation is only about 54% on average.
Second, when the dealer sector is largely unconstrained, the correlation
between liquidity costs and dealer-intermediated volume is overall
positive and ranges from 9 to 25%. This observation is consistent with
dealers requiring a higher compensation when providing more imme-
diacy to clients. Third, and most strikingly, when dealer constraints
tighten, both liquidity cost measures increase disproportionately more
relative to dealer-intermediated volumes. In times when the dealer
sector is constrained, the conditional correlation between liquidity costs
and the intermediated quantities drops by at least 50%. To establish
this novel result, we estimate smooth transition regression (LSTAR)
models,5 which are well-suited for our analysis because constrained
regimes are determined endogenously and may vary over time.

To broaden the scope of our proposed mechanism regarding the
nonlinear effect of dealer constraints on market liquidity, we extend our
empirical analysis in two ways. First, we connect our findings to Duffie
et al. (2023), showing that volatility and liquidity costs in the US
Treasury market co-move positively in normal times, but less so during
times when dealer balance sheet utilisation is high. Our model sheds
light on the origins of this positive correlation and can explain why it
diminishes when dealers are more constrained. Moreover, we provide
empirical evidence supporting this prediction in the context of the
currency market. Second, we expand our analysis to FX forwards and
swaps, where constraints on dealer intermediation capacity are even
more consequential for liquidity provision than in FX spot. Specifically,
we show that our mechanism, which operates through constraints
on dealers’ intermediation activity, has even more explanatory power
when analysing market liquidity in currency forwards and swaps. Taken
together, our results suggest that our economic mechanism is not only
operational in the FX spot market but might also be at play in other
OTC markets such as FX derivatives and US Treasuries.

Through the prism of our model, the drop in the correlation between
liquidity costs and volume stems from a more inelastic (i.e., steeper)
supply curve. However, when it comes to the empirical estimation, one
might be concerned that our dealer constraint measure is correlated
with factors affecting liquidity demand. Put differently, we can only
attribute the weakening of the correlation between liquidity cost and
intermediated volume in constrained periods to a drop in the elasticity

4 For robustness, we also consider other measures proposed in the related
literature to capture the balance sheet capacity of financial intermediaries.
Specifically, we consider the He et al. (2017) leverage ratio, credit default
swap (CDS) premia (Andersen et al., 2019), and deviations from the covered
interest rate parity (CIP) condition (Du et al., 2018; Rime et al., 2022).

5 Studies using alternative forms of smooth transition regressions to perform
exchange rate or carry trade predictability include, for instance, Kilian and
Taylor (2003), Christiansen et al. (2011), Tenreyro and Thwaites (2016),
and Jeanneret and Sokolovski (2019).
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of liquidity supply once we are appropriately controlling for shifts in
liquidity demand. To account for changes in liquidity demand, we rely
on two approaches: First, we use a rich set of fixed effects (both time-
series and cross-sectional) and control variables such as FX volatility
and measures of price impact to account for observable and unobserv-
able factors related to liquidity demand. Second, we employ a structural
vector autoregression (SVAR) with sign restrictions to more explicitly
disentangle liquidity demand and supply dynamics. Our setup to es-
timate liquidity demand and supply shocks closely follows Goldberg
(2020) and Goldberg and Nozawa (2020), respectively, and employs
the same set of sign restrictions. In a next step, we use both liquidity
supply and demand shocks as alternative measures of tightening dealer
constraints. In line with our model, it turns out that only liquidity
supply (rather than demand) shocks are economically and statistically
significant determinants of the variation in the correlation between liq-
uidity costs (i.e., VLOOP and TCOST) and dealer-intermediated trading
volume.

2. Related literature

Our paper contributes to three strands of literature. First, we con-
tribute to the literature on currency market liquidity. Prior research
in this field provides empirical evidence on the correlation between
funding liquidity and market liquidity (Mancini et al., 2013; Karnaukh
et al., 2015) but does not explore the fundamental drivers of these
links. Our work goes significantly beyond these empirically focused
papers by elucidating (both theoretically and empirically) the economic
mechanism through which this connection arises. In particular, we
show that studying the joint behaviour of quantities and prices allows
us to better isolate the impact of dealer intermediation constraints on
market liquidity conditions.

To do so, we leverage data on dealer-intermediated FX trading
volumes from CLS group. The literature on trading volume is relatively
scarce due to the lack of comprehensive data. Earlier research has
instead focused on order flows (e.g., Evans, 2002; Evans and Lyons,
2002, 2005) primarily analysing the inter-dealer segment, which is
dominated by two platforms: Reuters (e.g., Evans, 2002; Payne, 2003;
Foucault et al., 2016) and EBS (e.g., Chaboud et al., 2008; Mancini
et al., 2013; Chaboud et al., 2014). Other sources of FX spot volume
are proprietary data sets from specific dealer banks.6 The recent public
access to CLS data has enabled researchers to study customer-dealer
volume at a global scale (Hasbrouck and Levich, 2018, 2021; Cespa
et al., 2021; Ranaldo and Somogyi, 2021; Ranaldo and Santucci de
Magistris, 2022). We contribute to this strand of literature by inves-
tigating the impact of dealer constraints on both the cost and quantity
dimensions of FX liquidity. We primarily focus on currency markets,
but we also examine the similarities between the economic mechanism
described in our model and that in other OTC markets, such as fixed
income markets (Duffie, 2023; Duffie et al., 2023). Consequently, our
findings shed light on how the functionality of OTC markets, more
generally, is shaped by dealer intermediation constraints.

Second, our work relates to the broad literature that emphasises
the role of intermediary frictions in affecting asset prices and financial
market conditions.7 Our main contribution is to show in depth how
constrained dealers charge higher liquidity costs and decrease their
elasticity of liquidity provision in the FX spot market. This finding is in
accord with the evidence documented for other markets, in particular,

6 See, for instance, Bjønnes and Rime (2005), Menkhoff et al.
(2016), Gallien et al. (2018).

7 See, for example, Gârleanu and Pedersen (2011), He and Krishna-
murthy (2011), He and Krishnamurthy (2013), Adrian and Boyarchenko
(2012), Adrian et al. (2014), He et al. (2017), Chen et al. (2018), Gospodinov
and Robotti (2021), Baron and Muir (2021), Haddad and Muir (2021), Kargar
(2021), and He et al. (2022).

stocks (Comerton-Forde et al., 2010; Çötelioğlu et al., 2020) and cor-
porate bonds (Bao et al., 2018). Our research expands the literature by
conceptualising and empirically examining how constraints on dealers,
like debt financing costs and VaR limits, affect liquidity costs and trad-
ing volume in currency markets. Our results remain consistent across a
suite of measures that are coherently tied to our theoretical framework,
as well as when utilising broader proxies for dealers’ balance sheet
capacity such as the equity capital ratio of financial intermediaries (He
et al., 2017), credit default swap spreads (Andersen et al., 2019), and
deviations from CIP (Du et al., 2018, 2022; Rime et al., 2022; Du
et al., 2023), respectively. Our findings are also in line with Nagel
(2012) who shows that market makers’ liquidity supply is increasing
in their intermediation capacity but decreasing in the level of risk.
Moreover, our paper corroborates the idea that market-wide liquidity
conditions depend on intermediary constraints (e.g., Adrian and Shin,
2010) and that intermediary leverage and banks’ risk management
practices (e.g., following Value-at-Risk methodologies) tend to be pro-
cyclical (Adrian and Shin, 2013). Lastly, our findings suggesting that
dealers’ balance sheet space affects both the cost and quantity of liq-
uidity provision are consistent with slow-moving intermediary capital
being a key factor behind distortions in asset pricing relations (Duffie,
2010).

Finally, we add to the literature on limits to arbitrage along two di-
mensions. First, while prior research has mostly focused on constrained
arbitrageurs (e.g., Shleifer and Vishny, 1997, Gromb and Vayanos,
2002, Hombert and Thesmar, 2014 and more recently Du et al., 2022
and Siriwardane et al., 2025), our main angle is to study constrained
dealers. This emphasis on constrained dealers, rather than cross-market
arbitrageurs (e.g., principal trading firms) is driven by several factors.
To begin with, regulatory changes since the Global Financial Crisis pe-
riod have significantly influenced the role of dealer banks. In particular,
these regulations have incentivised banks to shift their business models
from proprietary trading to market making. In addition, dealers’ inter-
mediation capacity is also affected by their risk management practices,
such as VaR constraints, and their funding costs. Second, we propose
to draw on the triangular no-arbitrage identity to derive two liquidity
cost components with an economically meaningful interpretation. Thus,
our key contribution is to elucidate the relation between liquidity
costs and volumes using arbitrage conditions and to show how this
relation critically depends on the intermediation capacity of dealers. In
addition, a large body of prior research has studied limits to arbitrage
in equities (see Gromb and Vayanos, 2010). However, many of the fric-
tions considered in that literature, such as short sale constraints (e.g.,
Chu et al., 2020), do not apply to currency markets. Related to the stock
market literature, recent studies document widespread mispricings in
stressed times (Pasquariello, 2014), commonality in arbitrage devia-
tions (e.g., Rösch et al., 2016; Du et al., 2022), and limits to arbitrage
impacting market liquidity (Rösch, 2021). We add to this branch of the
literature by identifying constrained dealers as the main driving force
behind such commonalities and by showing that dealer constraints have
a nonlinear effect on currency market liquidity.

3. A simple model of constrained liquidity supply

1. Both liquidity cost measures (i.e., VLOOP and TCOST) increase
when FX dealers are more constrained in their intermediation
capacity (see Proposition 1 below).

2. When dealer constraints tighten, the liquidity supply curve
shifts inward and thereby increases the cost of liquidity pro-
vision but decreases dealer-intermediated volume (relative to
the counterfactual). Thus, the correlation between liquidity costs
and dealer-intermediated volume drops with tighter dealer con-
straints (see Proposition 2 below).
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Fig. 1. Timeline.

Liquidity cost measures. Consider a trader exchanging one euro (EUR)
to some amount of US dollar (USD), exchanging the amount of US
dollar to some amount of Canadian dollar (CAD) and exchanging
back the amount of Canadian dollar to euro instantaneously. Let 𝑚𝑗

denote the midquotes of the three currency pairs, where 𝑗 ∈ {𝑥, 𝑦, 𝑧},
𝑥 = 𝑈 𝑆 𝐷 𝐸 𝑈 𝑅, 𝑦 = 𝐸 𝑈 𝑅𝐶 𝐴𝐷, and 𝑧 = 𝑈 𝑆 𝐷 𝐶 𝐴𝐷. The trader has
identified a violation of the law of one price (VLOOP) if 𝑚𝑧∕(𝑚𝑥𝑚𝑦) is
different from unity. More formally,

VLOOP = 𝑚𝑧

𝑚𝑥𝑚𝑦 , (1)

which is dimensionless with respect to the choice of base currency. Note
that dimensionless here refers to the economic magnitude, rather than
the sign, of VLOOP. Regardless of our choice of base and quote currency
for pairs 𝑥, 𝑦, and 𝑧, the absolute value of VLOOP will always be the
same. The only requirement is that the denominator is a synthetic
replication of the currency pair in the numerator (or the other way
around).

Clearly, such law of one price deviations are not necessarily prof-
itable arbitrage opportunities due to the presence of transaction costs.
We denote the bid–ask spread as 𝑠𝑗 = 𝑎𝑗 − 𝑏𝑗 , where 𝑎𝑗 and 𝑏𝑗 are
the ask and the bid price of currency pair 𝑗. Replacing the midquotes
with the bid and ask prices, the pay-off from a triangular arbitrage
trade is 𝑏𝑧∕(𝑎𝑥𝑎𝑦) and can be decomposed into VLOOP and round-trip
transaction costs (TCOST)8:

𝑏𝑧

𝑎𝑥𝑎𝑦
=

𝑚𝑧
(

1 − 𝑠𝑧

2𝑚𝑧

)

𝑚𝑥
(

1 + 𝑠𝑥
2𝑚𝑥

)

𝑚𝑦
(

1 + 𝑠𝑦
2𝑚𝑦

) = 𝑚𝑧

𝑚𝑥𝑚𝑦
⏟⏟⏟
VLOOP

/

(

1 + 𝑠𝑥

2𝑚𝑥

)

×
(

1 + 𝑠𝑦

2𝑚𝑦

)

(1 − 𝑠𝑧
2𝑚𝑧 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TCOST

.

(2)

In equilibrium, VLOOP and TCOST are determined by the demand
for, and supply of, liquidity. At t=0, liquidity traders arrive with
demand imbalance 𝑑𝑗 . They trade with dealers at price 𝑝𝑗 , which
could be either 𝑎𝑗 or 𝑏𝑗 depending on the direction of their trade. The
fundamental value of currency pair 𝑗 is stochastic, and denoted as 𝑒𝑗 ,
with mean 𝑒𝑗 . The three fundamental values are intimately linked via
𝑒𝑧 = 𝑒𝑥𝑒𝑦. We assume that the three currency pairs are i.i.d. and have
the same volatility denoted as 𝜎. At 𝑡 = 1, the uncertainty is resolved
and traders receive the fundamental value of each currency pair. Fig. 1
summarises the timeline of the model.

Traders. We model liquidity demand following the classic market mi-
crostructure literature (see, e.g., Grossman and Miller, 1988; Hendershott
and Menkveld, 2014). Liquidity traders are price sensitive and arrive at
𝑡 = 0. Their aggregate liquidity demand decreases in the bid–ask spread
quoted by the dealers. Furthermore, the demand is higher when the
currency pairs are more volatile, reflecting higher disagreement about
fundamental values and associated portfolio rebalancing. Specifically,

8 See the Online Appendix for numerical examples.

the demand for currency pair 𝑗 is given by 𝜎(1 −𝑠𝑗 ), which is increasing
in volatility 𝜎 and decreasing in the bid–ask spread 𝑠𝑗 .

