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We leverage the capabilities of GPT-3 to generate historical business descriptions for over 63,000 global firms.
Utilizing these descriptions and advanced embedding models from OpenAl, we construct time-varying business
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1. Introduction

In recent decades, global economies have experienced a growing
trend of specialization. Companies in advanced economies frequently
focus on producing highly specialized products, which leads to consid-
erable heterogeneity within industries. For instance, two automobile
manufacturers may offer comparable products with distinct features,
such as electric or gasoline engines, or cater to different market seg-
ments, such as luxury or budget consumers. Additionally, these compa-
nies may also differ in other domains, such as their digitization levels,
supply chain resilience, and geographical locations. Previous research
emphasizes that traditional sector and industry classifications may not
effectively represent this within-sector variety (Hoberg and Phillips,
2016). Instead, each company has a unique network of affiliated com-
petitors, suppliers, and customers, interconnected through economic
ties.

In this paper, we are the first to generate time-varying global
business networks by applying two state-of-the-art embedding models
from OpenAl' as well as an open-source embedding model to historical
business descriptions of more than 63,000 publicly traded firms across
67 countries. We test the accuracy of our global networks in various
dimensions and find that they reveal value-relevant economic links.

We introduce an innovative method that enables us to generate
historical business descriptions from annual reports. We obtain 10-K
filings for US companies from EDGAR, a platform operated by the
Security Exchange Commission (SEC) and international reports from
the London Stock Exchange Group (LSEG). We then apply Artificial
Intelligence (AI) to identify business-specific information and instruct
the large language model (LLM) GPT-3 to create concise business
descriptions aligned to those of commercial data providers. In com-
bination with a limited number of additional historical descriptions
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obtained from external data providers, our business description dataset
covers between 91.6% and 99.8% of the market capitalization in the
US and between 79.9% and 98.3% internationally between 2000 and
2021.

To derive the global business networks, we represent these business
descriptions as high-dimensional vectors using advanced embedding
models and construct a cosine similarity matrix based on the embed-
dings. We then determine firm pairs exceeding the 99th percentile of
the cosine similarity distribution as economically linked. The global
business network thus includes all firm relations that surpass this
threshold.

Applying OpenAl embeddings may introduce a look-ahead bias due
to the training data of its foundational model GPT-3, which extends
until September 2021. For example, if the model’s training data in-
cludes information about Procter & Gamble’s acquisition of Gillette in
2005 (SEC, 2005), the embedding model might produce highly similar
embeddings for historical descriptions of both firms despite their dis-
tinctiveness before the acquisition. We address this bias by effectively
masking company-identifying information to prevent the model from
using additional company-specific information, similar to Glasserman
and Lin (2023) and Kim et al. (2024).

Our networks can be useful for a variety of research questions,
particularly those with a global focus on firm competition, indus-
trial organization, and informational spillovers. For instance, similar
to Hoberg and Phillips (2010), one can investigate to what extent
business similarity may predict future mergers and acquisitions in inter-
national markets. Researchers could also analyze ESG-related spillover
effects (Li et al., 2023), the relation between corporate investment and
peer valuation (Foucault and Fresard, 2014), or the influence of recent
IPOs on competition in the network (Aghamolla and Thakor, 2022).
Additionally, the networks can be applied to study lead-lag effects in
stock returns of economically related firms across countries or to build
efficient global (factor) portfolios that remove industry-specific risks in
line with Daniel et al. (2020). We add to the work of Frésard et al.
(2020), who create a vertical link network, and show how to distinguish
between competitor- and supplier-customer-relations in the networks.
This may foster research on global supply chains, such as determinants
of resilience during exogenous shocks like Covid-19.

We employ a multi-dimensional approach to assess the accuracy
of our global business networks. Our first analysis focuses on the
proportion of firms with peers in identical industries and countries,
as firms typically share more similarities along these dimensions. We
find that our embedding-based networks exhibit significantly higher
industry and country congruence than a word-based network. However,
even with state-of-the-art embedding models, only about half of the
resulting firm relations are domestic, with notable differences across
countries.

Next, we calculate and compare pairwise firm overlaps and return
correlations across all business networks. The context-aware networks
display significantly higher business link co-occurrences and enhanced
return correlations. For example, around 58% of the relations in the
smaller OpenAl embedding model are mirrored in its larger model.
The average return correlation between competitor portfolios from both
networks is as high as 0.85.

We then benchmark our networks’ accuracy against a word-based
network and the TNIC dataset (Hoberg and Phillips, 2010, 2016)
by assessing the identification of US competition relations disclosed
in annual reports, M&A filings, and FactSet Revere, which features
competitor, supplier, and customer links. Regardless of the dataset, net-
works based on the OpenAl embedding models consistently outperform
word-based networks and perform comparably to TNIC.

