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A B S T R A C T

Popular bid–ask spread estimators are downward biased when trading is infrequent. Moreover, they consider
only a subset of open, high, low, and close prices and neglect potentially useful information to improve
the spread estimate. By accounting for discretely observed prices, this paper derives asymptotically unbiased
estimators of the effective bid–ask spread. Moreover, we combine them optimally to minimize the estimation
variance and obtain an efficient estimator. Through theoretical analyses, numerical simulations, and empirical
evaluations, we show that our efficient estimator dominates other estimators from transaction prices, yields
novel insights for measuring bid–ask spreads, and has broad applicability in empirical finance.
1. Introduction

The effective bid–ask spread measures the distance of observed
transaction prices from the unobserved fundamental price, and it is
a predominant measure of transaction costs in financial markets. The
literature on measuring bid–ask spreads has proceeded along two com-
plementary paths that focus on either high-frequency or low-frequency
data. The high-frequency literature relies on trade and quote data to
obtain an explicit proxy of the fundamental price and calculate the
distance of transaction prices from it (Holden and Jacobsen, 2014;
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1 For instance, recent use cases of low-frequency estimators include: stock return predictability and asset pricing anomalies (McLean and Pontiff, 2016; Hou
et al., 2018; Chen et al., 2018; Birru, 2018; Hua et al., 2019; Jacobs and Müller, 2020; Patton and Weller, 2020; Amihud and Noh, 2020; Chaieb et al.,
2020); municipal and corporate bonds (Schwert, 2017; Bongaerts et al., 2017; Cai et al., 2019; Kaviani et al., 2020; Bali et al., 2021; Ding et al., 2022); bond
funds (Goldstein et al., 2017; Choi et al., 2020); currency markets (Michaelides et al., 2019; Ranaldo and de Magistris, 2022); OTC derivatives (Loon and Zhong,
2016); interest rates (Ranaldo et al., 2021); monetary policy (Grosse-Rueschkamp et al., 2019); institutional trading costs (Eaton et al., 2021); investor behavior (Li
et al., 2018); information and dark pools (Brogaard and Pan, 2021); and machine learning (Easley et al., 2020). See Table I.1 in the Internet Appendix for a
survey.

Stoikov, 2018; Hagströmer, 2021). The low-frequency literature intro-
duces assumptions about the fundamental price to derive estimators
from transaction prices only, without requiring any information about
quotes (Roll, 1984; Hasbrouck, 2009; Corwin and Schultz, 2012; Abdi
and Ranaldo, 2017).

While measures from trades and quotes are typically more accurate,
low-frequency estimates are more readily available and are becoming
increasingly popular due to the difficulties and costs of obtaining quote
data for international markets, historical data samples, and asset classes
other than stocks.1 However, the estimators developed thus far rely on
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the assumption that prices are observed continuously. In contrast, the
number of trades within any time interval is finite in real markets, and
prices unfold in discrete time. We show that this assumption causes a
downward bias when the number of trades per observation period is
small. Moreover, these estimators consider only a subset of open, high,
low, and close prices and thus neglect potentially useful information to
improve the spread estimate and reduce the estimation variance. Jahan-
Parvar and Zikes (2023) show that a larger estimation variance causes
a larger upward bias when the spread is small compared to volatility
due to the methods employed to guarantee non-negativity of the spread
estimates in small samples. In summary, current estimators understate
bid–ask spreads when they are expected to be the largest and overstate
bid–ask spreads when they are expected to be the smallest.

In this paper, we develop an asymptotically unbiased estimator with
minimum variance by accounting for discretely observed prices and
optimally considering the complete information set of open, high, low,
and close prices. First, we derive multiple bid–ask spread estimators
from several combinations of prices. Our methodology yields estimators
with an analytical term that depends on the probability that opening
or closing prices coincide with the highest or lowest prices. Such prob-
ability would be zero if prices were observed continuously, and it can
be regarded as an analytical correction term accounting for discretely
observed prices. To give a sense of the importance of correcting by this
term, Fig. 1 displays the probability that daily opening or closing prices
coincide with the highest or lowest prices for U.S. common stocks from
1926 to 2021. The probability ranges between 25% for large stocks
and 75% for small stocks in the last century and has decreased in the
last two decades. Thus, while correcting by this term is less significant
for more recent periods, it becomes essential when analyzing historical
samples, and it is increasingly important for smaller stocks. Moreover,
this term also depends on the sampling frequency used for estimation.
Indeed, if intraday – instead of daily – prices are used, then the number
of trades observed per time interval decreases, and the probability that
opening or closing prices coincide with the highest or lowest prices
increases. Thus, this term corrects a bias that varies in the time series
and the cross-section and depends on the sampling frequency of open,
high, low, and close prices.

Next, we combine our estimators to construct an efficient esti-
mator. All estimators are asymptotically unbiased, so their efficient
combination is obtained by minimizing the estimation variance. We
proceed as follows. First, we identify two estimators that achieve
minimum variance when the spread is small compared to volatility.
Second, we identify two other estimators that exhibit the opposite
behavior and achieve minimum variance when the spread is large
compared to volatility. Third, we show that these estimators can be
written as moment conditions and apply the generalized method of mo-
ments (Hansen, 1982) to construct our efficient estimator that achieves
minimum variance across small and large spreads. By minimizing the
estimation variance, our efficient estimation also minimizes the upward
bias that arises in small samples due to the methods employed to
guarantee non-negativity of the spread estimates (Jahan-Parvar and
Zikes, 2023).

We compare our efficient estimator with the seminal Roll (1984)
estimator and with those by Corwin and Schultz (2012) and Abdi and
Ranaldo (2017) as they have been shown to deliver more accurate
estimates than previous approaches.

In our simulation experiments, we study the bias and variance of
the estimators. In agreement with our theoretical analysis, we find
that other estimators understate the spread in simulations that use
few trades per period, and the estimate shrinks to zero as the number
of trades declines. Instead, our estimator remains unbiased even for
simulations where we expect, on average, only a single trade per
period. For simulations that use many trades per period, we find that
all estimators are asymptotically unbiased, and they correctly estimate
the spread used in the simulation. In this case, the best estimator

has the lowest variance because it delivers unbiased estimates with

2 
higher precision. We find that the estimator by Corwin and Schultz
(2012) has a lower variance than the estimator by Abdi and Ranaldo
(2017) for small spreads, while it has a higher variance for large
spreads. Our efficient estimator provides the most precise estimates
with a variance lower than the other approaches across small and
large spreads. In summary, our estimator dominates other approaches
by yielding unbiased estimates when other estimators are biased and
achieving minimum variance when all estimators are unbiased.

Our empirical analysis uses the Center for Research in Security
Prices (CRSP) U.S. stock database to compute bid–ask spread estimates
from daily prices. We compare them with the effective spread computed
by matching high-frequency trades with quotes via the NYSE Trades
and Quotes (TAQ) database in the sample period 1993–2021. The
simulation-based results carry over to the empirical data. Our efficient
estimator dominates all other estimators, and it is more correlated
and considerably closer to the high-frequency benchmark in each sub-
period, in each market venue, for small and large stocks, both in time
series and cross-sectional studies, for each sample size and evaluation
metric.

We illustrate the broad applicability of our estimator in low- and
high-frequency both within and outside the U.S. stock market. First, we
revisit historical spread estimates from daily prices in the U.S. stock
market since 1926. For small stocks, our estimator closely overlaps
with the high-frequency benchmark. In contrast, other estimators un-
derstate the spread, and their bias increases for older sample periods,
mirroring that these estimators are more biased when trading becomes
less frequent. Indeed, their bias reduces for larger stocks, which are
presumably traded more frequently. For all stocks, we find that the
end-of-day quoted spread is higher than our effective spread estimates
by a factor of two. Thus, our estimator reproduces previous findings
that the quoted spread overstates the effective spread finally paid by
traders by up to 100% (Huang and Stoll, 1994; Petersen and Fialkowski,
1994; Bessembinder and Kaufman, 1997; Bacidorea et al., 2003), due
to dealers offering a better price than the quotes, also known as
trading inside the spread (Lee, 1993). In summary, our estimator makes
available the most realistic effective spread estimates for the U.S. stock
market from 1926 to the advent of high-frequency data.

Second, we show that our estimator can exploit intraday prices to
improve the spread estimate significantly and that this approach is
more effective than increasing the estimation sample with more daily
data. Using minute prices – instead of daily – increases the correlation
of the estimates with the benchmark from 56.17% to 88.79% in the
challenging sample from October 2003 to December 2021, where the
spread is small compared to volatility. The fraction of non-positive esti-
mates reduces from 34.15% to 0.02%, and the upward bias induced by
resetting negative estimates to zero essentially vanishes (Jahan-Parvar
and Zikes, 2023). These results show that our estimator can be applied
at any frequency, and, in this sense, it reconciles the high-frequency and
low-frequency literature. Moreover, by relying on transaction prices
only, our estimator is insensitive to the quality of quote data, which
causes issues in measuring effective spreads by matching trades with
quotes in fast and competitive markets (Holden and Jacobsen, 2014).

Third, we apply the estimator outside the stock market and ana-
lyze low- and high-frequency estimates for cryptocurrencies. We find
that other estimators are dominated by their downward bias in high
frequency and produce a tenfold difference between estimates that use
daily or intraday prices. Instead, our estimator produces estimates from
daily prices that closely overlap with those from hourly and minute
prices. We conclude that our efficient estimator can potentially reduce
a significant source of non-standard errors (Menkveld et al., 2024) in
the measurement of transaction costs.

This paper is structured as follows. Section 2 reviews high- and
low-frequency estimators of the effective bid–ask spread. Section 3
introduces our methodology and develops our estimators. Sections 4
and 5 present our simulation and empirical results, respectively. Sec-

tion 6 illustrates the advantages and wide applicability of our efficient
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Fig. 1. Probability that Open/Close prices are High/Low prices.
The probability is computed for each stock-month as the average across: (i) the fraction of days such that the open matches the high, (ii) the fraction of days such that the open
matches the low, (iii) the fraction of days such that the close matches the high, (iv) the fraction of days such that the close matches the low. Stocks are sorted into small-caps,
mid-caps, and large-caps based on their market capitalization at the end of each month and using the 50th and 80th percentiles as breakpoints. The figure reports the average
probability across stocks for each month and size group from 1926 to 2021. Open prices are missing from July 1962 through June 1992.
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estimator. Finally, Section 7 concludes. To guarantee reproducibility,
we make available software for the R statistical environment (R Core
Team, 2020) that implements all the results in this paper. To facilitate
adoption, we make our efficient estimator available in various program-
ming languages. We also release open data containing all our spread
estimates.2

. The effective Bid–Ask spread

For a given trade, the relative effective bid–ask spread 𝑆 is defined
s:

=
2𝐷(𝑃 − 𝑃 )

𝑃
, (1)

where 𝑃 is the observed transaction price, 𝑃 is the unobserved fun-
damental price, and 𝐷 is a direction of trade indicator taking the
value +1 for buyer-initiated trades, and −1 for seller-initiated trades.
As the fundamental price 𝑃 is unobserved, different ways of estimating
the spread exist, which depend on different proxies for 𝑃 . Here, we
review popular measures of the effective bid–ask spread that arise
from different proxies. We classify these measures into two groups.
First, we discuss measures that require trade and quote data and
are typically used in the high-frequency literature. Then, we discuss
measures that only require transaction prices and are typically used in
the low-frequency literature.