Trading demand is imbalanced across the three currency pairs due
to diverging liquidity needs among traders. For simplicity, we assume
that a 𝜋 > 1∕2 fraction of traders in currency pair 𝑥 are buyers and
the rest are sellers. Conversely, for currency pair 𝑦, a (1 −𝜋) fraction of
traders are buyers and the rest are sellers. For currency pair 𝑧, half of
the traders are buyers, whereas the other half are sellers. Thus, traders
impose net buying pressure (2𝜋 − 1) in currency pair 𝑥 and net selling
pressure (1 − 2𝜋) in pair 𝑦. The net buying pressure is simply the buy
orders minus the sell orders. Hence, for currency pair 𝑥, the net buying
pressure is 𝜋 − (1 − 𝜋) = 2𝜋 − 1 > 0, and it is (1 − 𝜋) − 𝜋 = 1 − 2𝜋 < 0
for currency pair 𝑦. Thus, the aggregate (net) trading demand of the
traders is to swap EUR for USD (i.e., being long currency pair 𝑥 =
𝑈 𝑆 𝐷 𝐸 𝑈 𝑅) and to swap EUR for CAD (i.e., being short currency pair
𝑦 = 𝐸 𝑈 𝑅𝐶 𝐴𝐷). As a result, the traders’ demand imbalance that needs
to be absorbed by dealers in pair 𝑗 is given as follows9:

𝑑𝑥 = 𝜎(1 − 𝑠𝑥)(2𝜋 − 1), (3)

𝑑𝑦 = 𝜎(1 − 𝑠𝑦)(1 − 2𝜋), (4)

𝑑𝑧 = 0. (5)

Dealers. There is a unit mass of competitive dealers that intermediate
buy and sell orders in the currency market (see Foucault et al., 2013,
Sec. 3.5). The dealers start with zero inventory and are subject to
Value-at-Risk (VaR) constraints that might be due to regulatory and/ or
internal risk management practices. A proportion 𝜔 of the dealers have
tight VaR constraints with low thresholds 𝑇𝐿 and the rest (i.e., 1 − 𝜔)
have loose VaR constraints with high thresholds 𝑇𝐻 . These differences
between the VaR constraints reflect the differences in dealers’ balance
sheet capacity. The VaR of a dealer 𝑖 ∈ {𝐿, 𝐻} is 𝑉 𝑎𝑅𝑗

𝑖 ≡ 𝜎 × 𝑞𝑗𝑖 ,
where 𝑞𝑗𝑖 denotes the dealer’s net position in a given currency pair
𝑗. Note that because dealers start with zero inventory there are no
benefits of netting across currencies.10 Specifically, 𝑞𝑗𝑖 > 0 indicates

9 While VLOOP captures violations of the law of one price, it is important
to note that these violations do not directly imply the presence of profitable
triangular arbitrage opportunities. This is especially the case when transaction
costs are appropriately taken into account. The empirical evidence presented in
Section 5 shows that TCOST is typically larger than VLOOP during our sample
period. Thus, our model focuses on the situation where TCOST is larger than
VLOOP. Moreover, to keep the model concise, we have chosen not to introduce
cross-market arbitrageurs in the model. This is in line with how dealer banks
operate in today’s financial markets, that is, as liquidity providers rather than
arbitrageurs trading on their own account (see CGFS, 2014; Lu and Wallen,
2024).

10 As a result of this assumption, the analysis is the same at both the
currency-level and the currency-pair-level. To lighten notations, we choose
to model dealers’ optimisation problem at the currency-pair-level, instead of
at the currency-level. This modelling choice is consistent with common risk
management practices incentivising dealers to keep the order book flat across
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that the dealer holds a long position in the base currency and a short
position in the quote currency. Hence, the VaR constraint is given by
𝜎 × 𝑞𝑗𝑖 ≤ 𝑇𝑖 (see,e.g., Duffie and Pan, 1997; Adrian and Shin, 2013).

Dealer 𝑖 finances their net position 𝑞𝑗𝑖 in each of the three currency
pairs by issuing debt (e.g., Scott, 1976; van Binsbergen et al., 2010).
Specifically, the dealer faces a trade-off between their convex debt
funding cost 𝜂(𝑞𝑗𝑖 )

2 and the spread between the prices they quote and
the fundamental value of each currency.11 Thus, the utility of dealer 𝑖
is given as follows:

𝑈𝐷
𝑖 = 𝐸

(

(𝑝𝑥 − 𝑒𝑥)𝑞𝑥𝑖 + (𝑝𝑦 − 𝑒𝑦)𝑞𝑦𝑖 + (𝑝𝑧 − 𝑒𝑧)𝑞𝑧𝑖
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Gain from trade

−
𝜂
2

(

(𝑞𝑥𝑖 )
2 + (𝑞𝑦𝑖 )2 + (𝑞𝑧𝑖 )2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Debt funding cost

(6)

subject to: 𝜎 × 𝑞𝑥𝑖 ≤ 𝑇𝑖, 𝜎 × 𝑞𝑦𝑖 ≤ 𝑇𝑖, 𝜎 × 𝑞𝑧𝑖 ≤ 𝑇𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

VaR constraints

,

where 𝑖 ∈ {𝐿, 𝐻}. (7)

All dealers are competitive. At 𝑡 = 0, they take prices 𝑝𝑗 as given and
choose their net positions 𝑞𝑗𝑖 (i.e., the quantity they are intermediating)
subject to their VaR constraint. The sign of 𝑞𝑗𝑖 is determined by the
direction of customer flows. Therefore, the supply function of a dealer
with a nonbinding VaR limit is simply pinned down by the first order
conditions:

𝜕 𝑈𝐷
𝑖

𝜕 𝑞𝑗𝑖
= 0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎𝑗𝑖 − 𝑒𝑗 − 𝜂|𝑞𝑗𝑖 |
⏟⏟⏟

Debt funding cost

, if 𝑞𝑗𝑖 > 0,

𝑏𝑗𝑖 − 𝑒𝑗 + 𝜂|𝑞𝑗𝑖 |
⏟⏟⏟

Debt funding cost

, if 𝑞𝑗𝑖 < 0
(8)

The first order conditions in Eq. (8) suggest that there are two com-
ponents in the dealer’s supply function. The first one is related to the
marginal value of buying and selling and reflects the spread between
the quoted prices and the fundamental value (i.e., 𝑎𝑗𝑖 − 𝑒𝑗 and 𝑏𝑗𝑖 − 𝑒𝑗).
The second component 𝜂|𝑞𝑗𝑖 | is the debt funding cost, which depends on
both the size and the direction of the incoming customer order flow. If
the VaR constraint is binding, dealer 𝑖’s net position is equal to 𝑇𝑖∕𝜎.
Thus, the dealer’s net position (induced by customers’ order flows) for
currency pair 𝑗 is bounded as follows:

𝑞𝑗𝑖 = min
{ 𝑝𝑗𝑖 − 𝑒𝑗

𝜂
,
𝑇𝑖
𝜎

}

. (9)

Market clearing. At 𝑡 = 0, traders’ demand must be equal to dealers’
liquidity supply:

𝑑𝑗 = ∫𝑖
𝑞𝑗𝑖 . (10)

Equilibrium outcomes. In our context, the parameter space of interest
is the situation where the dealer sector is only partially constrained,
that is, when a nonzero proportion 𝜔 of dealers (with 𝑇𝐿) face binding
constraints while the rest (i.e., 1 − 𝜔) are not constrained by the VaR
thresholds. In the following analysis, we suppress the subscript of 𝐻

trading periods (Evans and Lyons, 2002). Hence, the net positions outlined
above correspond to trading demands reflecting the need to exchange one
currency for another.

11 To simplify the notation, we assume that both the VaR threshold 𝑇𝑖 and
debt funding cost 𝜂 are the same across the three currency pairs. Relaxing this
constraint will not qualitatively affect any of our main results.

and 𝐿 when discussing the VaR thresholds and use 𝑇 to denote 𝑇𝐿.
In this case, the dealer sector faces two sources of constraints: one
stemming from the dealers’ debt funding cost, and the other from
their VaR limits. The proposition below outlines the impact of the two
sources of constraints on liquidity costs:

Proposition 1. Both VLOOP and TCOST are higher conditional on the
dealer sector being more constrained, which corresponds to periods when

i) dealers’ debt funding costs are higher (i.e., higher 𝜂) and/ or;
ii) VaR limits are binding for a larger share of dealers (i.e., higher 𝜔).

In addition, VLOOP and TCOST also increase in currency volatility (i.e., 𝜎).
We delegate the proofs of the model to Appendix A and instead

focus on the economic intuition here. Both VLOOP and TCOST increase
in the bid–ask spread. It is evident from Eq. (8) that higher funding
costs 𝜂 lead to a larger balance sheet cost for a given order size. Thus,
the spread increases in 𝜂, and so do VLOOP and TCOST.

A higher 𝜔 indicates that a larger proportion of dealers is con-
strained by the VaR limit, reducing the pool of unconstrained dealers
available to balance the order flow. As a consequence, a smaller group
of dealers is left to absorb the order imbalance, which intuitively leads
to an increase in spreads and, as a result, higher VLOOP and TCOST.
A surge in volatility 𝜎 affects VLOOP and TCOST along two channels.
On the one hand, the demand for liquidity and hence, the order flow
imbalance increases in volatility and thereby scales up the bid–ask
spread. On the other hand, when VaR limits become more binding, the
remainder of unconstrained dealers is only willing to absorb a larger
amount of order imbalance if they are sufficiently compensated by
a larger spread. Thus, both channels scale up the spread and hence,
increase VLOOP as well as TCOST.

Liquidity supply and demand. Next, we examine the supply and demand
curves of liquidity in the spot FX market. We use currency pair 𝑥 with
unbalanced order flows as an example. For simplicity, we suppress the
superscript 𝑥 for the rest of this section. First, we rewrite Eq. (3) such
that the price of liquidity 𝑝𝐷 (i.e., the bid–ask spread 𝑠) is a function
of the demanded quantity 𝑞𝐷 (i.e., net buying pressure 𝑑 that needs to
be warehoused by dealers):

𝑝𝐷 = 1 − 𝑞𝐷

𝜎(2𝜋 − 1) . (11)

The demand curve is downward-sloping because liquidity traders are
price sensitive. Moreover, the slope of the demand curve steepens with
volatility 𝜎 since liquidity demand increases in volatility. The demand
slope is also steeper when customer order flows are more unbalanced
(i.e., when 𝜋 is higher).

On the supply side, constrained dealers can only provide a fixed
quantity (i.e., 𝜔×𝑇 ∕𝜎) as dictated by the binding VaR constraint. There-
fore, market clearing requires that the remaining trading demand is
intermediated by dealers that are unconstrained. Thus, in equilibrium,
the supply curve is determined by the first order condition Eq. (8) of the
unconstrained dealers’ maximisation problem. The price of liquidity 𝑝𝑆

(i.e., the bid–ask spread 𝑠) is a function of the total supplied quantity
𝑞𝑆 (i.e., the net buying quantity from the traders’ perspective) minus
the net position taken by the constrained dealers (i.e., 𝜔 × 𝑇 ∕𝜎), that
is,

𝑝𝑆 =
𝜂

1 − 𝜔

(

𝑞𝑆 − 𝜔𝑇
𝜎

)

. (12)

The supply curve is upward-sloping and its slope increases with
debt financing cost 𝜂 because the unconstrained dealers require a
higher compensation for each additional marginal unit of currency that
they intermediate. Furthermore, the slope is steeper when 𝜔 is higher,
because a smaller amount of unconstrained dealers need to absorb the
entire customer order imbalance. Overall, the dealer sector is more
constrained when 𝜂 and 𝜔 are large. Collectively, these variables can be
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Fig. 2. Liquidity supply and demand
Note: This figure plots liquidity costs against dealer-intermediated volumes. The baseline parameters are 𝜋 = 0.7, 𝑒𝑥 = 1.2, 𝑒𝑦 = 1.1, 𝑒𝑧 = 1.32, where 𝜋 denotes the fraction of traders
that are buyers (sellers) in currency pair 𝑥 (𝑦), 𝑒𝑥, 𝑒𝑦, and 𝑒𝑧 denote the fundamental values of currency pairs 𝑥, 𝑦, and 𝑧, respectively. When the dealer is unconstrained (i.e., S),
𝜂 = 0.05 and 𝜔 = 0.2, whereas 𝜂 = 0.1 and 𝜔 = 0.4 when the dealer is constrained (i.e., S’). The solid lines indicate the equilibrium outcomes when varying the volatility of the
exchange rates 𝜎 from 0.5 to 0.7. The parameter space for the left and right panel are identical. The only difference is the assumption that the liquidity supply curve does not
shift in the counterfactual, that is, holding 𝜎, 𝜂, and 𝜔 constant (left panel). Both liquidity costs and dealer-intermediated volume are normalised to unity.

interpreted as a measure of the (shadow) cost of providing immediacy
in the currency market.

Fig. 2 illustrates how a more constrained dealer sector affects both
trading volume and liquidity costs in equilibrium. The left panel in
Fig. 2 illustrates the counterfactual in which liquidity supply is kept
constant while liquidity demand shifts outwards (due to an increase in
volatility 𝜎). As a result, liquidity costs and trading volume increase at
the same rate (equal to the slope of the supply curve) from point A to
C. The right panel in Fig. 2 in turn illustrates supply and demand in the
constrained dealer sector. Specifically, it shows how the outward shift
in liquidity demand is counterbalanced by the inward shift in liquidity
supply due to a higher 𝜂 and 𝜔. Importantly, the inward shift in
liquidity supply leads to an increase in liquidity cost but lower volume
compared to the counterfactual shown in the left panel. Consequently,
the co-movement between liquidity cost and volume weakens as the
dealer sector becomes more constrained. Proposition 2 summarises
these results.