We next showcase two of the above mentioned potential appli-
cations for our business networks. This provides insights into their
accuracy and the extent of a potential LLM look-ahead bias that might
occur if we do not mask company-identifying information.
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First, we revisit the documented lead-lag effect. As summarized
by Ali and Hirshleifer (2020), a vast body of literature establishes
predictive links for stock returns among firms grouped within the
same industry (Moskowitz and Grinblatt, 1999; Hoberg and Phillips,
2018), sharing a similar geographic location (Parsons et al., 2020),
related through supply chains (Cohen and Frazzini, 2008; Menzly and
Ozbas, 2010), or utilizing similar technologies (Lee et al., 2019). More-
over, Cohen and Lou (2012) find lead-lag effects from single-segment
to multi-segment corporations from the same industry, and Miiller
(2019) identifies economic links between stocks with similar firm
characteristics. While these studies focus exclusively on the US stock
market, Huang (2015) utilizes international industry-level returns to
forecast future returns of US multinational firms, and Finke and Weigert
(2017) study lead-lag effects for multinational firms from 22 developed
markets.

We extend these studies by examining the lead-lag effect for a
comprehensive sample of global stocks covering both developed and
emerging markets, as well as multinational and domestic firms. For
each business network, we implement a strategy to go long (short)
in stocks whose economically linked stocks performed best (worst) in
the preceding month. The portfolio yielding the highest seven-factor
alpha (controlling for the five factors of Fama and French (2015) plus
momentum and short-term reversal) might best represent its economic
links.

As expected, we observe positive alphas across all networks. In the
US, portfolios based on context-aware networks outperform word-based
networks by up to a statistically significant 27 bps per month. With
alphas ranging between 119 and 146 bps per month, these portfolios
perform similarly to a strategy based on TNIC (156 bps per month)
and are highly statistically significant with z-statistics around six. In a
global setting of US and international stocks, context-aware networks
yield seven-factor alphas of up to 281 bps per month, outperforming a
comparable strategy based on bag-of-words by up to 73 bps, with the
performance difference being highly statistically significant. We also
observe statistically significant value-weighted monthly alphas of up
to 40 bps in the US and 74 bps globally. Employing a capped value-
weighted approach to avoid a dominating influence of mega-caps on
portfolio returns (Jensen et al., 2023), the alphas are up to 81 bps
(165 bps) per month for the US (global) lead-lag strategy. These results
change only minimally with masked networks, indicating that the LLM
look-ahead bias does not seem to play a major role here.

In the second application, we examine our networks’ ability to
predict target firms in M&A deals, building on Hoberg and Phillips
(2010), who show that target firms often operate in similar product
markets. We find that around 50% of US target firms for US acquirers
rank among the top 100 firms with the highest business description
similarity to the acquiring firm, comparable to TNIC, which detects
58%. Internationally, we observe a similar effect.

Motivated by these results, we conduct a logistic regression analysis,
controlling for industry membership, country, profitability, and other
variables. We find that high textual similarity between two firms’
business descriptions significantly increases the likelihood of an M&A
deal. However, this predictive power is significantly lower when using
masked business descriptions, though it remains statistically significant.
This difference suggests a look-ahead bias in predicting future M&A
deals with original descriptions, aligning with the example of Procter
& Gamble and Gillette. However, our findings suggest that the LLM
look-ahead bias can be significantly reduced through masking.

Our networks map global business relations without distinguish-
ing whether companies are competitors or linked through customer—
supplier relationships. However, depending on their research questions,
researchers might be interested in focusing on specific types of rela-
tions. Our final analysis shows how a language model can be fine-tuned
to discern the nature of potential business relations in our networks.
This fine-tuning uses actual business relations documented in FactSet
Revere. We test this approach and achieve an accuracy of 85.73% for a
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multiclass classification model trained on Al-generated descriptions to
differentiate between competitors, suppliers, and customers.

This study introduces two main methodological advances in Fi-
nance and Economics. First, we enhance the field of textual analysis
in Finance. While existing research applies textual analysis to identify
competitors (Eisdorfer et al., 2021), gauge competition intensity (Li
et al., 2013), and develop time-varying industry classifications (Hoberg
and Phillips, 2010, 2016), our work demonstrates the effectiveness
of embedding models in representing business information. Second,
we show how generative Al can identify, summarize, and streamline
information in corporate disclosures across a global spectrum of stocks.
This enables us to offer the first global business networks, encouraging
researchers to study global economic links.