2.1. High-frequency measures of effective spreads

One way to measure effective spreads is obtaining a proxy of the
fundamental price from trade and quote data to plug in Eq. (1). This
class of estimators measures the distance of transaction prices from the
given proxy. Popular proxies are the quoted midpoint, the weighted
midpoint, and the microprice.

2 All code and data are available at https://github.com/eguidotti/bidask.
3 
2.1.1. Quoted midpoint
A simple proxy of the fundamental price is the average of the bid

and ask prices. The quoted midpoint 𝑃𝑀 is defined as:

𝑃𝑀 =
𝑃𝐴 + 𝑃𝐵

2
, (2)

where 𝑃𝐴 and 𝑃𝐵 are the ask and bid prices, respectively. Using 𝑃 = 𝑃𝑀
n Eq. (1) we obtain the so-called midpoint effective spread (Hagströmer
021). This midpoint-based measure is required in U.S. regulations
SEC current Rule 605, Rule 11ac1-5 before 2007) and is often referred
o as the effective spread. Here, we use the more precise terminology
f Hagströmer (2021) to highlight that effective spreads are not observ-
ble and depend on the choice of the fundamental price. The midpoint
ffective spread is one possible measure of effective spreads.

.1.2. Weighted midpoint
Hagströmer (2021) challenges using the quoted midpoint as a proxy

f the fundamental price and shows that it leads to overstating effective
preads in markets with discrete prices and elastic liquidity demand. To
vercome this problem, he proposes to use the weighted midpoint:

𝑊 =
𝑃𝐴𝑄𝐵 + 𝑃𝐵𝑄𝐴

𝑄𝐴 +𝑄𝐵
, (3)

where 𝑄𝐴 and 𝑄𝐵 are the depths quoted at the ask and bid prices,
respectively.

2.1.3. Microprice
Stoikov (2018) criticizes the midpoint and weighted midpoint as

proxies of the fundamental price for generating autocorrelated returns
and proposes an alternative proxy – the microprice – that is a mar-
tingale by construction. We refer the reader to Stoikov (2018) for
the construction of the microprice and to Hagströmer (2021) for a
comparison of effective spreads obtained with the midpoint, weighted
midpoint, and microprice.
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2.2. Low-frequency measures of effective spreads

Another way to measure effective spreads is by introducing de-
sirable assumptions about the data-generating process to develop an
estimator that does not require an explicit proxy of the fundamental
price. This class of estimators measures the distance of transaction
prices from a fundamental price implicitly defined by the model’s
assumptions.

Several contributions (Roll, 1984; Hasbrouck, 2009; Corwin and
Schultz, 2012; Abdi and Ranaldo, 2017) have proposed to derive an
estimator of the effective spread by writing Eq. (1) in logarithmic prices
𝑝 = log(𝑃 ) such that:

𝑝 = 𝑝̃ +𝑍 , (4)

where 𝑍 = 𝑆∕2𝐷 is the bid–ask bounce and the basic assumptions are
hat:

ssumption 1. Fundamental returns are not serially correlated.

ssumption 2. Fundamental returns are uncorrelated with bid–ask
ounces.

ssumption 3. Bid–ask bounces are uncorrelated and have zero mean.

Assumptions 1–3 are the representative set of assumptions under-
ying previous contributions. However, they are more general than
hose required by each of them. For instance, the Roll (1984) model
urther assumes that buys and sells are equally likely. The Bayesian
pproach by Hasbrouck (2009) requires that fundamental returns are
.i.d. with normal distribution. Corwin and Schultz (2012) rely on the
dea that high prices are buyer-initiated and low prices are seller-
nitiated and they model the fundamental price with a geometric
rownian motion with zero-mean returns, which is also used by Abdi
nd Ranaldo (2017). They further assume that spread and volatility are
onstant, ruling out stylized facts such as heteroscedasticity and jumps.
o mitigate these restrictions, they advocate in favor of measuring
he spread over two-day rolling periods and averaging these estimates.
owever, Jahan-Parvar and Zikes (2023) show this approach produces

nconsistent estimators. Finally, one important limitation of all the
revious contributions is that they do not account for the discrete
ature of trades. Specifically, they require (explicitly or implicitly) the
estrictive assumption that there is always at least one trade between
wo time instants such that prices are observed continuously.

Overall, the class of estimators based on Assumptions 1–3 aims at
easuring the distance of transaction prices from a fundamental price
ith serially uncorrelated returns that are not correlated with bid–
sk bounces. Such a class of estimators is the central focus of this
aper, and we review the most popular approaches below. Other works
lter the definition of the fundamental price by adding a dependence
etween the fundamental returns and the bid–ask bounces to accord
n informational role to the trade directions, and they are outside the
cope of this paper (see e.g., Chen et al., 2017).

.2.1. Close prices
The seminal work by Roll (1984) computes the serial covariance of

bserved returns to estimate the effective spread from closing prices.
e shows that:
2 = −4Cov[𝛥𝑐𝑡, 𝛥𝑐𝑡−1] , (5)

here 𝑆2 is the mean squared spread in the estimation sample and
𝑐𝑡 = 𝑐𝑡 − 𝑐𝑡−1 where 𝑐𝑡 is the closing log-price of period 𝑡. The main

imitation of this approach is that it has a large estimation variance, and
he squared spread turns out to be negative in 50% of the cases using

yearly sample of daily closing prices (Roll, 1984). To improve the
stimation accuracy, Hasbrouck (2009) proposes a Gibbs estimation of
 p

4 
he Roll model. However, the method requires an iterative procedure, is
omputationally expensive, and needs many observations to converge.3

2.2.2. High and low prices
Corwin and Schultz (2012) propose an alternative estimator from

high and low prices with smaller variance than the Roll (1984) estima-
tor. Their methodology is based on the idea that high (low) prices are
almost always buy (sell) trades. Hence, the high-low ratio incorporates
both the volatility of the fundamental price and the bid–ask spread.
As volatility increases with the return interval, while the spread does
not, it is possible to derive a spread estimator from the high-low ratios
over different time intervals. To link the high-low ratios with volatility,
they assume that the fundamental price follows a geometric Brownian
motion and use the equations by Parkinson (1980) and Garman and
Klass (1980). However, these equations hold only if the price is ob-
served continuously and are biased in practice as the number of trades
within any time interval is finite.

2.2.3. Close, high, and low prices
Abdi and Ranaldo (2017) propose an estimator that jointly uses

closing and high-low prices to achieve smaller variance than the Roll
(1984) estimator and smaller bias than the Corwin and Schultz (2012)
estimator. They show that:

𝑆2 = 4E[(𝑐𝑡−1 − 𝜂𝑡−1)(𝑐𝑡−1 − 𝜂𝑡)] , (6)

where 𝜂𝑡 = (ℎ𝑡+𝑙𝑡)∕2 is the average of the high and low log-prices. How-
ver, their methodology also requires that the fundamental price fol-
ows a geometric Brownian motion with continuously observed prices.
s a consequence, the estimator is still biased. Moreover, it does not
xploit the full information set of open, high, low, and close prices to
urther improve the spread estimate.

. Methodology

This paper relaxes the assumption that prices are observed
ontinuously – and several other assumptions that were required by
revious contributions – by deriving bid–ask spread estimators using
q. (4) under only Assumptions 1–3. By accounting for the discrete
ature of trades, we drastically reduce the estimation bias. By exploit-
ng the full information set of open, high, low, and close prices, we
inimize the estimation variance.

We start by introducing the indicator variable:

𝑡 =

{

0 if ℎ𝑡 = 𝑙𝑡 = 𝑐𝑡−1
1 otherwise

(7)

that equals 0 if the highest price matches the lowest price and the
previous close, and it equals 1 otherwise. The value 𝜏𝑡 = 0 indicates
that either (i) all trades in period 𝑡 are executed at the previous closing
price, which is increasingly likely when the number of trades per period
is smaller, or (ii) there is no trading and the open, high, low, and close
prices of period 𝑡 are filled with the previous close. The value 𝜏𝑡 = 1 is
the complementary case and ensures that prices are not forward-filled.

We now derive an estimator from close-to-open and open-to-mid
(de-meaned) returns by considering their serial covariance:

Cov[𝜂𝑡 − 𝑜𝑡, 𝑜𝑡 − 𝑐𝑡−1] = E[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1)] , (8)

3 From Hasbrouck’s website (https://pages.stern.nyu.edu/~jhasbrou/
esearch/GibbsCurrent/gibbsCurrentIndex.html): ‘‘I often receive inquiries
egarding Gibbs estimates formed at higher frequencies (e.g., monthly or
eekly). I do not provide these estimates due to concerns about their

eliability. The 2009 paper describes some of the issues that arise. Briefly,
he prior distributions used here are diffuse (to ensure that the posteriors are
ata-dominated). The priors are generally, however, biased. As the sample
ize drops, the posteriors start resembling the priors, and the bias problem
ecomes more acute. The only way out of this is to put more structure on the

riors. This is not impractical, but it is application-specific’’.
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where 𝜂𝑡 = (ℎ𝑡+ 𝑙𝑡)∕2 is the average of the high and low log-prices, 𝑜𝑡 is
the opening log-price, 𝑐𝑡−1 is the closing log-price of the previous time
interval, and the de-meaned returns are defined as follows:

𝑟𝑡 = 𝑟𝑡 − 𝜏𝑡
E[𝑟𝑡]
E[𝜏𝑡]

. (9)

In Appendix A.1, we prove that the covariance in Eq. (8) is equal to:

Cov[𝜂𝑡 − 𝑜𝑡, 𝑜𝑡 − 𝑐𝑡−1 ∣ 𝜏𝑡 = 1]P[𝜏𝑡 = 1] . (10)