Proposition 2. Higher debt funding costs and/ or more stringent VaR
limits give rise to a more constrained dealer sector and cause an inward
shift in liquidity supply. As a result, the cost of liquidity provision increases,
while dealer-intermediated volume falls relative to the counterfactual. Con-
sequently, as dealer constraints tighten, the co-movement between liquidity
costs and volume weakens.

Following Proposition 2, the correlation between liquidity costs and
the volume intermediated by dealers falls with the degree of dealer
constrainedness. The economic intuition is that the increase in liquidity
costs outpaces the increase in trading volume because dealers are
constrained by either the debt funding cost and/ or by the binding VaR
constraint.

Equipped with these theoretical propositions, the goal of our em-
pirical analysis in the subsequent sections of the paper is threefold:
First, to provide a thorough empirical examination of these theoretical
predictions. Second, to document how the correlation between liquidity

cost and volume changes conditional on dealer constraints tightening.
Third, to use various econometric techniques (i.e., panel regressions
with fixed effects and structural VaRs) to tease out to what extent the
variation in this conditional correlation is driven by changes in the
elasticity of liquidity supply.

4. Measuring the cost of FX spot liquidity provision

4.1. Data sources

Our empirical analysis employs trade and quote data from two main
sources. The FX spot volume data come directly from CLS Group (CLS),
which is the world’s largest payment-vs-payment settlement system.12

The data set features trading activity that passes through the main FX
intermediaries (i.e., dealer banks) that are either trading with each
other or with their customers, reflecting the market structure of FX
markets where dealers play a central role (Schrimpf and Sushko, 2019).
Given this market structure, the data set does not include any direct
trading activity between two customers (e.g., corporates and funds).13

We obtain CLS data directly from CLS Group. The same data
set has been used in prior research, among others, by Cespa et al.

12 At settlement, CLS mitigates principal and operational risk by settling
both sides of the trade at once. The comprehensiveness of CLS’ coverage of
global FX transactions is unmatched, as it handles more than half of global
FX trading volumes. Cespa et al. (2021) show that there is an almost perfect
overlap between the share of volume across currency pairs in the BIS Triennial
Surveys and the CLS data.

13 On electronic trading platforms, two non-dealer participants can trade
with each other via prime brokerage. These trades – mostly between propri-
etary trading firms or hedge funds – will be classified as dealer-to-dealer trades
in our sample. While this activity can be sizeable (Schrimpf and Sushko, 2019),
it typically entails intraday trades that do not significantly affect end-of-day
order imbalances (Huang et al., 2023).
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(2021), Ranaldo and Somogyi (2021), and Ranaldo and Santucci de
Magistris (2022). Note that Hasbrouck and Levich (2018, 2021) also
analyse CLS data but using proprietary and transaction-level data. The
aforementioned authors have also comprehensively described the data.
The CLS volume data are available to us at the hourly frequency. The
sample period spans from November 2011 to September 2022 and
includes data for 18 major currencies and 33 currency pairs.

For testing the predictions of the model, we also need to construct
empirical measures capturing the cost of dealers’ liquidity provision.
We derive these measures from the triangular no-arbitrage relation
that ties together a triplet of currency pairs involving one non-dollar
currency pair (e.g., AUDJPY) and two dollar legs (i.e., USDAUD and
USDJPY). Based on the 33 currency pairs in the CLS data, we are able
to construct a maximum of 15 such triplets of currency pairs,14 in-
volving 15 non-dollar currency pairs (i.e., AUDJPY, AUDNZD, CADJPY,
EURAUD, EURCAD, EURCHF, EURDKK, EURGBP, EURJPY, EURNOK,
EURSEK, GBPAUD, GBPCAD, GBPCHF, and GBPJPY) and 10 dollar
pairs (i.e., USDAUD, USDCAD, USDCHF, USDDKK, USDEUR, USDGBP,
USDJPY, USDNOK, USDNZD, and USDSEK). These 25 currency pairs
cover at least 75% of global FX spot trading volume according to the
Bank for International Settlements (see ‘‘Triennial central bank sur-
vey — global foreign exchange market turnover in 2022’’, September
2022).

Next, we combine the hourly FX volume data with intraday spot bid
and ask quotes from Olsen, a well-known provider of high-frequency
data. Olsen compiles historical tick-by-tick data from various electronic
trading platforms, both from the inter-dealer and dealer-customer seg-
ments. A key advantage of the Olsen data are that it accurately matches
both the cross-sectional and also the time-series dimension of the CLS
volume data. A possible downside is that the bid and ask quotes are
indicative and hence, do not correspond to actually executable prices.
This means that choosing between Olsen data and inter-dealer prices
(e.g., from EBS or Reuters) requires balancing the trade-off between
comprehensive coverage (across currency pairs and time periods) and
the tradeability of the quotes. We are convinced that for our empirical
analysis the advantage of having a sufficiently large sample across
both the time-series and cross-sectional dimension compensates for the
indicative nature of the quotes. This is because our primary goal is not
to pinpoint any specific arbitrage opportunities on a particular trading
platform, but to develop a measure of trading costs that accurately
represents the global currency market.15

4.2. Key variables

Liquidity cost measures. Our model implies two measures of liquidity
costs in the FX spot market: (i) violations of the law of one price
(VLOOP), and (ii) round-trip transaction costs (TCOST). VLOOP cap-
tures the price dislocations for two assets or trading positions with
the same intrinsic value, while TCOST refers to the round-trip trading
cost to take advantage of such dislocations. The VLOOP component of
the triangular arbitrage trade is computed with midquote prices and
reflects the difference between exchanging a currency pair directly or
indirectly, that is, by using another currency (e.g., the US dollar) as
a vehicle. The TCOST part is computed from the bid and ask quotes
(depending on the base and quote currency) involved in the currency
pair triplet. Clearly, whether VLOOP constitutes an actual arbitrage
opportunity will depend on the degree of trading frictions or limits to

14 Note that to maintain a balanced panel, we also remove all currency pairs
involving the Hungarian forint (HUF), which enters the data set later, on 7
November 2015.

15 In the Online Appendix we conduct a comprehensive comparison of Olsen
and EBS data for the full-year of 2016. The key takeaway is that EBS and Olsen
quotes (and also VLOOP and TCOST) are positively correlated and the mean
absolute difference is especially low for currency pairs that are mainly traded
on EBS.

arbitrage faced by an individual trader. TCOST captures some of these
trading frictions in the form of bid–ask spreads.

We compute VLOOP and TCOST for 𝑘 = 1, 2,… , 15 triplets of
currency pairs (see the Online Appendix for further details). A triplet
is defined as one non-dollar pair (e.g., EURCAD) plus the two USD
legs (e.g., USDEUR and USDCAD). At every point in time we take
the perspective of an arbitrageur by, first, identifying the seemingly
profitable direction of the trade (i.e., by conditioning on VLOOP being
positive), and second, by computing the associated trading cost TCOST.
To mitigate the effect of outliers, we remove observations at the top and
bottom 1.5 percentiles of the hourly VLOOP and TCOST series. For our
main analysis we rely on daily measures of VLOOP and TCOST that we
obtain by summing up hourly observations for each day.

Fig. 3 shows the time-series and cross-sectional variation of hourly
no-arbitrage violations VLOOP (left y-axis) and round-trip transaction
costs TCOST (right y-axis), respectively. Economically, a higher read-
ing of VLOOP coincides with a larger shadow cost of intermediary
constraints, whereas TCOST captures the realised compensations for
providing immediacy. Both measures of dealers’ liquidity costs ex-
hibit intuitive properties in the sense that they surge during market
stress and mean-revert during calm periods. The large spike during the
Covid-19 market turmoil in March and April 2020 is particularly well
pronounced across all 15 triplets of currency pairs and is indicative of
the global nature of the stress. The correlation of VLOOP and TCOST
is positive for the entire cross-section and ranges from 15–40%. We in-
terpret this as evidence of commonality in no-arbitrage violations (e.g.,
Rösch et al., 2016; Du et al., 2022) and market liquidity in the broader
sense (Rösch, 2021).

Summary statistics. Table 1 reports the time-series average of hourly
no-arbitrage deviations (VLOOP) and round-trip trading costs (TCOST).
In addition, it tabulates hourly averages of direct trading volume in
non-dollar currency pairs (e.g., AUDJPY) and synthetic trading volume
in dollar currency pairs. By ‘‘synthetic’’ we refer to the sum of trading
volume in two dollar pairs (e.g., USDAUD and USDJPY) within a triplet
of currency pairs. Each row corresponds to one currency pair triplet,
which we abbreviate as, for instance, AUD-USD-JPY.

This simple summary table conveys three main insights: First, de-
viations from fundamentals (as measured by VLOOP) are an order of
magnitude smaller than round-trip transaction costs (as measured by
TCOST). We interpret this result as suggestive evidence that dealers
recharge their intermediation costs on the bid and ask prices offered to
their customers. Another implication is that seemingly profitable viola-
tions of triangular no-arbitrage are most of the time not exploitable by
the average trader as transaction costs are prohibitively high (i.e., there
is no free lunch) as well as FX quantity conventions on major trading
platforms (i.e., there are minimum required trading amounts in each
currency pair). Second, trading volume in non-dollar currency pairs is
considerably smaller relative to the synthetic volume in dollar pairs.
This is essentially the case for all 15 currency pair triplets but the effect
is less pronounced for those involving the NOK and SEK, where the euro
crosses play a bigger role. Finally, the synthetic relative bid–ask spread
is somewhat larger than the direct spread in non-dollar currency pairs.

Measures of dealer constraints. Our model suggests two main sources
of dealer constraints that can have a bearing on liquidity provision:
dealers’ debt funding costs (𝜂) and VaR constraints (𝜔). In our empirical
implementation we seek to capture these intermediary constraints in a
single metric that we dub ‘‘DCM’’, which stands for dealer constraint
measure. We construct this measure in two steps.

As a first step, we create three time-series based on cross-sectional
averages of the top 10 FX dealer banks’ (i) debt funding costs (daily), (ii)
realised VaR measure of their overall trading book (quarterly), and (iii)
the number of VaR breaches (quarterly).16 The first measure captures

16 We compute cross-sectional averages because the CLS volume data do not
contain any information about traders’ identities. See the Online Appendix for
details on how we retrieve and compute each of these variables.
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Fig. 3. No-arbitrage violations and round-trip transaction costs
Note: This figure plots the 22-day moving averages of hourly triangular no-arbitrage deviations VLOOP (left y-axis) and round-trip trading costs TCOST (right y-axis), respectively,
for 15 triplets of currency pairs. Both variables are measured in basis points. The numbers in the titles refer to the correlation coefficient of VLOOP and TCOST. The sample covers
the period from 1 November 2011 to 30 September 2022.

Table 1
Summary statistics.

Liquidity cost in bps Volume in $bn Bid–ask spread in bps 𝑉 𝑜𝑙 𝑎𝑡𝑖𝑙 𝑖𝑡𝑦𝑖𝑛𝑏𝑝𝑠
VLOOP TCOST Direct Synthetic Direct Synthetic 𝐷 𝑖𝑟𝑒𝑐 𝑡

AUD-USD-JPY 0.23 4.73 0.18 4.93 4.00 5.71 14.13
AUD-USD-NZD 0.27 5.61 0.09 1.93 4.17 7.25 8.96
CAD-USD-JPY 0.28 4.50 0.03 5.27 4.10 5.06 12.36
EUR-USD-AUD 0.19 4.40 0.13 7.47 3.40 5.52 11.30
EUR-USD-CAD 0.27 4.10 0.08 7.81 3.37 4.88 9.88
EUR-USD-CHF 0.21 3.91 0.36 6.56 2.60 5.27 6.49
EUR-USD-DKK 0.14 3.84 0.09 5.98 2.45 5.27 1.79
EUR-USD-GBP 0.20 4.01 0.59 7.94 3.11 4.89 9.33
EUR-USD-JPY 0.20 3.78 0.61 9.35 3.03 4.69 11.06
EUR-USD-NOK 0.27 7.92 0.24 6.06 6.43 9.55 11.66
EUR-USD-SEK 0.25 6.91 0.27 6.08 5.41 8.45 9.39
GBP-USD-AUD 0.20 4.95 0.04 3.51 4.03 5.91 12.14
GBP-USD-CAD 0.27 4.58 0.03 3.85 3.84 5.27 10.59
GBP-USD-CHF 0.19 4.84 0.03 2.60 3.99 5.66 10.55
GBP-USD-JPY 0.19 4.35 0.20 5.39 3.71 5.08 12.47

Note: This table reports the time-series average of hourly triangular no-arbitrage deviations 𝑉 𝐿𝑂 𝑂 𝑃 in basis points (bps), round-trip trading
costs 𝑇 𝐶 𝑂 𝑆 𝑇 in bps, direct trading volume in non-dollar pairs (e.g., AUDJPY) in $bn, synthetic volume in dollar pairs in $bn, direct and
synthetic relative bid–ask spreads, and realised volatility in non-dollar pairs in bps. By ‘‘synthetic’’ we refer to the sum of trading volumes
and relative bid–ask spreads in two dollar pairs (e.g., USDAUD and USDJPY) within a currency pair triplet. Each row corresponds to a triplet
of currency pairs, for example, AUDJPY, USDAUD, and USDJPY that we abbreviate as AUD-USD-JPY. The sample covers the period from 1
November 2011 to 30 September 2022.

the funding cost constraint 𝜂, while the last two measures both proxy
the VaR constraint 𝜔. To determine the top FX dealers we rely on
the well-known Euromoney FX surveys. In every given year we assign
an equal weight to each of the top FX dealers. Note that for certain
variables (i.e., Value-at-Risk and number of VaR breaches) we were
only able to collect data for a subset of banks. In such situations, we
compute equally weighted averages based on the available set of dealer
bank observations (see the Online Appendix for further details). For the
VaR breaches we exploit the fact that US banks as well as foreign banks
with US subsidiaries that are subject to the ‘‘Market Risk Capital Rule
FFIEC 102’’ are required to report the number of VaR breaches in any
given quarter since January 2015.

As a second step, we distil the information in the individual mea-
sures of dealer constraints to derive the composite dealer constraint

measure DCM. The key advantage of DCM is that it encompasses all
the model-based factors that can impact dealers’ short-run flexibility to
intermediate in currency markets. It is simply constructed by extracting
the first principal component of the three individual dealer constraint
series. The first principal component explains around 53% of the total
variance of the individual dealer constraint time-series.

Fig. 4 depicts how the three model-derived dealer constraint mea-
sures and the composite measure vary over time. The three series
exhibit a notable co-movement (cf. Table 2). Hence, the common
component is well reflected by the composite dealer constraint mea-
sure. The decline in DCM from 2012 up to the Covid-19 pandemic
is consistent with the drop in bank credit spreads after the European
sovereign debt crisis (Berndt et al., 2023).
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Fig. 4. State variables: Dealer constraint measure (DCM) and its components
Note: This figure plots different state variables that we observe at the daily and quarterly frequencies. Observations have been standardised by subtracting the sample mean and
dividing by the standard deviation of every variable. The three state variables are primary FX dealer banks’ (i) daily debt funding cost yield (DFC, solid grey line), (ii) quarterly
Value-at-Risk measure (VaR, dashed black line), and (iii) the number of VaR breached in a given quarter (NVB, dashed grey line). We define our dealer constraint measure (DCM,
black solid line) as the first principal component across these four variables. The sample spans from 1 November 2011 to 30 September 2022.

Besides the factors analysed explicitly in our theoretical framework,
we also consider four additional dealer constraint measures proposed
in the related literature. First, He et al. (2017) show that negative
shocks to intermediary capital (i.e., dealers’ quarterly leverage ratio)
reduce their risk bearing capacity across many asset classes including
FX. Second, an increase in dealers’ credit default swap (CDS) premia
and valuation adjustments (XVA) (Andersen et al., 2019) can hamper
their willingness to make balance sheet space available when facing
customer order flow imbalances. Third, CIP deviations reflect the rel-
ative tightness of dealer funding conditions (Rime et al., 2022) and
balance sheet capacity in a broader sense (Du et al., 2018). We compute
the average CIP deviations across our set of ten US dollar pairs.17

Fourth, we follow Andersen et al. (2019) to devise an alternative
measure for 𝜔. Specifically, we compute the fraction of dealers that
have 5-year CDS spreads above the 5-year USDJPY covered interest
rate parity (CIP) basis. The intuition is that dealers can only arbitrage
CIP violations if the deviations are larger than their credit spreads. We
discuss robustness results based on these additional four measures in
Section 6.

5. Liquidity provision and dealer constraints

In this section, we test the two main implications of our model.
We start by exploring whether our liquidity cost measures (i.e., VLOOP
and TCOST) are indeed positively related to various measures of dealer
constraints (see Proposition 1). We then assess whether liquidity costs
increase disproportionately more relative to dealer-intermediated vol-
umes when dealer constraints tighten, in turn leading to a falling corre-
lation between liquidity costs and trading volumes (see Proposition 2).

The analysis is split into three main parts. The first part presents
motivating evidence using two simple correlation tables to support the
empirical implications of the model. The first table ( Table 2) relates
our empirical liquidity cost measures to our model-derived measures
of dealer constraints and provides evidence in favour of a positive

17 Clearly, CIP deviations are only the symptoms of dealer balance sheet
constraints and not their cause. Put differently, one can think of the CIP basis
as a broad measure of limits to FX arbitrage.

association between the two. The second table ( Table 3) shows that
the correlation between the cost and the quantity of liquidity provision
(i.e., dealer-intermediated volumes) depends on dealers’ intermediation
constraints. In the second part of the empirical analysis, we assess
Proposition 2 of the model more formally. Specifically we rely on state-
dependent regression analysis to quantify the change in the correlation
between liquidity costs and trading volume, while controlling for fac-
tors influencing liquidity demand. Eventually, in the third part, we
investigate the validity of Proposition 2 using structural vector autore-
gressions with sign restrictions that allow us to disentangle liquidity
demand and supply shocks.

5.1. Motivating evidence

Table 2 provides motivating evidence in favour of the first predic-
tion of our model. It illustrates how the two liquidity cost measures are
contemporaneously positively related to dealers’ debt funding costs 𝜂 as
well as VaR constraints 𝜔. As outlined above, we employ two proxies
for 𝜔: First, we compute the average portfolio 𝑉 𝑎𝑅 across the top FX
dealer banks and second, we identify the number of VaR breaches 𝑁 𝑉 𝐵
in a given quarter for the same set of banks. The economic magnitude
of the correlations is comparable across both VLOOP and TCOST, albeit
TCOST seems to be more correlated with VaR as well as debt funding
costs. In addition, VLOOP and TCOST are positively correlated with FX
volatility 𝜎, which is in line with our model. Hence, we will control for
realised variance in all regression-based analyses.

The columns labelled 𝑉 𝐿𝑂 𝑂 𝑃 𝐹 𝑊 , 𝑇 𝐶 𝑂 𝑆 𝑇 𝐹 𝑊 , 𝑉 𝐿𝑂 𝑂 𝑃 𝑆 𝑊 ,
𝑇 𝐶 𝑂 𝑆 𝑇 𝑆 𝑊 show that these results are not confined to the FX spot
market (represented by 𝑇 𝐶 𝑂 𝑆 𝑇 and 𝑉 𝐿𝑂 𝑂 𝑃 ) but are also reflected in
the FX forward (FW ) and swap (SW ) markets, respectively. Specifically,
we focus on the most frequently traded forward and swap contracts,
which is the 1-week maturity. We follow Kloks et al. (2023) to compute
forward and swap based measures of VLOOP and TCOST and find
that these liquidity cost metrics are indeed positively correlated with
measures of dealer constraints (i.e., 𝜂, 𝑉 𝑎𝑅, and 𝑁 𝑉 𝐵). In the Online
Appendix we provide additional details on how we construct these
measures and show that the results in Table 3 carry over to currency
forwards and swaps across various maturities (i.e., 1-month).
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Table 2
Correlations of key variables.

𝑉 𝐿𝑂 𝑂 𝑃 𝑇 𝐶 𝑂 𝑆 𝑇 𝑉 𝐿𝑂 𝑂 𝑃 𝐹 𝑊 𝑇 𝐶 𝑂 𝑆 𝑇 𝐹 𝑊 𝑉 𝐿𝑂 𝑂 𝑃 𝑆 𝑊 𝑇 𝐶 𝑂 𝑆 𝑇 𝑆 𝑊 𝜎 𝜂 𝑉 𝑎𝑅
TCOST ∗∗∗ 59.28
VLOOP FW ∗∗∗ 19.74 ∗ 5.99
TCOST FW ∗∗∗ 55.10 ∗∗∗ 94.76 ∗∗∗ 21.47
VLOOP SW 7.19 1.54 ∗∗∗ 89.54 ∗∗∗ 15.06
TCOST SW ∗∗∗ 57.21 ∗∗∗ 97.90 ∗∗∗ 15.06 ∗∗∗ 98.94 ∗∗ 9.07
𝜎 ∗∗∗ 45.02 ∗∗∗ 45.43 −0.03 ∗∗∗ 38.79 −1.07 ∗∗∗ 42.41
𝜂 ∗∗∗ 30.90 ∗∗∗ 41.35 2.41 ∗∗∗ 36.52 3.56 ∗∗∗ 38.70 ***13.47
𝑉 𝑎𝑅 ∗∗∗ 26.86 ∗∗∗ 49.43 ∗∗∗ 14.70 ∗∗∗ 50.80 ∗∗ 10.10 ∗∗∗ 50.23 −7.01 ***41.07
𝑁 𝑉 𝐵 ∗∗∗ 25.06 ∗∗∗ 10.05 ∗∗∗ 15.51 4.46 ∗∗∗ 23.48 ∗ 6.21 ***29.88 ***31.92 −3.76

Note: This table reports the pairwise Pearson correlation coefficient (in percent, %) of (log) changes in quarterly triangular no-arbitrage deviations 𝑉 𝐿𝑂 𝑂 𝑃 ,
round-trip trading costs 𝑇 𝐶 𝑂 𝑆 𝑇 , realised volatility 𝜎, debt funding costs 𝜂, dealers’ VaR measure 𝑉 𝑎𝑅, and the number of VaR breaches 𝑁 𝑉 𝐵. 𝑉 𝐿𝑂 𝑂 𝑃 𝐹 𝑊 and
𝑇 𝐶 𝑂 𝑆 𝑇 𝐹 𝑊 are based on 1-week forward rates, whereas 𝑉 𝐿𝑂 𝑂 𝑃 𝑆 𝑊 and 𝑇 𝐶 𝑂 𝑆 𝑇 𝑆 𝑊 are the corresponding liquidity cost measures for FX swaps. Significant
correlations at the 90%, 95%, and 99% levels are represented by asterisks *, **, and ***, respectively. The sample covers the period from 1 November 2011 to
30 September 2022 with the exception of 𝑁 𝑉 𝐵 due to the fact that US and foreign dealer banks with US subsidiaries were not required to report VaR breaches
prior to 2015.

Table 3
Liquidity provision cost characteristics across DCM percentiles..

DCM percentile 𝑉 𝐿𝑂 𝑂 𝑃 in % 𝑇 𝐶 𝑂 𝑆 𝑇 in % 𝑉 𝐿𝑀 in $bn 𝑐 𝑜𝑟(𝑉 𝐿𝑂 𝑂 𝑃 , 𝑉 𝐿𝑀) 𝑐 𝑜𝑟(𝑇 𝐶 𝑂 𝑆 𝑇 , 𝑉 𝐿𝑀) #Obs

Full sample 0.0 0.05 1.10 141.81 0.09 0.25 2801
Least constrained 0.1 0.05 1.12 144.41 0.10 0.25 2521

0.2 0.05 1.15 147.85 0.10 0.24 2241
0.3 0.05 1.17 150.57 0.10 *0.26 1961
0.4 0.05 1.20 154.19 0.10 ***0.28 1681
0.5 0.05 1.22 156.58 0.10 ***0.29 1401
0.6 0.06 1.25 154.67 0.09 **0.27 1121
0.7 0.06 1.30 159.25 ***0.07 ***0.21 841
0.8 0.06 1.31 156.58 ***0.05 ***0.17 561

Most constrained 0.9 0.06 1.36 165.93 ***−0.01 ***0.08 281

Note: The first three columns in this table report the within-decile average of 𝑉 𝐿𝑂 𝑂 𝑃𝑘,𝑡 (𝑉 𝐿𝑂 𝑂 𝑃 ) in %, 𝑇 𝐶 𝑂 𝑆 𝑇𝑘,𝑡 (𝑇 𝐶 𝑂 𝑆 𝑇 ) in %, and the
average 𝑉 𝐿𝑀𝑘,𝑡 (𝑉 𝐿𝑀) in $bn across percentiles of the dealer constraint measure 𝐷 𝐶 𝑀 . The underlying data are based on a panel of 15
currency pair triplets. Columns 4 and 5 tabulate the conditional Pearson correlation coefficient of (log) changes in the two liquidity cost
measures (i.e., 𝑉 𝐿𝑂 𝑂 𝑃 and 𝑇 𝐶 𝑂 𝑆 𝑇 ) and total trading volume 𝑉 𝐿𝑀 across the percentiles of the dealer constraint measure. The last column
shows the average number of observations for each 𝐷 𝐶 𝑀 percentile. The asterisks *, **, and *** indicate that the correlation is significantly
different from the full sample estimate (in the first row) at the 90%, 95%, and 99% levels. The corresponding test statistic for the conditional
correlation 𝑐 𝑜𝑟𝜏 being equal to the full sample correlation 𝑐 𝑜𝑟𝜏=1.00, where 𝜏 ∈ 0.1, 0.2,… , 0.9 refers to 𝐷 𝐶 𝑀𝑡 deciles, are based on the Fisher
z-transformation. The sample covers the period from 1 November 2011 to 30 September 2022.

Table 3 presents empirical support for the second prediction of
our model, namely that changes in dealer capacity have a nonlinear
effect on market liquidity. The first three columns show how the
average liquidity cost and dealer-intermediated volume (i.e., VLM)
increase across the percentiles of our dealer constraint measure DCM.
The monotonic increase in both liquidity cost measures and trading
volume across the DCM percentiles suggests that the dealer sector as a
whole accommodates the rise in trading demands even at times when
intermediation constraints tighten. However, the increase in liquidity
costs outpaces the increase in trading volume when the dealer sector
is more constrained. For instance, TCOST increases by 23% compared
to normal times, whereas volume (i.e., VLM) increases by only 17%.
Eventually, columns 4 and 5 show the conditional correlation of (log)
changes in each of our two liquidity cost measures and total trading
volume.18 Consistent with our model’s predictions, we find that the
correlation of volume with each of the two liquidity cost measures
weakens substantially as DCM increases. For instance, the conditional
correlation based on the highest DCM decile (i.e., when dealers are
most constrained) is a mere 8% for TCOST, and hence economically
and statistically significantly lower than the full-sample correlation of
25%.

These patterns are in line with the mechanism illustrated in Fig. 2.
Specifically, they show that liquidity costs increase disproportionately

18 Note that the CLS volume data include the FX trading activity of all top
dealer banks listed in the Euromoney FX surveys. In particular, the banks that
show up in the Euromoney FX surveys are also the most dominant players on
the CLS settlement system.

more relative to intermediated volumes given the inward shift in liquid-
ity supply. Note that this is not a mechanical effect as the unconditional
correlation between changes in VLOOP or TCOST and DCM is less than
1%.