Next, we replace observed prices with fundamental prices and bid–ask
bounces as given in Eq. (4). As fundamental returns are not autocor-
related (Assumption 1), and they are also uncorrelated with bid–ask
bounces (Assumption 2), Eq. (10) is equal to:

Cov[𝑍𝜂𝑡 −𝑍𝑜𝑡 , 𝑍𝑜𝑡 −𝑍𝑐𝑡−1 ∣ 𝜏𝑡 = 1]P[𝜏𝑡 = 1] , (11)

where 𝑍𝑜𝑡 is the bid–ask bounce at the open, 𝑍𝑐𝑡−1 is the bid–ask
bounce at the previous close, and 𝑍𝜂𝑡 = (𝑍ℎ𝑡 + 𝑍𝑙𝑡 )∕2. Conditional on
𝑡 = 1, prices are not forward-filled, and thus bid–ask bounces at time
are uncorrelated with bid–ask bounces at time 𝑡 − 1 by assumption.
oreover, they have zero mean (Assumption 3). Thus, Eq. (11) is equal

o:

[𝑍𝜂𝑡𝑍𝑜𝑡 −𝑍2
𝑜𝑡
∣ 𝜏𝑡 = 1]P[𝜏𝑡 = 1] . (12)

e now need to compute the expectation in Eq. (12). To this end, we
ecall that 𝑍𝑜𝑡 = 𝑆𝑜𝑡∕2𝐷𝑜𝑡 and thus 𝑍2

𝑜𝑡
= 𝑆2

𝑜𝑡
∕4. Hence, we have:

[𝑍2
𝑜𝑡
∣ 𝜏𝑡 = 1] = E[𝑆2

𝑜𝑡
]∕4 , (13)

and the remaining term is calculated in Appendix A.2:

E[𝑍𝜂𝑡𝑍𝑜𝑡 ∣ 𝜏𝑡 = 1] =
E[𝑆2

𝑜𝑡
]

4
P[𝑜𝑡 = ℎ𝑡 ∣ 𝜏𝑡 = 1] + P[𝑜𝑡 = 𝑙𝑡 ∣ 𝜏𝑡 = 1]

2
. (14)

Finally, we substitute Eqs. (13)–(14) into Eq. (12) and solve for the
spread. Following the calculations in Appendix A.3, we obtain that the
mean squared spread is:

𝑆2
𝑜 = E[𝑆2

𝑜𝑡
] =

−8E[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1)]
P[𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1] + P[𝑜𝑡 ≠ 𝑙𝑡, 𝜏𝑡 = 1]

. (15)

3.1. Efficient estimation of effective spreads

So far, we have derived an estimator from close-to-open and open-
to-mid returns. However, the same methodology can be used to derive
estimators from other combinations of prices. This section identifies
four estimators that achieve minimum variance under different con-
ditions. Then, we optimally combine the four estimators to minimize
the estimation variance under any condition and obtain an efficient
estimator.

For illustration, we consider the case where high and low prices
always differ from open or close prices, and returns have zero mean
such that 𝑟𝑡 = 𝑟𝑡. From Eq. (15) we obtain that the spread is propor-
ional to 𝑆2

𝑜 = E[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1)] and thus the estimation variance is
proportional to:

Var[𝑆2
𝑜 ] = Var[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1)] . (16)

q. (16) shows that the estimation variance depends on the volatility of
bserved returns. Thus, it depends on the volatility of the fundamental
rice and the size of the bid–ask spread. We now consider two comple-
entary cases where the spread is either small or large compared to

he volatility of the fundamental price.
In the first case, 𝑆 → 0 and observed prices 𝑝 coincide with funda-

ental prices 𝑝̃. In this case, the estimation variance is proportional to:

ar[𝑆2
𝑜 ] = Var[(𝜂̃𝑡 − 𝑜̃𝑡)(𝑜̃𝑡 − 𝑐𝑡−1)] = Var[𝜂̃𝑡 − 𝑜̃𝑡]Var[𝑜̃𝑡 − 𝑐𝑡−1] . (17)

Eq. (17) shows that the estimation variance decreases with the sam-
pling frequency because the volatility of the fundamental price reduces
 (
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Table 1
Discrete generalized estimators.

Estimators

OHL 𝑆2
𝑜 = 𝜋𝑜 E[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝜂𝑡−1)] 𝑆2

𝑐 = 𝜋𝑐 E[(𝜂𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 − 𝜂𝑡−1)] CHL
OHLC 𝑆2

𝑜 = 𝜋𝑜 E[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1)] 𝑆2
𝑐 = 𝜋𝑐 E[(𝑜𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 − 𝜂𝑡−1)] CHLO

Coefficients

𝜋𝑜 𝜋𝑜 = −8∕
(

P[𝑜𝑡 ≠ ℎ𝑡 , 𝜏𝑡 = 1] + P[𝑜𝑡 ≠ 𝑙𝑡 , 𝜏𝑡 = 1]
)

𝜋𝑐 𝜋𝑐 = −8∕
(

P[𝑐𝑡−1 ≠ ℎ𝑡−1 , 𝜏𝑡 = 1] + P[𝑐𝑡−1 ≠ 𝑙𝑡−1 , 𝜏𝑡 = 1]
)

Prices

o,h,l,c Open, High, Low, Close log-prices.
𝜂 Mid-prices computed as 𝜂 = (𝑙 + ℎ)∕2.

This table reports bid–ask spread estimators obtained from several combinations of
open, high, low, and close prices as described in Section 3. The OHL and OHLC
estimators measure the spread at the open. The CHL and CHLO estimators measure the
spread at the close. The indicator variable 𝜏𝑡 is defined in Eq. (7) and the de-meaned
returns 𝑟𝑡 are defined in Eq. (9).

at higher frequencies and makes the estimation variance smaller. In
other words, we obtain that the bid–ask spread should be estimated
with the highest frequency data possible and that estimators consid-
ering higher time lags are dominated by estimators considering the
smallest possible lag. The estimator in Eq. (15) is optimal because it
considers subsequent close-to-open and open-to-mid returns. An equiv-
alent estimator is obtained by considering subsequent mid-to-close
and close-to-open returns, as we expect open-to-mid returns to be
distributed similarly to mid-to-close returns. All other estimators have
a larger variance and are dominated by these two because they require
higher time lags.

In the second case, 𝑆 → ∞ and observed returns are driven by bid–
ask bounces. Moreover, as the spread is large, high prices are buys, and
low prices are sells. In this case, 𝑍𝜂𝑡 = (𝑍ℎ𝑡 + 𝑍𝑙𝑡 )∕2 = 𝑆∕4 − 𝑆∕4 = 0
and the estimation variance is proportional to:

Var[𝑆2
𝑜 ] = Var[(𝑍𝜂𝑡 −𝑍𝑜𝑡 )(𝑍𝑜𝑡 −𝑍𝑐𝑡−1 )] = Var[𝑍𝑜𝑡 ]

2+Var[𝑍𝑜𝑡 ]Var[𝑍𝑐𝑡−1 ] .

(18)

Eq. (18) shows that the estimation variance can be reduced by using
the mid price 𝜂𝑡−1 (Var[𝑍𝜂𝑡−1 ] = 0) instead of the closing price 𝑐𝑡−1
(Var[𝑍𝑐𝑡−1 ] → ∞). In this case, the estimation variance becomes
Var[𝑍𝑜𝑡 ]

2, which is strictly smaller than that in Eq. (18). In other words,
it is convenient to consider subsequent mid-to-open and open-to-mid
returns when the spread is large compared to volatility. An equivalent
estimator is obtained by considering subsequent mid-to-close and close-
to-mid returns, as we expect (i) mid-to-close returns to be distributed
similarly to open-to-mid returns and (ii) close-to-mid returns to be
distributed similarly to mid-to-open returns.

Table 1 summarizes the four estimators derived from the combina-
tions of prices discussed above. We call these estimators Discrete Gener-
alized Estimators (DGEs) because they account for the fact that prices
unfold in discrete time and generalize previous approaches that rely
on continuously observed prices. For instance, the estimator by Abdi
and Ranaldo (2017) can be regarded as a particular case of our CHL
estimator in Table 1. Indeed, if we require prices to be observed
continuously, they are never forward-filled and the closing price always
differs from the high or low prices. Therefore, 𝜋𝑐 = −4 and for zero-

ean returns the CHL estimator becomes 𝑆2 = −4E[(𝜂𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 −
𝑡−1)] = 4E[(𝑐𝑡−1 − 𝜂𝑡)(𝑐𝑡−1 − 𝜂𝑡−1)], which is identical to the estimator
n Eq. (6). Thus, our CHL estimator can be regarded as a generalization
f the Abdi and Ranaldo (2017) estimator that provides an analytical
orrection term accounting for discretely observed prices.

Next, we combine our DGEs to minimize the estimation variance
nd obtain the Efficient DGE (EDGE). To this end, we notice that each
GE can be written as a moment condition so that their efficient com-
ination is obtained by applying the Generalized Methods of Moments
GMM) (Hansen, 1982). As discussed above, the OHL estimator in
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Table 1 is expected to perform similarly to CHL, and OHLC is expected
to perform similarly to CHLO. However, OHL and OHLC measure the
spread at the open while CHL and CHLO measure the spread at the
close. We thus combine OHL with CHL and OHLC with CHLO to obtain
two moment conditions that measure the average spread at the open
and close:

E
[

2𝑆2 − 𝜋𝑜(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝜂𝑡−1) − 𝜋𝑐 (𝜂𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 − 𝜂𝑡−1)
]

= 0 , (19)

E
[

2𝑆2 − 𝜋𝑜(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1) − 𝜋𝑐 (𝑜𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 − 𝜂𝑡−1)
]

= 0 , (20)

here we have set 𝑆2 = (𝑆2
𝑜 + 𝑆2

𝑐 )∕2 for notational convenience. These
oment conditions can be written as E[𝑆2 − 𝑥𝑖,𝑡] = 0 where 𝑥 is

opportunely defined. By applying GMM, the efficient estimator is given
by:

𝑆2
GMM = argmin

𝑆2

∑

𝑖𝑗
(𝑆2 − 𝜇𝑖)𝑊𝑖𝑗 (𝑆2 − 𝜇𝑗 ) , (21)

where 𝜇𝑖 = E[𝑥𝑖,𝑡] and 𝑊 = 𝛺−1 is the inverse of the covariance matrix
𝛺 = Var[𝑆2 − 𝑥𝑖,𝑡], which simplifies to 𝛺 = Var[𝑥𝑖,𝑡] as the variance
is translation invariant. Therefore, we have a particular case of GMM
where the optimal weighting matrix does not depend on the minimizing
variable, and the problem reduces to the minimization of a quadratic
form. By differentiating Eq. (21), setting the derivative equal to zero,
and solving for 𝑆2, we obtain:

𝑆2
GMM =

∑

𝑖
𝑤𝑖𝜇𝑖 with 𝑤𝑖 =

∑

𝑗 𝑊𝑖𝑗
∑

𝑖,𝑗 𝑊𝑖𝑗
. (22)

Finally, applying GMM in Eq. (22) with the two moment conditions
bove and a diagonal covariance matrix 𝛺 gives our Efficient Discrete
eneralized Estimator (EDGE):
2
EDGE = 𝑤1E[𝑥1,𝑡] +𝑤2E[𝑥2,𝑡] , (23)

𝑥1,𝑡 =
𝜋𝑜
2
(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝜂𝑡−1) +

𝜋𝑐
2
(𝜂𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 − 𝜂𝑡−1) ,

𝑥2,𝑡 =
𝜋𝑜
2
(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1) +

𝜋𝑐
2
(𝑜𝑡 − 𝑐𝑡−1)(𝑐𝑡−1 − 𝜂𝑡−1) ,

(24)

1 =
Var[𝑥2,𝑡]

Var[𝑥1,𝑡] + Var[𝑥2,𝑡]
, 𝑤2 =

Var[𝑥1,𝑡]
Var[𝑥1,𝑡] + Var[𝑥2,𝑡]

. (25)

For estimation, the usual sample counterparts replace the expectations
and variances, respectively.

3.2. Negative estimates

Our estimators and those of Roll (1984), Corwin and Schultz (2012),
and Abdi and Ranaldo (2017) are formal estimators for the mean
squared spread 𝑆2. However, the estimate 𝑆̂2 may become negative in
mall samples due to statistical fluctuations. This is an issue because

negative squared spread is not mathematically nor economically
eaningful.

To guarantee the non-negativity of spread estimates, it is common
o reset negative values to zero by applying the transformation:

̂ =
√

max
{

0 , 𝑆̂2
}

. (26)

Although this approach maintains non-negativity, it can lead to a
substantial number of zero estimates, which can be problematic for
certain applications like portfolio sorting. In an effort to mitigate this
drawback, earlier studies have explored calculating the squared spread
across rolling time intervals, resetting negative estimates to zero within
these intervals, and subsequently computing the average across the
entire estimation period. However, Jahan-Parvar and Zikes (2023) have
shown that this strategy introduces a strong upward bias that does not
decline as the sample size increases, making the estimates inconsistent.
They document that volatility is the primary driver of the bias and
that inconsistent measures fail to replicate some well-known results
in empirical finance. Following their recommendations, we apply the
6 
transformation in Eq. (26) to the final estimate. This ensures that
the bias declines as the sample size increases and the estimate 𝑆̂ is
consistent.

Another way to produce consistent estimates while avoiding zero
values is to take the square root of the modulus of the final estimate 𝑆̂2.
This proposition is motivated by the positive correlation between neg-
ative estimates and minus the spread that we have found empirically
(see Internet Appendix I.2). Another possibility is to use the tick size
as a reasonable lower bound for the estimates.4 However, for the sake
of comparability with prior studies, we reset negative estimates to zero
within this paper, leaving the exploration of alternative approaches for
future research.

4. Simulation results

In this section, we perform Monte Carlo simulations to study the
accuracy of EDGE and its building blocks. We compare the results with
the seminal Roll (1984) estimator and with the estimators proposed
more recently by Corwin and Schultz (2012) and Abdi and Ranaldo
(2017). Throughout the paper, we refer to these estimators with ROLL,
CS, and AR, respectively. The CS estimator is adjusted for overnight
returns as described in Corwin and Schultz (2012).

4.1. Setup

For ease of comparison, we use the simulation setup of Corwin and
Schultz (2012), also used in Abdi and Ranaldo (2017). Specifically,
we simulate 10,000 months of data where each month consists of 21
trading days and each day consists of 390 min. For each minute of the
day, the fundamental price 𝑃𝑚 is simulated as 𝑃𝑚 = 𝑃𝑚−1𝑒𝜎𝑧 with 𝑃0 = 1,
where 𝜎 is the standard deviation per minute and 𝑧 is a random draw
from a standard Gaussian distribution. The daily standard deviation
equals 3%, and the standard deviation per minute equals 3% divided by
√

390. Trade prices are defined as 𝑃𝑚 multiplied by one minus (plus)
half the assumed bid–ask spread, and we use a 50% chance for bid
(ask) prices. Prices are assumed to be observed with a given probability.
Daily high and low prices equal the highest and lowest prices observed
during the day. Open and close prices equal the first and the last prices
observed in the day. If no trade is observed for a given day, then the
previous day’s closing price is used as the open, high, low, and close
prices for that day.

4.2. Results

We start by studying the bias of the various estimators. To this end,
we simulate 10,000 months of daily prices and estimate the spread
using the whole time series. These simulations use a constant spread
of 1%, and the probability of observing a trade ranges from 1/390 to
1, such that the expected number of daily trades ranges from 1 to 390.

Fig. 2 shows how the spread estimate varies in function of the
trading frequency. We find that all estimators are unbiased and cor-
rectly estimate a spread equal to 1% when we use 390 trades per day.
However, their behavior is substantially different when the trading
frequency declines. Indeed, CS estimates a spread of 0.75% in the
simulation using 100 trades per day. Moreover, its downward bias
increases rapidly as the trading frequency declines further, and it
returns an estimate of zero in the simulations that use less than ten
trades per day. AR is less sensitive to the trading frequency, but it is
still significantly biased in the simulations that use only a few trades per
day. Instead, EDGE produces unbiased estimates regardless of the num-
ber of trades, suggesting it works well in practice even for assets that
trade infrequently. These results demonstrate how CS and AR strongly
rely on the assumption that assets are traded continuously and produce

4 We thank an anonymous referee for this suggestion.
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Fig. 2. Bias of simulated spread estimates.
The figure reports spreads estimated from 10,000 months of simulated data where each month consists of 21 trading days and each day consists of 390 min. For each minute of
the day, the fundamental value 𝑃𝑚 is simulated as 𝑃𝑚 = 𝑃𝑚−1𝑒𝜎𝑧 with 𝑃0 = 1, where 𝜎 is the standard deviation per minute and 𝑧 is a random draw from a standard Gaussian
distribution. The daily standard deviation equals 3%, and the standard deviation per minute equals 3% divided by

√

390. Trade prices are defined as 𝑃𝑚 multiplied by one minus
plus) half the bid–ask spread, where the spread equals 1.00%, and we assume a 50% chance that a bid (ask) is observed. The probability of observing a trade ranges from 1/390
o 1, and the average number of trades per day is reported on the 𝑥-axis. Daily high and low prices equal the highest and lowest prices observed during the day. Open and close
rices equal the first and the last prices observed in the day. If no trade is observed for a given day, then the previous day’s closing price is used as the open, high, low, and
lose prices for that day. Negative spread estimates are set to zero.
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ownward biased estimates when that assumption is not satisfied. Our
ore general methodology provides an analytical correction term that

ccounts for infrequent trading and produces asymptotically unbiased
stimates.

Next, we study the variance of the estimators by computing the
tandard deviation of monthly spread estimates across 10,000 simula-
ions, where each month consists of 21 trading days. These simulations
se 390 trades per day to ensure that all estimators are unbiased. In
his setting, an estimator with lower variance is strictly preferable to
ne with higher variance because it produces unbiased estimates with
igher precision.

Fig. 3 reports the standard deviation of spread estimates in simu-
ations that use a constant spread ranging from 0.50% to 8.00%. CS
s preferable to AR for smaller spreads, while AR is for larger spreads.
DGE is always the best estimator, providing the most precise estimates
ith minimum variance uniformly across small and large spreads.

To shed light on the performance of EDGE, we also report the
ehavior of its building blocks. In agreement with the discussion in
ection 3.1, Fig. 3 shows that OHL is equivalent to CHL, and OHLC
s equivalent to CHLO. Moreover, the variance of OHLC and CHLO
ecreases for smaller spreads. On the contrary, the variance of OHL and
HL decreases for larger spreads. EDGE exploits the opposite behav-

ors of these estimators to produce estimates with minimum variance
niformly across small and large spreads. Indeed, Eq. (25) shows that
DGE puts more weight on the OHLC and CHLO estimators for smaller
preads, while it puts more weight on the OHL and CHL estimators
or larger spreads. The result is an estimator that achieves minimum
ariance across small and large spreads. For an additional comparison,
e also report the results for the GMM estimator in Eq. (22) where we

et the weighting matrix equal to the identity matrix. This estimator
 e

7 
as roughly the same variance of EDGE for spreads between 2.00%
nd 5.00%, but its variance is worse for smaller and larger spreads.
e conclude that the weighting matrix used for EDGE is effective in
inimizing the estimation variance.

Finally, Table 2 reports the mean and standard deviation of monthly
pread estimates from daily prices across 10,000 simulations. Panel A
ses 390 trades per day to simulate frequent trading. Here, estimators
ther than ROLL produce mean spreads close to the actual values used
n the simulation and are essentially unbiased. ROLL is affected by
n upward bias for small spreads that arises from truncating negative
stimates and is exacerbated by the large estimation variance. EDGE
utperforms all other estimators in these simulations by producing
nbiased estimates with the lowest variance across small and large
preads. Panel B introduces infrequent trading in the simulations. We
ind that EDGE outperforms its building blocks by producing estimates
ith lower variance and other estimators by producing estimates with

ower bias. AR seems to perform similarly to EDGE for simulations
hat use a spread of 0.50%, but this is due to the downward bias for
nfrequent trading being counterbalanced by the upward bias induced
y truncating negative estimates. Although CS produces estimates with
ow variance, these estimates are strongly biased. For instance, CS
stimates a spread of 0.04% where the actual spread used in the
imulation is 1.00%.

In summary, our estimator yields unbiased estimates when other
stimators are biased and achieves minimum variance when all esti-
ators are unbiased.