These initial results go beyond prior research exploring the nexus
between FX market liquidity and funding liquidity (Mancini et al.,
2013; Karnaukh et al., 2015). They do so by shedding light on the
key mechanisms that lead to a deterioration of FX market liquidity
when dealer constraints tighten. Moreover, they also relate to recent
work by Duffie et al. (2023) showing that the relation between US
Treasury market liquidity and volatility deteriorates during stressed
periods (e.g., Covid-19 market turmoil). When we reiterate the condi-
tional correlation analysis in Table 3 with volatility instead of trading
volume, we find that also the liquidity cost–volatility relation tends
to weaken when dealers are more constrained. This result aligns well
with Duffie et al. (2023), suggesting that volatility and liquidity costs
co-move positively in normal times, but less so when dealers exhaust
their balance sheet capacity. Through the prism of our model, higher
volatility is associated with more imbalanced customer demand as well
as more constrained liquidity supply. In equilibrium, liquidity costs
increase more than volatility, which reduces the correlation between
the two variables. We document these additional findings in the Online
Appendix.

Based on the theoretical framework in Section 3, the explanation
for these empirical results hinges on two economic forces: For one,
the price of market liquidity (i.e., VLOOP and TCOST) increases as
dealers pass-through higher marginal funding costs (reflected by the
surge of DCM) to their customers. For another, higher liquidity costs
discourage customers’ trading activity (given they are price-sensitive
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and have downward-sloping demand curves), thereby curbing trading
demands. Consequently, when dealer constraints tighten, there is a
marked imbalance: equilibrium trading volume expands less compared
to the surge in the equilibrium price of liquidity. Therefore, our mo-
tivating evidence also highlights that combining information on both
prices and quantities is a pivotal step in isolating the nonlinear impact
of dealers’ intermediation constraints on market liquidity conditions.

5.2. Regression analysis

To formally underpin the above reasoning that dealer constraints
have a nonlinear effect on market liquidity, we employ smooth transi-
tion regression (LSTAR) models (e.g., van Dijk et al., 2002; Christiansen
et al., 2011). These nonlinear LSTAR models are particularly well-
suited for our analysis as constrained and unconstrained regimes are
determined endogenously (i.e., the econometrician is not choosing a
particular cutoff value) and may vary smoothly over time. In particular,
the constrained and unconstrained periods (governed by 𝛾 and 𝑐) are
determined by estimating a nonlinear regression model based on the
generalised method of moments (GMM).19

For the LSTAR model, let 𝐺(𝑧𝑡−1) be a logistic function depending
on the 1-day lagged regime variable 𝑧𝑡−1:

𝐺(𝑧𝑡−1) = (1 + exp(−𝛾 ′(𝑧𝑡−1 − 𝑐)))−1, (13)

where the parameter 𝑐 is the central location and the vector 𝛾 de-
termines the steepness of 𝐺(𝑧𝑡−1). We use the 1-day lagged value of
DCM in all our state-dependent regression analyses to rule out any
contemporaneous relation between our dealer constraint measure and
the amount of intermediated volume.20 Hence, the LSTAR model is of
the form

𝑦𝑘,𝑡 = 𝜆𝑡 + 𝛼𝑘 + [1 − 𝐺(𝑧𝑡−1)]𝛽′1𝑓𝑘,𝑡 + 𝐺(𝑧𝑡−1)𝛽′2𝑓𝑘,𝑡 + 𝛽′3𝐰𝑘,𝑡 + 𝜀𝑘,𝑡, (14)

where the dependent variable 𝑦𝑘,𝑡 is one of our two liquidity cost
measures (i.e., VLOOP or TCOST), 𝑓𝑘,𝑡 is the total aggregate trading
volume (i.e., 𝑉 𝐿𝑀𝑘,𝑡) that is defined as the sum of trading volume in
one non-dollar as well as two dollar pairs within a particular currency
pair triplet 𝑘. The state-independent control variable 𝐰𝑘,𝑡 includes
either the realised variance 𝑅𝑉𝑘,𝑡 or the price impact 𝐴𝑚𝑖ℎ𝑢𝑑𝑘,𝑡 in
the non-dollar currency pair within each triplet 𝑘. We estimate 𝑅𝑉𝑘,𝑡
following Barndorff-Nielsen and Shephard (2002) as the sum of squared
intraday midquote returns. Following Ranaldo and Santucci de Mag-
istris (2022), we estimate the enhanced version of the Amihud (2002)
measure as the ratio of daily realised volatility to aggregate daily
trading volume. To limit the detrimental effect of outliers, we winsorize
𝐴𝑚𝑖ℎ𝑢𝑑𝑘,𝑡 at the 0.5% level.

The slope coefficients in (14) vary smoothly with the regime vari-
able 𝑧𝑡−1 from 𝛽1 at low values of 𝛾 ′𝑧𝑡−1 to 𝛽2 at high values of 𝛾 ′𝑧𝑡−1.
There are two interesting boundary cases: First, if 𝛽1 = 𝛽2 we effectively
have a linear regression. Second, the limit case where 𝛾 → ∞ is
equivalent to a linear regression with a dummy.

The key coefficient of interest in Eq. (14) is the difference between
𝛽2 and 𝛽1. It captures the change in the correlation between liquid-
ity costs and dealer-intermediated volume across unconstrained and
constrained regimes. To estimate all parameters (including 𝛾 and 𝑐)

19 Following Granger and Teräsvirta (1997), 𝛾 and 𝑐 are free parameters
that are bounded to avoid any corner solution (e.g., where all dealers are
constrained at all times). Specifically, we allow 𝛾 to vary from 1 to 12, whereas
𝑐 is bounded between −0.5 and +0.5. Our results are robust to varying these
bounds.

20 In the Online Appendix we show that our findings are robust to using
up to 90 lags and are hence not driven by the fact that some of the DCM
constituents are measured at the quarterly frequency (i.e., Value-at-Risk and
number of VaR breaches). This exercise also provides evidence in favour of
the idea that dealer constraints have a lasting (i.e., persistent) adverse effect
on FX liquidity provision.

in Eq. (14), we use GMM and conduct inference based on Driscoll
and Kraay’s (1998) covariance matrix which allows for random clus-
tering and serial correlation up to 8 lags. We choose the optimal
number of lags (i.e., ‘‘bandwidth’’) using the plug-in procedure for
automatic lag selection by Andrews and Monahan (1992) and Newey
and West (1994), respectively. Across all regression specifications, both
the dependent and independent variables are taken in logs and first
differences. The obvious advantage of this is twofold: First, regression
coefficients can be interpreted as elasticities. Second, FX volume in
levels is non-stationary and persistent (see Ranaldo and Santucci de
Magistris, 2022), hence taking first-differences is an effective way to
render the time-series stationary.

Note that we include both cross-sectional 𝛼𝑘 and time-series 𝜆𝑡 fixed
effects to control for any unobservable heterogeneity that is constant
across triplets of currency pairs 𝑘 and days 𝑡, respectively. As a result,
all reported 𝑅2 are ‘‘within’’ rather than ‘‘overall’’ coefficients of deter-
mination. The inclusion of time-series fixed effects implicitly assumes
that (lagged) dealer constraints have no direct bearing on liquidity
costs. In the Online Appendix, we show that this assumption is rea-
sonable given that the lagged dealer constraint measure is statistically
insignificant in a regression without time-series fixed effects.

Table 4 presents our baseline results. We observe a consistent
picture across all three specifications: the difference between the slope
coefficient on trading volume in constrained and unconstrained periods
(i.e., 𝛽2 − 𝛽1) is negative and statistically significant for both VLOOP
and TCOST. Moreover, the estimated slope coefficients are at least 50%
(e.g., −0.07∕0.12 = 58%) lower when dealer banks are constrained. Note
that we control for several factors affecting the demand for liquidity.
The day fixed effects 𝜆𝑡 control for any global market factors such as
global volatility (Menkhoff et al., 2012) or global illiquidity (Karnaukh
et al., 2015). In addition, following the intuition of our model, we also
include the realised exchange rate variance 𝑅𝑉𝑘,𝑡 as a state-independent
control variable to account for any differences in trading demands
related to volatility. Moreover, currency volatility also controls for dif-
ferences in dealer competition across currency pairs because it is highly
correlated with the number of active dealers in the market (Huang and
Masulis, 1999).

Related to our efforts to control for currency demand, one might
wonder how much our results are driven by market-wide factors that
are not dealer specific and which are also more related to liquidity
demand rather than supply. To address this question, we conduct a
placebo exercise where we explore a set of non-dealer specific regime
variables that are presumably more exposed to liquidity demand as
well as broad market conditions. In particular, we consider the VIX, the
TED spread, the price of gold, and the LIBOR-OIS spread as alternative
regime variables. We find that these state variables do not appropriately
capture dealer constraints because the relation between liquidity costs
and volume is not state-dependent. We document these additional
results in the Online Appendix.

Thus far, the empirical results in this section provide two key take-
aways that lend support to our model. First, in line with Proposition 1,
an increase in measures of dealer constraints (i.e., DCM) is associated
with a surge in liquidity costs (i.e., VLOOP and TCOST). Second, in
line with Proposition 2, the correlation between liquidity cost mea-
sures and dealer-intermediated trading volume is significantly smaller
during times when dealers are more constrained (i.e., the difference
between the slope coefficients with respect to trading volume across
unconstrained and constrained states is negative).

5.3. Disentangling liquidity demand and supply

Our theoretical framework in Section 3 suggests that the decline in
the correlation between liquidity costs and trading volumes stems from
a more inelastic (i.e., steeper) supply curve. However, empirically, one
might be concerned that our dealer constraint measure (DCM), which
we have used as a state variable in the previous subsection, is correlated
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Table 4
Smooth transition regression with DCM as state variable..

VLOOP TCOST

(1) (2) (3) (4) (5) (6)

𝛾 ***12.00 ***12.00 ***12.00 ***12.00 ***12.00 ***12.00
c −0.03 −0.03 −0.03 ***0.14 ***0.14 ***0.14

Unconstr. volume ***0.10 ***0.10 ***0.08 ***0.12 ***0.12 ***0.10
[4.21] [4.10] [3.24] [16.90] [16.85] [12.92]

Constr. volume −0.03 −0.03 −0.05 ***0.05 ***0.06 **0.03
[0.91] [0.97] [1.43] [4.11] [4.17] [2.54]

Amihud (2002) −0.00 **0.00
[0.73] [2.07]

Realised variance ***0.02 ***0.02
[3.20] [8.84]

Constr.-Unconstr. ***−0.13 ***−0.13 ***−0.12 ***−0.07 ***−0.07 ***−0.06
[3.16] [3.16] [3.06] [4.45] [4.46] [3.96]

𝑅2 in % 0.09 0.09 0.14 2.38 2.40 3.44
Avg. #Time periods 2796 2796 2796 2801 2801 2800
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form 𝑦𝑘,𝑡 = 𝜆𝑡+𝛼𝑘+ [1 −𝐺(𝑧𝑡−1)]𝛽′1𝑓𝑘,𝑡+𝐺(𝑧𝑡−1)𝛽′2𝑓𝑘,𝑡+𝛽′3𝑤𝑘,𝑡+
𝜀𝑘,𝑡, where the dependent variable 𝑦𝑘,𝑡 is a liquidity cost measure (i.e., 𝑉 𝐿𝑂 𝑂 𝑃 or 𝑇 𝐶 𝑂 𝑆 𝑇 ), 𝑓𝑘,𝑡 (𝑤𝑘,𝑡) are state-dependent (state-independent)
regressors, and 𝐺(𝑧𝑡−1) is a logistic function depending on state variable 𝑧𝑡−1. The regime variable is the 1-day lagged value of the dealer
constraint measure 𝐷 𝐶 𝑀𝑡. The optimal parameters 𝛾 and 𝑐 are determined by nonlinear least squares minimising the concentrated sum of
squared errors. Both dependent and independent variables are taken in logs and changes. The sample covers the period from 1 November 2011
to 30 September 2022. The test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Andrews and Monahan (1992) and Newey and West (1994)) are reported
in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

with factors simultaneously affecting both liquidity supply and demand.
To address this issue more conclusively, we now turn to a structural

vector autoregression setup with sign restrictions. This econometric ap-
proach allows us to explicitly disentangle liquidity demand and supply
dynamics. Specifically, we build on the approach by Uhlig (2005) and
others (e.g., Canova and De Nicoló, 2002; Rubio-Ramírez et al., 2010),
which has become widely used in economics and finance to estimate
models with sign restrictions. Our empirical analysis proceeds in two
steps.