. Empirical results

In this section, we investigate the performance of the estimators on

mpirical data. To evaluate the performance, we first need to define
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Fig. 3. Variance of simulated spread estimates.
The figure reports the standard deviation of monthly spread estimates across 10,000 simulations, where each month consists of 21 trading days and each day consists of 390 min.
For each minute of the day, the fundamental value 𝑃𝑚 is simulated as 𝑃𝑚 = 𝑃𝑚−1𝑒𝜎𝑧 with 𝑃0 = 1, where 𝜎 is the standard deviation per minute and 𝑧 is a random draw from
a standard Gaussian distribution. The daily standard deviation equals 3%, and the standard deviation per minute equals 3% divided by

√

390. Trade prices are defined as 𝑃𝑚
ultiplied by one minus (plus) half the bid–ask spread, where the spread is reported on the 𝑥-axis, and we assume a 50% chance that a bid (ask) is observed. Daily high and low
rices equal the highest and lowest prices observed during the day. Open and close prices equal the first and the last prices observed in the day. Negative spread estimates are set
o zero. The OHL, CHL, OHLC, and CHLO estimators are defined in Table 1, and GMM is their GMM-combination in Eq. (22) where the weighting matrix is the identity matrix.
Table 2
Monthly estimates from simulated daily prices.

EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Frequent Trading

𝑆 = 0.50% Mean 0.44 0.46 0.46 0.79 0.79 0.70 0.60 1.44
(sd) (0.33) (0.40) (0.39) (0.79) (0.79) (0.77) (0.49) (1.43)

𝑆 = 1.00% Mean 0.90 0.88 0.88 1.03 1.03 0.95 1.03 1.59
(sd) (0.42) (0.55) (0.55) (0.86) (0.86) (0.85) (0.58) (1.49)

𝑆 = 3.00% Mean 2.88 2.87 2.88 2.92 2.93 2.92 2.93 2.95
(sd) (0.41) (0.69) (0.69) (0.73) (0.72) (0.70) (0.61) (1.83)

𝑆 = 5.00% Mean 4.87 4.86 4.87 4.92 4.93 4.97 4.90 4.90
(sd) (0.42) (0.81) (0.81) (0.62) (0.62) (0.58) (0.61) (2.14)

𝑆 = 8.00% Mean 7.84 7.78 7.79 7.88 7.89 7.99 7.86 7.93
(sd) (0.45) (1.11) (1.10) (0.64) (0.64) (0.54) (0.62) (2.63)

Panel B: Infrequent Trading

𝑆 = 0.50% Mean 0.71 0.77 0.79 0.89 0.91 0.65 0.02 1.44
(sd) (0.75) (0.87) (0.88) (0.96) (0.97) (0.73) (0.07) (1.42)

𝑆 = 1.00% Mean 0.95 0.99 0.99 1.11 1.10 0.81 0.04 1.56
(sd) (0.83) (0.97) (0.96) (1.03) (1.04) (0.80) (0.10) (1.47)

𝑆 = 3.00% Mean 2.89 2.76 2.76 2.86 2.86 2.26 0.35 2.89
(sd) (0.83) (1.23) (1.23) (1.20) (1.19) (0.92) (0.36) (1.82)

𝑆 = 5.00% Mean 5.02 4.89 4.92 5.01 5.04 4.04 1.17 4.83
(sd) (0.81) (1.32) (1.33) (1.13) (1.13) (0.85) (0.62) (2.12)

𝑆 = 8.00% Mean 8.19 8.10 8.06 8.23 8.20 6.59 2.66 7.71
(sd) (0.96) (1.59) (1.62) (1.24) (1.26) (0.94) (0.96) (2.65)

The table reports means and standard deviations (in %) of monthly spread estimates across 10,000 simulations, where each month consists
of 21 trading days and each day consists of 390 min. For each minute of the day, the fundamental value 𝑃𝑚 is simulated as 𝑃𝑚 = 𝑃𝑚−1𝑒𝜎𝑧

with 𝑃0 = 1, where 𝜎 is the standard deviation per minute and 𝑧 is a random draw from a standard Gaussian distribution. The daily standard
deviation equals 3%, and the standard deviation per minute equals 3% divided by

√

390. Trade prices are defined as 𝑃𝑚 multiplied by one
minus (plus) half the bid–ask spread 𝑆, and we assume a 50% chance that a bid (ask) is observed. Panel A reports the results where the
probability of observing a trade is 100%. In Panel B, that probability equals 1%. Daily high and low prices equal the highest and lowest prices
observed during the day. Open and close prices equal the first and the last prices observed in the day. If no trade is observed for a given day,
then the previous day’s closing price is used as the open, high, low, and close prices for that day. Negative spread estimates are set to zero.
8 
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the ground truth, that is, the spread that serves as the benchmark for
the evaluation. Following the literature, we use the effective spread
obtained by matching high-frequency trade and quote data to evaluate
the performance of the various estimators that only require commonly
available daily price data.

5.1. Data

To compute bid–ask spread estimates (i.e., EDGE, AR, CS, ROLL),
we obtain daily prices from the CRSP US Stock Database in the period
1926–2021 for all NYSE, AMEX, and NASDAQ stocks with CRSP share
codes of 10 or 11 (i.e., U.S. common shares). To ensure that all the
estimates are obtained from transaction prices, we keep only obser-
vations for which the open, high, low, and close prices are directly
available. CRSP reports quotes derived from bid and ask prices if
transaction prices are unavailable, and a dash in front of the price
marks these values. We consider these non-transaction-based prices as
missing values. Then, we drop the days where the high, low, or close
price is missing. We also drop days where the open or close prices are
outside the high-low range or where the low price is higher than the
high price.

We match CRSP and TAQ daily data using CUSIP identifiers and
tickers. First, we reconstruct the time series of CUSIPs for each
KYPERMNO in CRSP. Similarly, we reconstruct the time series of
TICKERs for each KYPERMNO in CRSP. Then, we compute the time
series of CUSIPs for each SYMBOL in TAQ using the Monthly TAQ
Master files for 1993–2009 and the Daily TAQ Master files for 2010–
2021. Finally, we merge the daily datasets by matching observations
with the same date, with the same CUSIP, and where the TAQ’s
SYMBOL is equal to the TICKER in CRSP. Our identification strategy
llows us to match 99% of the stocks in CRSP.

For each stock-month, we estimate the spread from daily prices with
DGE, AR, CS, and ROLL and drop the estimate for all the estimators if
t is missing for any of them. For instance, EDGE cannot be computed
f open prices are missing, and ROLL cannot be computed if a stock-
onth contains only two daily observations. In such cases, we drop

he corresponding estimate for all estimators. We use no explicit cutoff
or the number of observations in a given stock-month. The cutoff
s implicitly determined by the requirements of the most stringent
stimator. Ultimately, the covariance requires at least two returns to be
omputed, meaning we need at least three daily observations in a stock-
onth. In our CRSP-TAQ merged sample, the frequency of missing

stimates for each of the estimators is 1.24% for EDGE, 0.48% for CHL,
.02% for OHL, 1.17% for CHLO, 1.02% for OHLC, 0.03% for AR,
.03% for CS, and 0.14% for ROLL. Moreover, when CHL is missing
nd CS is not, the CS estimate is zero in 90% of the cases. When CHL
s missing and AR is not, the AR estimate is zero in 100% of the cases.
hese are mostly cases when the stock always trades at the same price
o that the denominator of our estimators is zero and the estimate is
ndefined. In such cases, a missing estimate should be preferable to an
mplicit imputation of zero produced by the other estimators.

We rely on the TAQ database from May 1993 to December 2021 to
ompute the benchmark effective spread. Daily spreads are obtained via
he Wharton Research Data Services (WRDS) Intraday Indicators using
onthly TAQ from 1993 to 2003 and Daily TAQ from 2004 onward, ac-

ording to the methodology described in Holden and Jacobsen (2014).
or each month, we winsorize the daily spreads at 99.5% (one-sided)
nd compute the root mean squared spread for each stock. We refer to
his measure as HJ.

To ensure that our results are robust to the choice of the benchmark,
e also compute spreads using the weighted midpoint as described

n Hagströmer (2021). First, we replicate the daily spread measures
rom the WRDS Intraday Indicators using the Daily TAQ database in
he period 2004–2021 and we recompute our monthly HJ benchmark.
he benchmark achieves 99.5% correlation with the one obtained

sing the estimates pre-computed by WRDS. Next, we replace the A
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midpoint with the weighted midpoint to generate the effective spreads
described in Hagströmer (2021). The correlation between the monthly
benchmarks using the midpoint and weight-midpoint effective spreads
is 99.1%. We have evaluated the estimators using both benchmarks,
and all the results are fully consistent. Throughout the paper, we use
the midpoint benchmark as it is pre-computed by WRDS also for the
Monthly TAQ database in the period 1993–2003, where the National
Best Bid and Offer (NBBO) is not directly available and matching trades
with quotes poses several challenges (Holden and Jacobsen, 2014).

5.2. Results

Our CRSP-TAQ merged sample consists of about 1.6 million stock-
month spread estimates for each estimator in the sample period from
May 1993 to December 2021. In Table 3, we report summary statistics
and several evaluation metrics for the estimates. EDGE achieves the
highest correlation with the HJ benchmark, the lowest mean absolute
percentage error (MAPE), root mean squared error (RMSE), and the
smallest fraction of zero estimates.5

The remainder of this section is dedicated to a deeper comparison
across the estimators in a cross-sectional, time-series, and panel-data
setting.

5.3. Cross-sectional correlation

Looking at cross-sectional correlations on a month-by-month basis
allows us to evaluate the estimators’ ability to capture the cross-
sectional distribution of spreads in different time periods. Given the
effective spread benchmark 𝑆𝑖,𝑡 for stock 𝑖 at time 𝑡 and the correspond-
ing estimate 𝑆̂𝑖,𝑡, we compute the cross-sectional correlation at time 𝑡 as
𝜌𝑡 = Cor𝑖[𝑆𝑖,𝑡, 𝑆̂𝑖,𝑡]. The month-by-month cross-sectional correlations for
the various estimators are displayed in Fig. 4. The correlation between
EDGE and the effective spread benchmark is consistently higher than
the correlations achieved by any other estimator throughout the whole
period considered in the analysis.

5.4. Time-series correlation

Looking at time-series correlations on a stock-by-stock basis allows
us to evaluate the ability of the estimators to capture the time-series
distribution of spreads for different kinds of stocks. To this end, we
split all stocks in deciles based on their market capitalization. The size
deciles are sorted by increasing market capitalization of each stock as
its last listing date in CRSP. Then, given the effective spread benchmark
𝑆𝑖,𝑡 for stock 𝑖 at time 𝑡 and the corresponding estimate 𝑆̂𝑖,𝑡, we compute
the time-series correlation for decile 𝑑 as 𝜌𝑑 = Cor𝑡,𝑖∈𝑑 [𝑆𝑖,𝑡, 𝑆̂𝑖,𝑡]. The
time-series correlations for each decile obtained with the various esti-
mators are displayed in Fig. 5. The correlation between EDGE and the
effective spread benchmark is consistently higher than the correlations
achieved by any other estimator for all types of stocks.