In a first step, we estimate a structural (bivariate) vector autoregres-
sion (SVAR) model of liquidity cost measures (i.e., VLOOP or TCOST)
and dealer-intermediated volume (VLM). To identify liquidity supply
and demand shifts, we estimate the SVAR imposing sign restrictions in
the spirit of Cohen et al. (2007), Goldberg (2020), and Goldberg and
Nozawa (2020), respectively, using Bayesian methods (see the Online
Appendix for further details). Let 𝑌𝑘,𝑡 = [𝑋𝑘,𝑡 𝑉 𝐿𝑀𝑘,𝑡]𝑇 be a 2 × 1 vector
containing 𝑋 ∈ {𝑉 𝐿𝑂 𝑂 𝑃 , 𝑇 𝐶 𝑂 𝑆 𝑇 } and 𝑉 𝐿𝑀 in currency pair triplet
𝑘 and day 𝑡. The bivariate panel SVAR for 𝑌𝑘,𝑡 is:

𝑌𝑘,𝑡 = 𝛼𝑘 +
𝑙

∑

𝑖=1
𝐵𝑘,𝑖𝑌𝑘,𝑡−𝑖 + 𝜉𝑘,𝑡, (15)

where 𝐵𝑘,𝑖 is a 2 × 2 matrix of coefficients, 𝑙 the lag length, 𝜉𝑘,𝑡 =
[𝜉𝑋;𝑘,𝑡 𝜉𝑉 𝐿𝑀 ;𝑘,𝑡]𝑇 the reduced form error, and 𝛼𝑘 is a 2 × 1 vector of
currency triplet fixed effects. The vector of residuals 𝜉𝑘,𝑡 can be mapped
to the structural liquidity supply 𝛿𝑠𝑘,𝑡 and demand 𝛿𝑑𝑘,𝑡 shocks using the
following relation:
[

𝜉𝑋;𝑘,𝑡
𝜉𝑉 𝐿𝑀 ;𝑘,𝑡

]

= 𝐴𝑘

[

𝛿𝑠𝑘,𝑡
𝛿𝑑𝑘,𝑡

]

, (16)

where 𝐴𝑘 is a 2 × 2 matrix and 𝛿𝑘,𝑡 = [𝛿𝑠𝑘,𝑡 𝛿𝑑𝑘,𝑡]𝑇 is a 2 × 1 vector. Based
on (15) and (16), the first column of 𝐴𝑘 corresponds to changes in liq-
uidity provision costs (i.e., VLOOP or TCOST) and dealer-intermediated
volume associated with an increase in 𝛿𝑠𝑘,𝑡. The second column in turn
corresponds to changes in liquidity costs and intermediated volumes
associated with an increase in 𝛿𝑑𝑘,𝑡. Following Goldberg (2020), if 𝐴𝑘
satisfies the following sign restrictions:

𝑠𝑖𝑔 𝑛(𝐴𝑘) =
(

+ +
− +

)

, (17)

then 𝛿𝑠𝑘,𝑡 can be interpreted as an inward shift in liquidity supply
reflecting a tightening of dealer constraints, whereas 𝛿𝑑𝑘,𝑡 corresponds
to an outward shift in liquidity demand.

The sign restrictions in Eq. (17) assume that supply shifts lead
to changes in liquidity costs and trading volume that have opposite
signs. In other words, a shock to liquidity supply will lead to a rise
in liquidity costs but at the same time a fall in dealer-intermediated
volume. Demand shocks, by contrast, are assumed to lead to changes
in liquidity costs and volume in the same direction. That is, in the case
of demand shocks, the increase in liquidity costs goes in hand with a
rise in dealer-intermediated volume.

These sign restrictions are fully consistent with our model (see
Section 3), which rationalises how dealer constraints (i.e., 𝜔 and 𝜂)
affect both the level and the slope of the liquidity supply curve. In
particular, the SVAR model embraces the economic intuition in our
model, namely, that an inward (outward) shift of the supply (demand)
curve corresponds to a higher equilibrium price (i.e., cost of liquidity)
when holding demand (supply) constant.

For illustrative purposes, Fig. 5 (Fig. 6) shows estimates of the
impulse responses of 𝑉 𝐿𝑂 𝑂 𝑃 (𝑇 𝐶 𝑂 𝑆 𝑇 ) and 𝑉 𝐿𝑀 to liquidity supply
and demand shifts for the EUR-USD-JPY currency pair triplet. The
impulse response functions for the other 14 triplets exhibit qualitatively
similar patterns. In line with the above reasoning, concurrently with
a supply shift, VLOOP (TCOST) rises and VLM declines. As shown in
Fig. 5 (Fig. 6), contemporaneous with a supply shift, VLOOP (TCOST)
rises by 32% (5%) and VLM declines by 16% (18%), according to
the posterior mean. Contrarily, a demand shock is associated with an
increase in VLOOP (TCOST) as well as an increase in VLM by 26% and
25% (12% and 20%), respectively.

In a second step, we estimate the correlation between the cost of
liquidity provision (i.e., VLOOP or TCOST) and dealer-intermediated
trading volume (i.e., VLM) in a 30-day rolling window fashion and
estimate the following panel regression model:

𝜌𝑘,𝑡 = 𝛼𝑘 + 𝜙1𝐷 𝐶 𝑀𝑡 + 𝜙2𝑅𝑉𝑘,𝑡 + 𝜙3𝐴𝑚𝑖ℎ𝑢𝑑𝑘,𝑡 + 𝜖𝑘,𝑡, (18)

where the dependent variable is the 30-day rolling window correlation
of a liquidity cost measure (i.e., VLOOP or TCOST) and trading volume,
𝛼𝑘 denotes currency triplet fixed effects, 𝑅𝑉𝑘,𝑡 the realised variance,
𝐴𝑚𝑖ℎ𝑢𝑑𝑘,𝑡 the price impact in the non-dollar currency pair within each
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Fig. 5. Dynamic impulse response function for EUR-USD-JPY; VLOOP
Note: This figure plots the estimated dynamic impulse response of the shadow cost of intermediary constraints (VLOOP) and dealer-intermediated volume (VLM) associated with
liquidity supply and demand shifts. The median response is shown by the black solid line. The grey shaded area marks a 95% confidence interval around the median. The sample
covers the period from 1 November 2011 to 30 September 2022.

Fig. 6. Dynamic impulse response function for EUR-USD-JPY; TCOST
Note: This figure plots the estimated dynamic impulse response of dealers’ compensation for enduring inventory imbalances (TCOST) and dealer-intermediated volume (VLM)
associated with liquidity supply and demand shifts. The median response is shown by the black solid line. The grey shaded area marks a 95% confidence interval around the
median. The sample covers the period from 1 November 2011 to 30 September 2022.

Journal of Financial Economics 167 (2025) 104028 

13 



W. Huang et al.

Table 5
Disentangling liquidity demand and supply..

cor(VLOOP,VLM) cor(TCOST,VLM)

Panel A (1) (2) (3) (4) (5) (6)

DCM ***−0.09 ***−0.09 ***−0.10 *−0.08 *−0.08 *−0.07
[2.62] [2.64] [2.73] [1.92] [1.90] [1.75]

Realised variance *0.02 −0.03
[1.72] [1.56]

Amihud (2002) ***0.07 ***−0.14
[3.93] [5.39]

𝑅2 in % 0.84 0.89 1.06 0.63 0.73 1.40
Adj. 𝑅2 in % 0.80 0.86 1.02 0.59 0.69 1.37
Avg. #Time periods 2773 2773 2773 2773 2773 2773
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time series FE no no no no no no

Panel B
𝛿𝑠 ***−0.05 ***−0.05 ***−0.06 ***−0.06 ***−0.06 ***−0.06

[5.44] [5.41] [5.63] [5.59] [5.80] [4.94]
𝛿𝑑 −0.00 −0.00 0.00 0.01 0.01 0.01

[0.19] [0.22] [0.10] [1.55] [1.56] [0.97]
Realised variance **0.00 **−0.02

[2.20] [2.07]
Amihud (2002) ***0.04 ***−0.06

[2.60] [4.63]

𝑅2 in % 0.24 0.24 0.29 0.24 0.28 0.51
Adj. 𝑅2 in % 0.20 0.20 0.25 0.20 0.24 0.47
Avg. #Time periods 2773 2773 2773 2773 2773 2773
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects panel regressions of the form 𝜌𝑘,𝑡 = 𝛼𝑘 +𝜙1𝐷 𝐶 𝑀𝑡 +𝜙2𝑅𝑉𝑘,𝑡 +𝜙3𝐴𝑚𝑖ℎ𝑢𝑑𝑘,𝑡 + 𝜖𝑘,𝑡, where the
dependent variable is the 30-day rolling window correlation of a liquidity cost measure (i.e., 𝑉 𝐿𝑂 𝑂 𝑃 , or 𝑇 𝐶 𝑂 𝑆 𝑇 ) and trading volume (i.e.,
𝑉 𝐿𝑀), 𝛼𝑘 denotes cross-sectional fixed effects, 𝑅𝑉𝑘,𝑡 (𝐴𝑚𝑖ℎ𝑢𝑑𝑘,𝑡) the realised variance (Amihud (2002) price impact) in the non-dollar currency
pair within each triplet 𝑘, and 𝐷 𝐶 𝑀𝑡 is our dealer constraint measure. Panel A shows the estimates of (18) using DCM, whereas Panel B uses
both liquidity supply 𝛿𝑠𝑘,𝑡 and demand shocks 𝛿𝑑𝑘,𝑡 from the SVAR as alternative measures of tightening dealer constraints. All regressors have
been normalised to have unit standard deviation. Hence, the regression coefficients measure the increase in 𝜌 associated with a one standard
deviation increase in 𝐷 𝐶 𝑀 , 𝛿𝑠, and 𝛿𝑑 , respectively. The sample covers the period from 1 September 2012 to 30 September 2022. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in
procedure for automatic lag selection by Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the
90%, 95%, and 99% levels.

triplet 𝑘, and 𝐷 𝐶 𝑀𝑡 is our dealer constraint measure.
The regression in (18) may suffer from endogeneity of 𝐷 𝐶 𝑀𝑡 due

to a missing factor simultaneously affecting the correlation between
liquidity costs and volumes 𝜌𝑘,𝑡. In other words, 𝐷 𝐶 𝑀𝑡 may not (fully)
capture the dealer constraints 𝜂 and 𝜔 in our model. To address this
issue, we use the supply shocks that we extract from the SVAR as an
alternative measure for tightening dealer constraints. Additionally, to
account for potential shifts in liquidity demand, we include demand
shocks as an additional control variable in (18).

Table 5 documents the results of estimating (18) using various mea-
sures of dealer constraints. In particular, Panel A shows the estimates
of (18) using DCM, whereas Panel B uses both liquidity supply and
demand shocks as alternative measures of tightening dealer constraints.
We estimate demand and supply shocks from a panel SVAR with cur-
rency triplet fixed effects. The key takeaway from Table 5 is consistent
with the LSTAR analysis (see Table 4) and corroborates the idea that
more binding dealer constraints are associated with dealers’ liquidity
provision becoming less elastic (i.e., smaller 𝜌𝑘,𝑡). It turns out that,
in line with the model, liquidity supply (rather than demand) shocks
are the pivotal determinant of the variation in the correlation between
liquidity costs and trading volume.

6. Robustness tests

To investigate the robustness of our findings we run two addi-
tional empirical tests: (i) decompose the dealer constraint measure
into its constituents and use alternative measures of dealer constraints
(leverage ratio, CIP basis, CDS spreads) and (ii) capture the share of

constrained dealers based on differences in CDS spreads and the CIP
basis. We relegate detailed results on all additional robustness checks
to the Online Appendix but provide a succinct summary below in this
section.

Different components of dealer constraints. We consider the same LSTAR
specification as in (14) but instead of our dealer constraint measure
DCM we use its three constituents. In particular, we use the lagged
value of primary FX dealer banks’ quarterly Value-at-Risk measure
(VaR), daily funding cost yield (DFC), and the number of VaR breaches
(NVB) in a given quarter as regime variables. In addition, we follow
the related literature and use three broad measures of dealer balance
sheet capacity: (i) He et al. (2017) leverage ratio (i.e., 1−capital ratio)
(quarterly), (ii) credit default swap (CDS) premia (daily), and (iii) the
average CIP deviation (daily) across our set of ten US dollar currency
pairs.

Table 6 reports the estimates of using each of the six aforementioned
measures as a state variable. The difference between the constrained
and unconstrained coefficient is negative and significant across all spec-
ifications for both VLOOP and TCOST. The only exception is column
9 (NVB for TCOST) where the difference is statistically insignificant.
These estimates are in line with our baseline specification based on
DCM in terms of economic magnitudes.

Share of constrained dealers. Here we investigate an alternative mea-
sure for the share of constrained dealers that is based on the related
literature on funding liquidity and, in particular, Andersen et al. (2019).
The key intuition is that arbitraging CIP violations is only beneficial
to a dealer if the deviations exceed the dealer’s credit spread. Put
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Table 6
Smooth transition regression with different state variables..