5.5. Panel-data correlation

Next, we analyze the performances across five dimensions: market
venues, time periods, market capitalization, spread size, and trading
frequency. When analyzing market venues, the groups correspond to
NYSE, AMEX, and NASDAQ. For the time periods, we use those de-
fined in Corwin and Schultz (2012) and Abdi and Ranaldo (2017).
In addition, we extend the sample and include the more recent sub-
period 2016–2021. For size groups, we sort stocks in quintiles based
on their market capitalization at their last listing date in CRSP. Spread
quintiles are sorted on the average effective spread throughout the life

5 The MAPE and RMSE are computed on log-spreads as described in Internet
ppendix I.4.
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Table 3
Summary statistics.

N Mean Med Sd Cor𝑃 Cor𝑆 MAPE RMSE FNPE
(1) (%) (%) (%) (%) (%) (%) (1) (%)

EDGE 1,637,621 2.11 1.00 3.37 78.86 66.68 16.21 1.23 25.63
OHLC 1,637,621 2.22 1.05 3.57 69.87 57.17 18.83 1.37 29.74
CHLO 1,637,621 2.01 0.85 3.56 74.26 58.77 17.08 1.27 30.97
OHL 1,637,621 2.35 1.21 3.65 69.95 54.64 20.47 1.49 29.97
CHL 1,637,621 2.16 1.03 3.67 73.83 55.44 18.93 1.41 31.30
AR 1,637,621 1.70 0.95 2.50 68.13 53.55 19.90 1.41 31.87
CS 1,637,621 0.66 0.28 1.10 45.55 33.77 35.90 2.61 29.18
ROLL 1,637,621 2.47 1.39 4.09 55.22 41.38 24.53 1.80 32.60

HJ 1,637,621 1.89 0.75 2.73 – – – – –

The table reports summary statistics of stock-month spread estimates from daily prices in the sample period 1993–2021
(CRSP-TAQ merged sample). Negative spread estimates are set to zero, and we drop the stock-month estimate for all the
estimators if it is missing for any of them. The table reports the number of stock-months (N), the mean (Mean), median
(Med), and standard deviation (Sd) of the estimates, their Pearson’s (Cor𝑃 ) and Spearman’s (Cor𝑆 ) correlation with the HJ
benchmark, the mean absolute percentage error (MAPE) and the root mean squared error (RMSE) computed on the log-spreads
(see Internet Appendix I.4), and the Fraction of Non-Positive Estimates (FNPE). The highest correlations, the lowest errors,
and the lowest fraction of non-positive estimates are in bold.
Fig. 4. Cross-sectional correlation with the HJ benchmark.
The figure shows cross-sectional Pearson’s correlations between stock-month spread estimates from daily prices and the HJ benchmark for each month in the sample period
1993–2021 (CRSP-TAQ merged sample). Negative spread estimates are set to zero, and we drop the stock-month estimate for all the estimators if it is missing for any of them.
of the stock. For the trading frequency, we split stocks based on their
average number of daily trades during the whole sample period. Then,
given the effective spread benchmark 𝑆𝑖,𝑡 for stock 𝑖 at time 𝑡 and the
corresponding estimate 𝑆̂𝑖,𝑡, we compute the correlation for group 𝑔 as
𝜌𝑔 = Cor(𝑖,𝑡)∈𝑔[𝑆𝑖,𝑡, 𝑆̂𝑖,𝑡].

The results are summarized in Table 4 for market venues (Panel A),
time periods (Panel B), market capitalization (Panel C), spread size
(Panel D), and trading frequency (Panel E). One clear result emerges:
EDGE outperforms all the alternative estimators in each market venue,
sub-period, market capitalization, spread size, and for each trading
frequency by consistently achieving the highest correlation with the
effective spread benchmark. To shed light on the performance of EDGE,
we also report the behavior of its building blocks. In particular, it is
natural to compare CHL with AR as they use the same information
set of high, low, and close prices. As the main difference between
the two estimators is that CHL accounts for infrequent trading, the

outperformance of CHL compared to AR demonstrates the importance
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of relaxing the assumption that prices are observed continuously to
ultimately improve empirical results. Table 4 further shows that any
single building block OHL, CHL, OHLC, CHLO outperforms AR, CS, and
ROLL. Finally, EDGE optimally combines its building blocks to provide
an estimator that is superior to any of them taken individually.

In the Internet Appendix, we provide representative illustrations for
individual stocks to investigate the estimators’ performance further. We
also compare the estimators using additional evaluation metrics such
as Spearman’s (rank) correlation, MAPE and RMSE, and the fraction
of zero estimates. Overall, EDGE achieves the highest rank correlation
with the benchmark, the lowest MAPE and RMSE, and generates the
lowest fraction of non-positive estimates. We also find that it achieves
the best results when estimating first differences instead of spread levels
and when increasing the estimation window from one month to one
year. It is also interesting to note that CS achieves a slightly lower
MAPE and RMSE compared to EDGE in the following cases: (a) NYSE

stocks, (b) recent periods, (c) large stocks, (d) small spreads, and (e)
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Fig. 5. Time-series correlation with the HJ benchmark.
The figure shows time-series Pearson’s correlations between stock-month spread estimates from daily prices and the HJ benchmark for size deciles in the sample period 1993–2021
(CRSP-TAQ merged sample). Size deciles are sorted by increasing market capitalization at the last observed period for each individual stock. Negative spread estimates are set to
zero, and we drop the stock-month estimate for all the estimators if it is missing for any of them.
frequent trading. Taken together, these are all cases where the bid–ask
spread is expected to be small and where the downward bias of the CS
estimator may improve the estimate. Indeed, if the spread is expected
to be small, then an estimator biased towards zero may yield better
results. This observation suggests that, generally, a Bayesian approach
may further improve the estimate when a good prior is available for
specific applications. We leave such possibility for future research as
we focus on an estimator of general applicability here.

6. Applications

To demonstrate the broad applicability of EDGE, we provide three
representative examples. The first revisits historical spread estimates
from daily prices in the U.S. stock market since 1926. The second
studies spread estimates obtained from intraday prices for U.S. stocks.
Finally, the third applies the estimator outside the U.S. stock market
and compares low- and high-frequency estimates for cryptocurrencies.

6.1. Low-frequency estimates for the U.S. stock market

Using CRSP data since 1926, we construct, for each month, three
portfolios based on size according to the following procedure. First,
we sort the stocks based on their market capitalization at the end
of each month. Then, we select small-caps, mid-caps, and large-caps
using the 50th and 80th percentiles as breakpoints. Finally, we com-
pute monthly spread estimates for individual stocks and construct the
average spread for each of the three portfolios in each month be-
tween 1926–1992 (CRSP sample) and 1993–2021 (CRSP-TAQ merged
sample).6 The results are reported in Fig. 6.

6 When EDGE cannot be computed, we use the CHL estimator in Table 1
hat does not need open prices. Open prices are missing in CRSP from July
962 through June 1992.
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Panel A displays the cross-sectional mean of spread estimates for
small stocks. According to EDGE, the spread was high in the 1930s,
spiked in 1933 with peaks between 10%–15%, decreased until the
1960s and increased again with a first peak of about 5% in 1963, a sec-
ond peak of 7.5% in 1975, and a third peak of 10% in the early 1990s.
In line with the idea that liquidity evaporates in times of crisis (Nagel,
2012), these years coincide with periods of financial downturn and
economic recession, such as the Great Depression between 1929–41,
the U.S. Banking Crisis of 1933, the Kennedy Slide of 1962, the 1973–
1975 recession following the oil crisis, and the early 1990s recession in
the United States. Following the electronization of financial markets in
the 2000s, the spread decreased significantly until the global financial
crisis, when it spiked again in 2009 with a peak close to 5%. The
spread has continued to reduce in the last decade, reaching the lowest
level ever as of December 2021. In the CRSP-TAQ merged sample
after 1993, the HJ benchmark closely follows this trend and overlaps
with EDGE. Instead, CS and AR tend to underestimate the spread,
particularly for older periods, mirroring that these estimators are biased
when trading becomes increasingly infrequent. In the historical sample
before 1993, we find that the gap between EDGE and the alternative
estimators widens. EDGE is often larger than AR by a factor of two,
and the difference is even more pronounced compared to CS. Given
our benchmark result from the recent sample, we conjecture that the
alternative estimators considerably underestimate the effective spread
in the early sample.

Panels B and C report the results for medium and large stocks,
respectively. As expected, we find that larger stocks tend to have lower
spreads than smaller stocks. Indeed, EDGE estimates an average spread
that is typically below 2.5% for medium stocks and below 1% for large
stocks. The gap with AR and CS decreases for larger stocks, mirroring
that their bias reduces for stocks presumably traded more frequently.

Fig. 6 also reports end-of-day quoted spreads derived from CRSP.
These spreads are significantly higher than the effective spread bench-

mark in the sample period between 1993 and the early 2000s. The
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Table 4
Pearson’s correlation with the HJ benchmark.