VLOOP TCOST

DFC VaR NVB HKM CDS CIP DFC VaR NVB HKM CDS CIP

𝛾 ***12.00 *12.00 ***12.00 ***8.63 ***12.00 ***1.19 ***1.00 ***12.00 12.00 ***12.00 ***4.89 ***12.00
c ***−0.25 0.06 ***0.10 −0.01 ***0.24 ***0.50 ***−0.37 ***0.26 ***0.50 −0.03 ***0.03 ***0.50

Unconstr. volume ***0.12 ***0.08 ***0.12 ***0.10 ***0.07 ***0.14 ***0.17 ***0.10 ***0.09 ***0.11 ***0.11 ***0.09
[3.90] [3.09] [4.52] [3.67] [3.07] [2.94] [6.50] [12.51] [10.68] [11.66] [12.81] [11.58]

Constr. volume −0.02 −0.03 −0.03 −0.02 *−0.07 *−0.15 0.01 ***0.04 ***0.12 ***0.05 0.02 ***0.05
[0.68] [1.00] [0.78] [0.76] [1.87] [1.84] [0.52] [3.62] [5.68] [5.68] [1.05] [3.05]

Realised variance ***0.02 ***0.02 ***0.02 ***0.02 ***0.02 ***0.02 ***0.03 ***0.02 ***0.03 ***0.03 ***0.03 ***0.03
[3.31] [3.17] [3.06] [3.25] [3.23] [3.22] [8.96] [8.84] [7.39] [8.98] [8.90] [8.94]

Constr.-Unconstr. ***−0.14 ***−0.11 ***−0.16 ***−0.12 ***−0.14 **−0.28 ***−0.16 ***−0.05 0.03 ***−0.06 ***−0.10 **−0.04
[3.37] [2.73] [3.03] [3.00] [3.16] [2.37] [3.44] [3.57] [1.40] [4.45] [5.18] [2.31]

𝑅2 in % 0.15 0.13 0.28 0.14 0.14 0.12 3.42 3.41 3.57 3.45 3.52 3.33
BIC 94.08 94.08 88.67 94.08 94.08 94.08 52.57 52.57 49.43 52.57 52.55 52.58
Avg. #Time periods 2796 2796 1985 2796 2796 2796 2800 2800 1988 2800 2800 2800
#Currency triplets 15 15 15 15 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form 𝑦𝑘,𝑡 = 𝜆𝑡+𝛼𝑘+ [1 −𝐺(𝑧𝑡−1)]𝛽′1𝑓𝑘,𝑡+𝐺(𝑧𝑡−1)𝛽′2𝑓𝑘,𝑡+𝛽′3𝑤𝑘,𝑡+𝜀𝑘,𝑡, where the dependent variable
𝑦𝑘,𝑡 is a liquidity cost measure (i.e., 𝑉 𝐿𝑂 𝑂 𝑃 or 𝑇 𝐶 𝑂 𝑆 𝑇 ), 𝑓𝑘,𝑡 (𝑤𝑘,𝑡) are state-dependent (state-independent) regressors and 𝐺(𝑧𝑡−1) is a logistic function depending on the regime
variable 𝑧𝑡−1. The regime variables are the 1-day lagged values of primary FX dealer banks’: daily funding cost yield (DFC, columns 1 and 7), quarterly Value-at-Risk measure
(VaR, columns 2 and 8), number of VaR breaches per quarter (NVB, columns 3 and 9), quarterly He et al. (2017) leverage ratio (HKM, columns 4 and 10), daily credit default
spread (CDS, columns 5 and 11), and daily average CIP basis in US dollar currency pairs (CIP, columns 6 and 12). Note that we assign an equal weight to each top 10 FX dealer
bank (based on the Euromoney FX survey) when computing a cross-sectional average. The optimal parameters 𝛾 and 𝑐 are determined by nonlinear least squares minimising the
concentrated sum of squared errors. The row ’Constr. - Unconstr.’ reports the difference between the slope coefficient on constrained and unconstrained volume, respectively. Both
dependent and independent variables are taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2022. The test statistics based on
Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic lag selection by Andrews and
Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

differently, dealers that have credit spreads above the CIP basis are
‘‘constrained’’ in the sense that they are unable to perform the arbitrage
trade. Specifically, we compare the 5-year basis in the USDJPY to the 5-
year CDS spread of each top dealer bank and then compute the fraction
of banks that have long-term CDS spreads below the long-term CIP
basis. We focus on the USDJPY basis because it is the largest and most
persistent for our sample period. Next, we use this fraction as an alter-
native measure for 𝜔. Table 7 provides quantitative support in favour
of this funding liquidity-based measure for the share of constrained
dealers. The difference between the constrained and unconstrained
coefficient is negative and significant across all specifications at the
10% significance level.

Additional analyses. In the Online Appendix we document eight ad-
ditional robustness checks for our baseline result (see Table 4). First,
we estimate the LSTAR currency pair triplet by triplet to shed light
on the cross-sectional differences across currency pair triplets. In line
with the panel regression, we find that the difference between the slope
coefficient on trading volume in constrained and unconstrained periods
is negative and significant for several currency pair triplets. Second,
we split volume into inter-bank and customer-bank trades and find that
large dealer banks mainly curtail their liquidity provision in trades with
other banks (rather than customers). Third, we perform a subsample
analysis to account for the rise of non-bank liquidity providers since
2016. In line with the hypothesis that non-bank liquidity providers are
more flexible in their liquidity provision than traditional dealer banks,
we find that the constrained minus unconstrained coefficient with
respect to trading volume is almost twice as large in terms of economic
magnitude for the first half than for the second half of our sample.
Fourth, we relax time-series fixed effects and find that the lagged dealer
constraint measure is insignificant in such a regression. Fifth, in a
placebo exercise, we explore a different set of regime variables that
are not dealer specific and which are thus more directly exposed to
liquidity demand and general market conditions (e.g., the VIX index or
the TED spread). We find no significant drop in the correlation between
liquidity costs and trading volume for any of these alternative state
variables. Sixth, we vary the number of lags in the LSTAR model and
find that dealer constraints have a lasting adverse effect on FX liquidity

provision. Seventh, we focus on the main London stock market trading
hours to rule out that our results are driven by more illiquid trading
hours. Lastly, we employ euro-based currency triplets to show that our
results are not driven by the dominant role of the US dollar in FX
trading.

To summarise, these additional robustness tests corroborate our
previous results and support the main mechanisms of our theoretical
framework. Dealers promote FX market liquidity in normal times
through elastic liquidity provision. As such, dealer intermediation
contributes to better market liquidity, that is, narrower spreads and
more informative prices (i.e., lower transactions costs and tighter
no-arbitrage conditions). However, when FX dealers are constrained
they increase liquidity costs disproportionately more relative to their
market-making activities (i.e., dealer-intermediated trading volumes).

7. Conclusion

In this paper, we have studied how constraints on dealers’ interme-
diation capacity affect currency market liquidity. Using a simple model
and a unique data set on global FX spot trading activity, we provide a
novel analytical method to identify and measure how dealer constraints
affect not only the price of market liquidity, but also its relation to
the quantity of liquidity (i.e., trading volume). We show that during
times when the dealer sector is more constrained, for instance, due
to higher funding costs and/ or stricter Value-at-Risk limits, liquidity
cost measures increase disproportionately more relative to equilibrium
trading volumes. As a result, the otherwise strong and positive relation
between liquidity costs and trading volume weakens by at least 50%
relative to times when dealers are largely unconstrained. To account for
changes in both liquidity demand and supply we employ a structural
vector autoregression with sign restrictions and show that this result is
mainly driven by a drop in the elasticity of liquidity supply rather than
an increase in demand.

Our paper has implications for policymakers and academics alike.
After the Global Financial Crisis erupted in 2008, policymakers have
largely focused on making OTC derivatives markets more stable. How-
ever, the world’s largest financial market measured by daily turnover,
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Table 7
Smooth transition regression with constrained dealer share as state variable..

VLOOP TCOST

(1) (2) (3) (4) (5) (6)

𝛾 ***1.45 ***1.43 ***1.35 12.00 12.00 12.00
c ***0.50 ***0.50 ***0.50 ***0.50 ***0.50 ***0.50

Unconstr. volume ***0.15 ***0.15 ***0.14 ***0.11 ***0.12 ***0.09
[4.25] [4.11] [3.68] [14.77] [14.85] [11.07]

Constr. volume **−0.10 **−0.11 **−0.12 ***0.08 ***0.09 ***0.06
[2.11] [2.22] [2.40] [7.90] [7.90] [5.84]

Amihud (2002) −0.01 **0.00
[1.59] [2.27]

Realised variance **0.02 ***0.03
[2.47] [9.16]

Constr.-Unconstr. ***−0.25 ***−0.26 ***−0.26 **−0.03 **−0.03 *−0.02
[3.41] [3.41] [3.33] [2.23] [2.24] [1.73]

𝑅2 in % 0.11 0.12 0.14 2.21 2.25 3.39
Avg. #Time periods 2604 2604 2604 2609 2609 2608
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form 𝑦𝑘,𝑡 = 𝜆𝑡+𝛼𝑘+ [1 −𝐺(𝑧𝑡−1)]𝛽′1𝑓𝑘,𝑡+𝐺(𝑧𝑡−1)𝛽′2𝑓𝑘,𝑡+𝛽′3𝑤𝑘,𝑡+
𝜀𝑘,𝑡, where the dependent variable 𝑦𝑘,𝑡 is a liquidity cost measure (i.e., 𝑉 𝐿𝑂 𝑂 𝑃 or 𝑇 𝐶 𝑂 𝑆 𝑇 ), 𝑓𝑘,𝑡 (𝑤𝑘,𝑡) are state-dependent (state-independent)
regressors, and 𝐺(𝑧𝑡−1) is a logistic function depending on the state variable 𝑧𝑡−1. The regime variable is the 1-day lagged value of the share of
constrained dealers (i.e., 𝜔) that is captured by the fraction of top 10 dealer banks with 5-year CDS spreads exceeding the 5-year USDJPY CIP
basis. The optimal parameters 𝛾 and 𝑐 are determined by nonlinear least squares minimising the concentrated sum of squared errors. The row
’Constr. - Unconstr.’ reports the difference between the slope coefficient on constrained and unconstrained volume, respectively. Both dependent
and independent variables are taken in logs and changes. The sample covers the period from 1 September 2012 to 30 September 2022. The
test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in
procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and
*** denote significance at the 90%, 95%, and 99% levels.

the FX market, has been largely excluded from the post-crisis regu-
latory reforms. Specifically, policymakers have merely observed the
ongoing changes such as the proliferation of multiple trading venues
that have led to a surge in fragmentation of market liquidity in currency
markets.21 Our study shows that this type of fragmentation becomes
amplified when dealer constraints tighten, that is, exactly when high
market resilience would be desirable. With respect to the academic
literature, our study covers the FX market, which is commonly regarded
as one of the most liquid financial markets in the world. We leave the
study of the role of dealer constraints on the liquidity provision in other
OTC markets (e.g., government bonds and OTC derivatives) to future
research.
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Appendix A. Proofs for the model

Proposition 1.
Proof. For currency pair 𝑧, which is assumed to have balanced order
flows, Eq. (10) implies that all dealers are unconstrained since 𝑞𝑧𝑖 = 0.
However, for currency pairs 𝑥 and 𝑦 with unbalanced order flows the
constrained dealers’ total net positions are bounded by the following
VaR constraints:

𝑞𝑥𝐿 = 𝜔𝑇
𝜎

, 𝑞𝑦𝐿 = −𝜔𝑇
𝜎

. (19)

Thus, in equilibrium, the unconstrained dealers need to absorb the
remaining order flows:

𝑞𝑥𝐻 = 𝜎(1 − 𝑠𝑥)(2𝜋 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑥

−𝜔𝑇
𝜎

, 𝑞𝑦𝐻 = 𝜎(1 − 𝑠𝑦)(1 − 2𝜋)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑦

+𝜔𝑇
𝜎

, (20)

and the market clearing prices for currency pairs 𝑥 and 𝑦 are de-
termined by the unconstrained dealers’ supply functions that arise
from Eq. (8). We assume that dealers have equal probabilities in
meeting the traders and hence, take their orders ‘‘pro rata’’. Thus, the
selling and buying amounts of the unconstrained dealers are

𝑞𝑥𝐻 ,𝑆 = 𝑞𝑥𝐻𝜋 , 𝑞𝑥𝐻 ,𝐵 = 𝑞𝑥𝐻 (𝜋 − 1), 𝑞𝑦𝐻 ,𝑆 = 𝑞𝑦𝐻 (1 − 𝜋), 𝑞𝑦𝐻 ,𝐵 = −𝑞𝑦𝐻𝜋 .
(21)

There are two market clearing conditions for each currency pair:
one for the case when the unconstrained dealers are buying (i.e., bid
price) and another reflecting the situation when they are selling (i.e., ask
price):
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𝑞𝑥𝐻 ,𝐵 = (1 − 𝜔) 𝑏
𝑥 − 𝑒𝑥

𝜂
, 𝑞𝑥𝐻 ,𝑆 = (1 − 𝜔)𝑎

𝑥 − 𝑒𝑥

𝜂
; (22)

𝑞𝑦𝐻 ,𝐵 = (1 − 𝜔) 𝑏
𝑦 − 𝑒𝑦

𝜂
, 𝑞𝑦𝐻 ,𝑆 = (1 − 𝜔)𝑎

𝑦 − 𝑒𝑦

𝜂
. (23)

Taking currency pair 𝑥 as an example (i.e., Eq. (22)), the left-
hand side of the first (respectively second) equation is the amount that
needs to be bought (respectively sold) by the unconstrained dealers
(to clear the market), and the right-hand side is their supply function
from Eq. (8). To solve this system of equations, we subtract both sides
of the equations on the left from those on the right:
(

𝜎(1 − 𝑠𝑥)(2𝜋 − 1) − 𝜔𝑇
𝜎

)

(𝜋 − (𝜋 − 1)) = (1 − 𝜔)
𝜂

𝑠𝑥 (24)

from which we can derive 𝑠𝑥. Similarly, 𝑠𝑦 can be derived from Eq. (23).
The bid–ask spread for currency pairs 𝑥 and 𝑦 turns out to be the same
(due to the simplifying assumptions of symmetric directional order
flows, as well as due to having the same 𝜎, 𝜂, and 𝑇 across currencies):

𝑠𝑥 = 𝑠𝑦 =
𝜂((2𝜋 − 1)𝜎2 − 𝜔𝑇 )

𝜎((2𝜋 − 1)𝜂 𝜎 + 1 − 𝜔)
≡ 𝑠. (25)

Similarly, the market clearing conditions for the balanced currency pair
𝑧 are:

− 1
2
𝜎𝑧(1 − 𝑠𝑧) = 𝑏𝑧 − 𝑒𝑧

𝜂
, 1

2
𝜎𝑧(1 − 𝑠𝑧) = 𝑎𝑧 − 𝑒𝑧

𝜂
, (26)

which leads to the following bid–ask spread:

𝑠𝑧 =
𝜂 𝜎

1 + 𝜂 𝜎 . (27)

To derive the midquotes in currency pair 𝑥 and 𝑦, we substitute 𝑠 =
𝑠𝑥 = 𝑠𝑦 into the market clearing conditions (22) and (23), respectively.
Take currency pair 𝑥 as an example. We first add both sides of the
equations on the left in Eq. (22) to those on the right, and use 𝑚𝑥 =
𝑎𝑥+𝑏𝑥

2 :
(

𝜎(1 − 𝑠)(2𝜋 − 1) − 𝜔𝑇
𝜎

)

(𝜋 + (𝜋 − 1)) = (1 − 𝜔)
𝜂

2(𝑚𝑥 − 𝑒𝑥), (28)

𝑚𝑥 = 𝑒𝑥 + (𝜋 − 1
2
)

𝜂
1 − 𝜔

(

𝜎(1 − 𝑠)(2𝜋 − 1) − 𝜔𝑇
𝜎

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑠 from Eq. (24)

. (29)

Using similar steps, we derive the midquotes for the other currency
pairs. To summarise, the midquotes are:

𝑚𝑥 = 𝑒𝑥 +
(

𝜋 − 1
2

) 𝜂((2𝜋 − 1)𝜎2 − 𝜔𝑇 )
𝜎((2𝜋 − 1)𝜂 𝜎 + 1 − 𝜔)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠

,

𝑚𝑦 = 𝑒𝑦 +
( 1
2
− 𝜋

) 𝜂((2𝜋 − 1)𝜎2 − 𝜔𝑇 )
𝜎((2𝜋 − 1)𝜂 𝜎 + 1 − 𝜔)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠

, 𝑚𝑧 = 𝑒𝑧.