EDGE OHLC CHLO OHL CHL AR CS ROLL

Panel A: Analysis by Market Exchange

NYSE 64.94 53.22 61.84 52.15 58.43 46.79 45.87 29.59
AMEX 68.99 57.77 67.84 59.26 68.23 61.05 38.32 48.15
NASDAQ 78.16 68.62 73.24 68.87 72.99 67.03 41.09 54.81

Panel B: Analysis by Time Period

1993–1996 82.93 75.94 76.83 77.68 78.57 75.31 46.94 70.23
1997–2000 78.47 68.24 73.40 68.95 73.41 69.20 45.06 60.19
2001–2002 73.04 60.47 70.32 61.44 69.59 67.31 40.70 59.00
2003–2007 67.65 57.56 63.45 57.26 61.97 57.34 33.87 38.10
2008–2011 69.89 62.16 64.00 61.49 62.26 59.17 33.99 43.70
2012–2015 60.78 51.41 55.93 52.09 55.64 53.14 37.29 29.24
2016–2021 53.98 46.72 43.97 46.48 43.11 40.78 39.34 22.11

Panel C: Analysis by Market Capitalization

Size quintile 1 74.35 63.60 69.90 64.86 70.44 65.00 37.16 56.08
Size quintile 2 71.29 60.36 66.68 60.39 66.33 56.08 30.20 44.31
Size quintile 3 75.13 65.09 70.32 63.12 67.28 57.22 38.41 40.11
Size quintile 4 72.55 62.93 68.07 59.63 63.44 53.02 44.60 32.90
Size quintile 5 66.65 57.77 61.32 54.24 56.17 47.31 47.24 30.31

Panel D: Analysis by Spread Size

Spread quintile 1 17.84 15.62 16.56 15.43 15.21 14.18 12.64 9.60
Spread quintile 2 45.66 39.59 41.73 34.67 34.15 30.35 32.79 15.06
Spread quintile 3 61.98 52.28 57.80 48.88 52.46 44.72 40.82 24.64
Spread quintile 4 67.76 55.55 64.44 55.32 63.21 55.22 37.74 38.98
Spread quintile 5 71.38 60.78 66.08 62.57 67.24 61.83 33.15 55.06

Panel E: Analysis by Trading Frequency

Numtrd quintile 1 74.77 65.88 69.12 67.68 70.37 67.81 40.02 65.10
Numtrd quintile 2 79.15 69.32 74.45 69.55 74.17 69.58 51.59 52.00
Numtrd quintile 3 75.41 65.77 70.94 63.92 67.92 60.98 50.42 40.53
Numtrd quintile 4 67.17 58.53 62.78 56.00 58.71 52.54 48.98 32.41
Numtrd quintile 5 55.48 48.05 50.02 45.23 45.78 39.36 43.91 22.29

The table reports Pearson’s correlations (in %) with the HJ benchmark for stock-month spread estimates from daily prices in the sample period
1993–2021 (CRSP-TAQ merged sample). The highest correlation per group is in bold. Negative spread estimates are set to zero, and we drop
the stock-month estimate for all the estimators if it is missing for any of them. The size quintiles are sorted by increasing market capitalization
at the last observed period for each individual stock. The spread quintiles are sorted by increasing average HJ spreads during the whole sample
period. The trade quintiles are sorted by increasing average number of daily trades during the whole sample period.
d

istorical sample also supports this finding before 1993, where quoted
preads are often higher than EDGE by a factor of two. We thus confirm
arlier studies that the quoted spread overstates the effective spread
inally paid by traders by up to 100% (Huang and Stoll, 1994; Petersen
nd Fialkowski, 1994; Bessembinder and Kaufman, 1997; Bacidorea
t al., 2003), due to dealers offering a better price than the quotes,
lso known as trading inside the spread (Lee, 1993). We also find that
uoted and effective spreads closely overlap in the last two decades,
uggesting that this phenomenon has reduced over time and quoted
preads have become a better proxy of effective spreads following the
lectronization of financial markets.

Finally, we notice that estimating spreads from daily prices leads
o an upward bias that becomes increasingly evident in more recent
eriods and for larger stocks. For instance, EDGE estimates an average
pread of 0.42% in December 2021 for large-caps, while the HJ bench-
ark is 0.06%. This bias arises in small samples due to the practice

f resetting negative estimates to zero, which leads, on average, to
verstating the spread, especially when the spread is small compared
o volatility (Jahan-Parvar and Zikes, 2023). A way to mitigate this
mall-sample bias is to extend the estimation window with more daily
bservations (see Internet Appendix I.5). Another way to improve the
stimation is using intraday prices whenever they are available, as
iscussed in the next section.

.2. High-frequency estimates for the U.S. stock market

While the variance component of an asset return is proportional to
he return interval, the spread component is not. Hence, we can rely on
igh-frequency prices to reduce the asset variance without altering the
12 
spread component and achieve a better signal-to-noise ratio to improve
the spread estimate.

For instance, let 𝑁 be the sample size and consider estimates
erived from a monthly sample of daily data (𝑁 = 21), a yearly

sample of daily data (𝑁 = 252), or a monthly sample of minute data
(𝑁 = 21 × 390). According to Eq. (17), the estimation variance is
roughly proportional to 𝜎41∕𝑁 where 𝜎1 is the volatility per period,
and the standard error is proportional to 𝜎21∕

√

𝑁 . For daily prices,
𝜎1 = 𝜎∕

√

252 where 𝜎 is the volatility per year. For minute prices, 𝜎1 =
𝜎∕

√

252 × 390. Thus, estimates derived from a yearly sample of daily
data have a standard error that is

√

252∕21 = 3.5 times smaller than that
obtained from a monthly sample of daily data. Estimates derived from
a monthly sample of minute data have a standard error that is 3903∕2 =
7702 times smaller. To put this in perspective, the enhancement factor
of the sample using minute prices would be achieved by a sample
of 1,245,699,037 daily prices, equivalent to approximately 5 million
years of trading. From this analysis, we conclude that using intraday
prices offers a more effective way to improve the spread estimate than
increasing the sample size with more daily data.

To illustrate how EDGE can substantially improve the estimation of
bid–ask spreads using intraday prices, we proceed as follows. First, we
aggregate trades into open, high, low, and close prices every minute
using the Daily TAQ database from October 2003 to December 2021.
Then, we estimate the spread with EDGE from the minute data for each
stock-month. Finally, we compare the estimates derived this way with
those derived from daily prices and the HJ benchmark.

Fig. 7 reports the results for large-cap stocks. These stocks are
featured by tiny spreads that are difficult to estimate in small samples

due to their small signal-to-noise ratio, which causes a large fraction of
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Fig. 6. Low-frequency estimates for U.S. stocks.
The figure reports the average spread across stocks for each month and size group from 1926 to 2021. Stocks are sorted into small-caps, mid-caps, and large-caps based on their
market capitalization at the end of each month using the 50th and 80th percentiles as breakpoints. Spreads are estimated for each stock-month using daily prices. Negative spread
estimates are set to zero, and we drop the stock-month estimate for all the estimators if it is missing for any of them. EDGE is replaced with CHL when open prices are missing
in CRSP. End-of-day quoted spreads (QS) are missing from July 1962 to October 1982. The HJ benchmark obtained from TAQ data is available since May 1993.
non-positive estimates and generates an upward bias due to the practice
of resetting negative estimates to zero (Jahan-Parvar and Zikes, 2023).
Indeed, we find that the EDGE estimates from daily prices are negative
in 41% of stock-months, and they are higher than the HJ benchmark
by 0.35% (35bps) on average. Instead, estimates derived from minute
prices are negative in only 0.05% of stock-months, and their upward
bias shrinks to zero (1bps).

Next, we analyze the estimates for all stocks. This sample consists of
711,161 stock-month spread estimates derived from both minute and
daily prices. We find that using minute prices reduces the fraction of
negative estimates from 34.15% to 0.02% and significantly improves
all evaluation metrics. The Pearson’s (Spearman’s) correlation with the
HJ benchmark increases from 56.17% (43.47%) to 88.79% (97.31%).
The MAPE (RMSE) reduces from 23.68 (1.80) to 5.17 (0.41).

Finally, we estimate spreads from minute prices using the Monthly
TAQ database from May 1993 to July 2014. The Monthly TAQ data are
identical to the Daily TAQ data except for two main differences. First,

Monthly TAQ only reports raw quotes, while Daily TAQ includes an
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NBBO file that reports the highest bid price and lowest ask price among
all available exchanges at each timestamp. Second, Monthly TAQ data
are timestamped to the second while Daily TAQ data are timestamped
to the millisecond. While these differences cause several problems in
measuring effective spreads by matching trades with quotes (Holden
and Jacobsen, 2014), they do not affect EDGE. Indeed, the correlation
between the EDGE estimates obtained with Monthly TAQ and Daily
TAQ in the overlapping period between October 2003 and July 2014 is
99.8%. This suggests that, by relying on transaction prices only, EDGE
is more robust than measuring effective spreads by matching trades
with quotes, and it is less sensitive to the quality of the data.

In summary, low-frequency estimates can be substantially improved
using intraday prices. This is particularly relevant for cases where high-
frequency prices are available, but quotes are not, or they cannot be
reliably matched with trades. Examples include, but are not limited to,
over-the-counter markets, dark pools, and crypto exchanges.
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Fig. 7. High-frequency estimates for U.S. stocks.
The figure reports the average spread across large-cap stocks for each month from October 2003 to December 2021. Spreads are estimated for each stock-month using daily (EDGE)
or minute (EDGE/HF) prices. Negative spread estimates are set to zero, and we drop the stock-month estimate for all the estimators if it is missing for any of them. HJ is the
benchmark spread obtained from TAQ data.
6.3. Estimates for other markets

Our estimator represents a general way to estimate effective spreads,
and it is designed to be applied to a variety of markets. To illustrate
its applicability outside the U.S. stock market, we analyze estimates for
cryptocurrency pairs listed in Binance.

Binance is a leading crypto exchange listing hundreds of cryptocur-
rencies that can be exchanged for one another via trading pairs. Each
trading pair (e.g., ETH/BTC) reports the price of the base currency
(e.g., ETH) in units of the quote currency (e.g., BTC). Like other crypto
exchanges, Binance provides historical and real-time daily and intraday
prices for free, while trade and quote data are subject to subscrip-
tion fees, and their historical coverage is more limited. As trade and
quote data are unavailable to us, we cannot compute bid–ask spreads
obtained by matching trades with quotes.

To estimate effective spreads from freely available data, we down-
load historical open, high, low, and close prices for all cryptocurrency
pairs at the minute, hourly, and daily frequency. We then compute
monthly estimates with EDGE, AR, and CS for each pair and each
frequency and drop the estimate for all estimators if missing for any of
them. Our sample consists of 2163 crypto pairs and 53,865 pair-month
spread estimates for each frequency and estimator in the sample period
from July 2017 to December 2021.

We expect AR and CS to overstate the spread when using daily
prices due to the upward bias induced by resetting negative estimates
to zero. When using intraday prices, we expect them to understate
the spread because the number of trades per period reduces at higher
frequencies, and their downward bias shrinks the estimate to zero.
Instead, we expect EDGE to mitigate these two concerns because its
lower variance reduces the upward bias, and the estimator is unaffected
by the downward bias due to infrequent trading.

Fig. 8 reports the time evolution of the average spread across all

trading pairs for each estimator. As expected, AR and CS produce
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different estimates depending on the sampling frequency. Estimates
derived from daily prices are significantly higher than those derived
from hourly prices, which, in turn, are higher than those derived from
minute prices. Depending on the frequency used, the average spread
in the whole sample period ranges anywhere between 0.18% (0.02%)
and 1.85% (1.45%) according to AR (CS). This tenfold difference makes
it impossible to estimate the spread reliably because it is unclear
which sampling frequency should be preferred in principle. Instead,
EDGE produces estimates less sensitive to the sampling frequency, and
estimates from daily prices closely overlap with those from hourly and
minute prices. The average spread in the whole sample period remains
in the narrow range between 0.68% and 0.70%, depending on whether
minute, hourly, or daily prices are used. In 2021, we find that the
average spread for crypto pairs is between 0.35%–0.45%.

In summary, EDGE is less sensitive to the sampling frequency than
other estimators and can potentially reduce a large source of non-
standard errors (Menkveld et al., 2024) in the measurement of transac-
tion costs.

7. Conclusion

Historically, the development of bid–ask spread estimators has
evolved along two complementary paths that consider either high-
frequency or low-frequency data. The former exploits trade and quote
data to obtain an explicit proxy of the fundamental price and mea-
sure the distance of transaction prices from it. The latter introduces
assumptions about the fundamental price to derive an estimator from
transaction prices only. While estimates derived from trades and quotes
are typically more accurate, low-frequency estimates are more read-
ily available and are becoming increasingly popular. However, low-
frequency estimators assume that prices are observed continuously.
Here, we document that these approaches lead to understating ef-

fective spreads, especially for infrequently traded assets that should
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Fig. 8. Low- and high-frequency estimates for Cryptocurrencies.
The figure reports the average spread across trading pairs listed in Binance for each month from July 2017 to December 2021. Spreads are estimated for each pair-month using
daily, hourly, or minute prices. Negative spread estimates are set to zero, and we drop the pair-month estimate for all the estimators if it is missing for any of them.
presumably be associated with high transaction costs. We then de-
velop a novel methodology relaxing the assumption that prices are
observed continuously and derive generalized estimators that correct
this downward bias analytically. We show that different estimators
are preferable depending on whether the spread is large or small
compared to volatility, and we combine them efficiently to produce
an unbiased estimator with minimum variance. Through theoretical
analyses, numerical simulations, and empirical evaluations, we find
that our efficient estimator dominates each generalized estimator taken
individually and other estimators from transaction prices.

Our efficient estimator has broad applicability for several reasons.
First, it is derived under more general assumptions than other ap-
proaches and extends the domain of applicability to various assets and
time periods. Second, the estimator is unaffected by the downward bias
due to infrequent trading and makes it possible to estimate effective
spreads for assets traded infrequently, for historical periods, or using
high-frequency prices when quotes are unreliable or unavailable. Third,
the estimator minimizes the estimation variance and thus also mini-
mizes the upward bias that arises from resetting negative estimates to
zero in small samples (Jahan-Parvar and Zikes, 2023).

Our results show that other estimators significantly understate ef-
fective spreads in the 20th century, while end-of-day quoted spreads
overstate effective spreads by up to 100%. Thus, this work makes
available the most realistic effective spread estimates for the U.S. stock
market from 1926 to the advent of high-frequency data. We further
show that our estimator can substantially improve estimates from daily
prices using intraday prices, while other estimators are dominated by
their downward bias because trading becomes sparse in high frequency.
To demonstrate the generalizability of these results outside the U.S.
stock market, we estimate bid–ask spreads for cryptocurrencies. Our
efficient estimator produces consistent estimates regardless of whether

daily or intraday prices are used, while other estimators produce a
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tenfold difference between daily and intraday estimates. We conclude
that our estimator may reduce a significant source of non-standard
errors in applied research (Menkveld et al., 2024).

Finally, we provide guidance for future research aimed at estimating
transaction costs. First, we have shown that the assumption that prices
are observed continuously has far-reaching implications and causes
biases that generally vary in the cross-section and time series, and they
also depend on the sampling frequency of open, high, low, and close
prices. Future work should explicitly account for discretely observed
prices to avoid this source of bias. Second, our estimator can be applied
at any frequency, and, in this sense, it reconciles the high-frequency
and low-frequency literature. For this reason, we argue that a better
classification is distinguishing between methods that require trade and
quote data and those that require transaction prices only. Third, we
have constructed an efficient estimator in the class of covariance-based
estimators from open, high, low, and close prices. To design more
efficient estimators, future work could either consider approaches that
are not based on the serial covariance of returns or exploit information
other than prices, such as, for instance, the trading volume or a suitable
Bayesian prior.
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Appendix A. Proofs

A.1. Proof of Eq. (10)

The de-meaned returns defined in Eq. (9) have mean zero condi-
tional on 𝜏𝑡, for any return 𝑟𝑡 computed in the time interval between the
end of period 𝑡−1 and the end of period 𝑡. Indeed, 𝑟𝑡 is identically zero
conditional on 𝜏𝑡 = 0 because ℎ𝑡 = 𝑙𝑡 = 𝑐𝑡−1 and thus E[𝑟𝑡 ∣ 𝜏𝑡 = 0] = 0.

oreover, E[𝑟𝑡 ∣ 𝜏𝑡 = 1] = E[𝑟𝑡 ∣ 𝜏𝑡 = 1] − E[𝑟𝑡]∕E[𝜏𝑡] = 0 because
[𝑟𝑡 ∣ 𝜏𝑡 = 0] = 0. In summary, it holds that E[𝑟𝑡 ∣ 𝜏𝑡] = 0 and using the

aw of total covariance we have:

ov[𝑟𝑡, 𝑟𝑠] = E[Cov[𝑟𝑡, 𝑟𝑠 ∣ 𝜏𝑡]] + Cov[E[𝑟𝑡 ∣ 𝜏𝑡],E[𝑟𝑠 ∣ 𝜏𝑡]]
= E[Cov[𝑟𝑡, 𝑟𝑠 ∣ 𝜏𝑡]]
= Cov[𝑟𝑡, 𝑟𝑠 ∣ 𝜏𝑡 = 1]P[𝜏𝑡 = 1] + Cov[𝑟𝑡, 𝑟𝑠 ∣ 𝜏𝑡 = 0]P[𝜏𝑡 = 0]

= Cov[𝑟𝑡, 𝑟𝑠 ∣ 𝜏𝑡 = 1]P[𝜏𝑡 = 1] .

(A.1)

The last equality follows from the fact that 𝑟𝑡 = 𝑟𝑡 = 0 conditional on
𝑡 = 0, while 𝑟𝑡 = 𝑟𝑡 + 𝑐𝑜𝑛𝑠𝑡. conditional on 𝜏𝑡 = 1 and the constant is
rrelevant for the calculation of the covariance.

.2. Proof of Eq. (14)

We need to compute:

[𝑍𝜂𝑡𝑍𝑜𝑡 ∣ 𝜏𝑡 = 1] =
E[𝑍ℎ𝑡𝑍𝑜𝑡 ∣ 𝜏𝑡 = 1] + E[𝑍𝑙𝑡𝑍𝑜𝑡 ∣ 𝜏𝑡 = 1]

2
. (A.2)

We start by considering high prices, and we condition on whether
r not the opening price 𝑜𝑡 is equal to the highest price ℎ𝑡:

[𝑍ℎ𝑡𝑍𝑜𝑡 ∣ 𝜏𝑡 = 1] = E[𝑍ℎ𝑡𝑍𝑜𝑡 ∣ 𝑜𝑡 = ℎ𝑡, 𝜏𝑡 = 1]P[𝑜𝑡 = ℎ𝑡 ∣ 𝜏𝑡 = 1]

+ E[𝑍ℎ𝑡𝑍𝑜𝑡 ∣ 𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1]P[𝑜𝑡 ≠ ℎ𝑡 ∣ 𝜏𝑡 = 1] .
(A.3)

f 𝑜𝑡 = ℎ𝑡, then the opening price is selected as the highest price in the
eriod, and the bid–ask bounces 𝑍ℎ𝑡 = 𝑍𝑜𝑡 = 𝑆𝑜𝑡∕2𝐷𝑜𝑡 coincide. Thus,
e have:

[𝑍ℎ𝑡𝑍𝑜𝑡 ∣ 𝑜𝑡 = ℎ𝑡, 𝜏𝑡 = 1] = E[𝑆2
𝑜𝑡
]∕4 . (A.4)

f 𝑜𝑡 ≠ ℎ𝑡, then 𝑍ℎ𝑡 and 𝑍𝑜𝑡 are uncorrelated by Assumption 3 and:

[𝑍ℎ𝑡
𝑍𝑜𝑡 ∣ 𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1] = E[𝑍ℎ𝑡

∣ 𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1]E[𝑍𝑜𝑡 ∣ 𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1] = 0 ,

(A.5)

ecause E[𝑍𝑜𝑡 ∣ 𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1] = E[𝑍𝑜𝑡 ] = 0 if we consider that the
id–ask bounce at the open is independent from whether the opening
rice is the highest price in the period. Substituting Eqs. (A.4)–(A.5)
nto Eq. (A.3) gives:

[𝑍ℎ𝑡𝑍𝑜𝑡 ∣ 𝜏𝑡 = 1] = E[𝑆2
𝑜𝑡
]P[𝑜𝑡 = ℎ𝑡 ∣ 𝜏𝑡 = 1]∕4 . (A.6)

he same equation holds for low prices by replacing 𝑍ℎ𝑡 with 𝑍𝑙𝑡 and
𝑡 with 𝑙𝑡. Substituting Eq. (A.6) for high and low prices into Eq. (A.2)
ields Eq. (14).
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.3. Proof of Eq. (15)

Substituting Eqs. (13)–(14) in Eq. (12) yields:

[(𝜂𝑡 − 𝑜𝑡)(𝑜𝑡 − 𝑐𝑡−1)]

=
E[𝑆2

𝑜𝑡
]

4

(

P[𝑜𝑡 = ℎ𝑡 ∣ 𝜏𝑡 = 1] + P[𝑜𝑡 = 𝑙𝑡 ∣ 𝜏𝑡 = 1]
2

− 1

)

P[𝜏𝑡 = 1]

=
E[𝑆2

𝑜𝑡
]

4

(

−
P[𝑜𝑡 ≠ ℎ𝑡 ∣ 𝜏𝑡 = 1] + P[𝑜𝑡 ≠ 𝑙𝑡 ∣ 𝜏𝑡 = 1]

2

)

P[𝜏𝑡 = 1]

=
E[𝑆2

𝑜𝑡
]

4

(

−
P[𝑜𝑡 ≠ ℎ𝑡, 𝜏𝑡 = 1] + P[𝑜𝑡 ≠ 𝑙𝑡, 𝜏𝑡 = 1]

2

)

.

(A.7)

olving Eq. (A.7) for E[𝑆2
𝑜𝑡
] gives Eq. (15).
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