(30)

The midquotes of currency pairs 𝑥 and 𝑦 in (30) deviate from
their fundamental values 𝑒𝑥 and 𝑒𝑦, respectively, if 𝜋 ≠ 1

2 or 𝜂 ≠ 0.
Contrarily, the midquote for currency pair 𝑧 is equal to its fundamental
value (i.e., 𝑚𝑧 = 𝑒𝑧) because order flows are balanced. Substituting
Eq. (30) into Eq. (1), deviations of the midquotes (set by the market
clearing conditions and unconstrained dealers’ supply function) from
the fundamental values represent violations of the law of one price:

VLOOP = 𝑒𝑧

(𝑒𝑥 + (𝜋 − 1
2 )𝑠)(𝑒

𝑦 + ( 12 − 𝜋)𝑠)
, (31)

and substituting Eq. (30) into Eq. (2), we can express TCOST as follows:

TCOST =

(

1 + 𝑠
2(𝑒𝑥+(𝜋− 1

2 )𝑠)

) (
1 + 𝑠

2(𝑒𝑦+( 12−𝜋)𝑠)

)

1 − 𝑠𝑧
2𝑒𝑧

. (32)

Taking the first order derivatives of 𝑠𝑧 with respect to 𝜂 and 𝜎 we
have that 𝑠𝑧 increases in both 𝜂 and 𝜎 as follows:
𝑑 𝑠𝑧
𝑑 𝜂 = 𝜎

(1 + 𝜂 𝜎)2 > 0, 𝑑 𝑠𝑧
𝑑 𝜎 =

𝜂
(1 + 𝜂 𝜎)2 > 0. (33)

For currency pairs 𝑥 and 𝑦 we have that their bid–ask spreads 𝑠 increase
in 𝜂, 𝜎, and 𝜔 as follows:
𝑑 𝑠
𝑑 𝜂 =

𝜎(1 − 𝜔)((2𝜋 − 1)𝜎2 − 𝜔𝑇 )
𝜎2((2𝜋 − 1)𝜂 𝜎 + 1 − 𝜔)2

> 0; (34)

𝑑 𝑠
𝑑 𝜎 =

𝜂((1 − 𝜔)(𝜎2(2𝜋 − 1) + 𝜔𝑇 ) + 2𝜂 𝜎 𝜔𝑇 (2𝜋 − 1))
𝜎2((2𝜋 − 1)𝜂 𝜎 + 1 − 𝜔)2

> 0; (35)

𝑑 𝑠
𝑑 𝜔 =

𝜎 𝜂((2𝜋 − 1)𝜎2 − (1 + 𝜂 𝜎(2𝜋 − 1))𝑇 )
𝜎2((2𝜋 − 1)𝜂 𝜎 + 1 − 𝜔)2

> 0, (36)

where the first and third inequality come from the condition that the
VaR thresholds are binding for the constrained dealers: 𝑇 ∕𝜎 < 𝜎(2𝜋 −
1)(1 − 𝑠) < 𝜎(2𝜋 − 1). To see the third inequality, note that the bid–ask
spread can be re-written as

𝑠 =
𝜂 𝜎(2𝜋 − 1)

(

1 − 𝜔𝑇
𝜎2(2𝜋−1)

)

1 + 𝜂 𝜎(2𝜋 − 1) − 𝜔
. (37)

Replacing 𝑇 with 𝑇 < 𝜎2(2𝜋 − 1)(1 − 𝑠), we have that

𝑠 > 𝜂 𝜎(2𝜋 − 1) (1 − 𝜔(1 − 𝑠))
1 + 𝜂 𝜎(2𝜋 − 1) − 𝜔

, (38)

(1 + 𝜂 𝜎(2𝜋 − 1) − 𝜔)𝑠 > 𝜂 𝜎(2𝜋 − 1)(1 − 𝜔) + 𝜂 𝜎 𝜔𝑠(2𝜋 − 1), (39)

𝑠 > 𝜂 𝜎(2𝜋 − 1)
1 + 𝜂 𝜎(2𝜋 − 1) = 1 − 1

1 + 𝜂 𝜎(2𝜋 − 1) , (40)

(2𝜋 − 1)𝜎2
𝑇

> 1
1 − 𝑠

> (1 + 𝜂 𝜎(2𝜋 − 1)), (41)

(2𝜋 − 1)𝜎2 > (1 + 𝜂 𝜎(2𝜋 − 1))𝑇 . (42)

TCOST increases in 𝑠 and 𝑠𝑧 as evidenced by Eq. (32). In addition, all
the spreads increase in 𝜂, 𝜎, and 𝜔 as shown by Eq. (33) to Eq. (36).
Hence, TCOST increases in 𝜂, 𝜎, and 𝜔.

As to VLOOP, we first note that VLOOP is above unity if 𝑚𝑧 > 𝑚𝑥𝑚𝑦,
which is

(𝑒𝑥 + (𝜋 − 1
2
)𝑠)(𝑒𝑦 + ( 1

2
− 𝜋)𝑠) < 𝑒𝑥𝑒𝑦

⇔ (𝜋 − 1
2
)(𝑒𝑦 − 𝑒𝑥)𝑠 − (𝜋 − 1

2
)2𝑠2 < 0

⇔ 𝑒𝑦 < 𝑒𝑥 + (𝜋 − 1
2
)𝑠 (43)

where we use 𝑒𝑧 = 𝑒𝑥𝑒𝑦. Thus, we focus on the parameter space
when the above inequality holds. Taking the derivative of VLOOP with
respect to 𝑠 and using Eq. (43) (which also holds with inequality when
replacing 𝜋 − 1

2 with 2(𝜋 − 1
2 ) = 2𝜋 − 1), we have that

𝑑 𝑉 𝐿𝑂 𝑂 𝑃
𝑑 𝑠 =

8𝑒𝑥𝑒𝑦(2𝜋 − 1)(𝑒𝑥 + (2𝜋 − 1)𝑠 − 𝑒𝑦)
(2𝑒𝑥 + (2𝜋 − 1)𝑠)2(2𝑒𝑦 + (2𝜋 − 1)𝑠)2

>
8𝑒𝑥𝑒𝑦(2𝜋 − 1)(𝜋 − 1

2 )𝑠

(2𝑒𝑥 + (2𝜋 − 1)𝑠)2(2𝑒𝑦 + (2𝜋 − 1)𝑠)2 > 0 (44)

Because VLOOP increases in 𝑠, it also increases in 𝜂, 𝜎, and 𝜔. □

Proposition 2.

Proof. From Eq. (12), we can see that for a given quantity 𝑞𝑆 , a higher
𝜂 and/ or 𝜔 leads to a higher 𝑝𝑆 . Thus, all else equal, increasing 𝜂 or 𝜔
shift the supply curve inwards. By equating the demand curve Eq. (11)
and the supply curve Eq. (12), the equilibrium price (which turns out
to be equal to the relative bid–ask spread 𝑠 in (25)) and quantity, which
we denote as 𝑝∗ and 𝑞∗ are

𝑞∗ =
(2𝜋 − 1)(𝜎(1 − 𝜔) + 𝜂 𝜔𝑇 )

𝜂 𝜎(2𝜋 − 1) + 1 − 𝜔
, (45)

𝑝∗ =
𝜂((2𝜋 − 1)𝜎2 − 𝜔𝑇 )

𝜎(𝜂 𝜎(2𝜋 − 1) + 1 − 𝜔)
= 𝑠. (46)
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To see that the equilibrium quantity increases less than the increase
of equilibrium price when dealers are more constrained, we show that
𝑞∗∕𝑝∗ decreases in 𝜂 and 𝜔:
𝑞∗

𝑝∗
=

𝜎(2𝜋 − 1)(𝜎(1 − 𝜔) + 𝜂 𝜔𝑇 )
𝜂((2𝜋 − 1)𝜎2 − 𝜔𝑇 )

, (47)

𝑑 𝑞∗

𝑝∗

𝑑 𝜂 = − (2𝜋 − 1)𝜎2(1 − 𝜔)
𝜂2((2𝜋 − 1)𝜎2 − 𝜔𝑇 )

< 0, (48)

𝑑 𝑞∗

𝑝∗

𝑑 𝜔 = −(2𝜋 − 1)𝜎2((2𝜋 − 1)𝜎2 − (1 + 𝜂 𝜎(2𝜋 − 1))𝑇 )
𝜂((2𝜋 − 1)𝜎2 − 𝜔𝑇 )2

< 0 (49)

where the last inequality comes from Eq. (42).
Furthermore, we show that the ratio of dealer-intermediated volume

(i.e., VLM) and our liquidity cost measures (i.e., VLOOP and TCOST)
also decreases when dealers are more constrained:
𝑑 𝑉 𝐿𝑀
𝑉 𝐿𝑂 𝑂 𝑃
𝑑 𝜂 < 0,

𝑑 𝑉 𝐿𝑀
𝑉 𝐿𝑂 𝑂 𝑃
𝑑 𝜔 < 0,

𝑑 𝑉 𝐿𝑀
𝑇 𝐶 𝑂 𝑆 𝑇
𝑑 𝜂 < 0,

𝑑 𝑉 𝐿𝑀
𝑇 𝐶 𝑂 𝑆 𝑇
𝑑 𝜔 < 0. (50)

Since the trading demand for currency pair 𝑗 is 𝜎(1 − 𝑠𝑗 ), the
dealer-intermediated volume across the three currency pairs is
𝑉 𝐿𝑀 = 𝜎(1 − 𝑠𝑥) + 𝜎(1 − 𝑠𝑦) + 𝜎(1 − 𝑠𝑧) = 2𝜎(1 − 𝑠) + 𝜎(1 − 𝑠𝑧). (51)

Hence, using Eq. (1) and 𝑚𝑧 = 𝑒𝑧 and 𝑠 = 𝑠𝑥 = 𝑠𝑦, the ratio of
dealer-intermediated volume and VLOOP is
𝑉 𝐿𝑀

𝑉 𝐿𝑂 𝑂 𝑃 = 𝜎
𝑒𝑧

(𝑚𝑥𝑚𝑦) (2(1 − 𝑠) + (1 − 𝑠𝑧)) (52)

From Proposition 1, we have that 𝑑 𝑠∕𝑑 𝜂 > 0 and 𝑑 𝑠𝑧∕𝑑 𝜂 > 0. In
addition, we can show that 𝑑(𝑚𝑥𝑚𝑦)∕𝑑 𝜂 is negative using the expression
for 𝑚𝑥 and 𝑚𝑦 in Eq. (30):
𝑑 𝑚𝑥𝑚𝑦

𝑑 𝜂 =
(

𝜋 − 1
2

)

(𝑒𝑦 − 𝑒𝑥 − (2𝜋 − 1)𝑠) 𝑑 𝑠
𝑑 𝜂 < 0 (53)

where the inequality comes from Eq. (43). Thus, as 𝜂 increases,
𝑉 𝐿𝑀∕𝑉 𝐿𝑂 𝑂 𝑃 decreases.

Similarly, we can show that 𝑉 𝐿𝑀∕𝑉 𝐿𝑂 𝑂 𝑃 decreases in 𝜔 because
we have 𝑑 𝑠∕𝑑 𝜔 > 0, 𝑑 𝑠𝑧∕𝑑 𝜔 > 0, and 𝑑(𝑚𝑥𝑚𝑦)∕𝑑 𝜔 < 0:
𝑑 𝑚𝑥𝑚𝑦

𝑑 𝜔 =
(

𝜋 − 1
2

)

(𝑒𝑦 − 𝑒𝑥 − (2𝜋 − 1)𝑠) 𝑑 𝑠
𝑑 𝜔 < 0 (54)

where the inequality comes from Eq. (43).
Using Eq. (2) and 𝑚𝑧 = 𝑒𝑧, the ratio of dealer-intermediated volume

and TCOST is given as follows

𝑉 𝐿𝑀
𝑇 𝐶 𝑂 𝑆 𝑇 =

𝜎 (2(1 − 𝑠) + (1 − 𝑠𝑧))
(

1 − 𝑠𝑧

2𝑒𝑧

)

(

1 + 1
2( 𝑒

𝑥
𝑠 +(𝜋− 1

2 ))

) (
1 + 1

2( 𝑒
𝑦
𝑠 +( 12−𝜋))

) . (55)

When 𝜂 or 𝜔 increases, we know from Proposition 1 that 𝑠 and 𝑠𝑧

increase. In addition, it is evident that the above ratio depends on 𝜂 and
𝜔 only through 𝑠 and 𝑠𝑧; and the ratio decreases in 𝑠 and 𝑠𝑧 because
the numerator is decreasing in 𝑠 and 𝑠𝑧, whereas the denominator is
increasing in 𝑠 and 𝑠𝑧, respectively. Hence, this ratio decreases in 𝜂 and
𝜔. □
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