While our networks cover the vast majority of stocks across the
globe, there are certain limitations researchers should be aware of
when using our data, and recommendations they should consider.
First, smaller stocks are somewhat underrepresented in the networks,
especially at the beginning of our sample period. Second, we observe
a lower coverage in some Asian and African markets, which mainly
stems from difficulties of the GPT-3 tokenizer in processing certain
languages like Chinese. Third, to mitigate look-ahead bias concerns,
researchers are advised to use our masked business networks as this
limits the embedding models’ abilities to consider other company-
specific information. Fourth, researchers who wish to mask specific text
parts in other research settings should use high-quality named entity
recognition models to ensure a high masking accuracy. While we use
the advanced model from the Python package “spaCy”, we also find
that simpler models can result in significantly lower masking accuracy.
Finally, researchers that are solely interested in the US market may
consider US-specific networks (see Hoberg and Phillips, 2010, 2016),
as they are constructed on entire Item 1 sections rather than concise
business descriptions, have a higher firm coverage, and are available
for a longer sample period. In addition, in a recent work, Hoberg and
Phillips (2025) also introduce an embedding-based network for US
stocks and report a 20% improvement in the informativeness of their
industry classification.

The structure of this paper is as follows. Section 2 details the con-
struction of business networks and highlights potential biases inherent
in this process. Section 3 presents a comprehensive overview of the
business descriptions and the stock data sourced from LSEG and CRSP
(Center for Research in Security Prices). In Section 4, we evaluate the
efficacy of various business networks across multiple aspects before we
showcase the performance of our networks in Section 5. Section 6 dis-
cusses how language models can be fine-tuned to distinguish between
competitors, suppliers, and customers. We conclude in Section 7.

2. Methodology
2.1. Established ways of creating Business Networks (BNs)

To construct global business networks (BNs), it is crucial to identify
firms with related business operations. In theory, various approaches
can achieve this. The most straightforward approach is to define eco-
nomically linked firms as those operating in the same industry. How-
ever, this assumes that all firms within an industry are economically
linked, which does not necessarily have to be the case. Conversely,
firms may also be linked with companies from other industries, such
as suppliers or customers that operate in different industries.

As an alternative to industry membership, we could compare past
stock returns to identify related firms, assuming that the most similar
firms should have the highest return co-movements due to similar risk
exposures. Gatev et al. (2006) show that this approach can be used
to construct a profitable pairs-trading investment strategy. However, a
disadvantage is that firms might randomly co-move and thus appear
related even though they are not. While we could mitigate this ef-
fect by identifying the most similar firms within an industry, similar
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to De Franco et al. (2011), we would not be able to detect economic
links across industries.

Researchers could also extract competitor, supplier, and customer
information from public firms disclosures. For example, Eisdorfer et al.
(2021) extract competitors from the business section of US annual
reports (10-K filings). However, since firms have some flexibility in
disclosing business relations, the resulting business network might lack
essential links. Moreover, international annual reports do not share a
harmonized structure, which complicates the extraction of competitor
names, even if they are reported.

Another method of identifying related business models is introduced
by Hoberg and Phillips (2010, 2016, 2025). They establish a time-
varying text-based network industry classification for the US (TNIC) by
comparing the Item 1 business sections of 10-K filings. However, as most
international firms neither provide 10-K filings nor disclose information
on their business operations in a separate section, we cannot directly
implement this approach internationally.

A feasible alternative for establishing BNs could be the use of
standardized company descriptions from data vendors. Unfortunately,
none of the major vendors could provide historical descriptions on a
global scale. As a workaround, we collect historical descriptions for a
subset of firms through SDC Platinum, a dataset containing information
on stock repurchases, M&As, and recapitalization events. However, this
dataset is incomplete and suffers from selection bias because only firms
with such corporate events are included.? The inclusion of business
descriptions from S&P Global as of September 2014, which we re-
ceive from the German asset manager Acatis Investment, mitigates this
problem but does not fully alleviate it.

2.2. Al-generated business descriptions

We, therefore, turn to Al for generating historical business de-
scriptions (AI-Gen descriptions). By providing LLMs with unstructured
business-related information, we use their text-generation capabilities
to describe a company’s business model in a standardized way. To do
so, we initially source US annual reports from EDGAR and international
reports from the Refinitiv filings API provided by LSEG. We prioritize
English reports but include non-English ones in case no English reports
are available. We then implement an HTML parser to extract Item 1
sections from 10-K filings. For international reports, we extract the
whole text body using the Python package fitz, given the lack of a
harmonized report structure for international markets. As a next step,
we filter the extracted text to remove tables and organize it as a list of
sentences.

In case we are unable to extract the Item 1 section from a 10-K filing,
we download the PDF version of the US annual report from LSEG as
well, if available. This was the case in approximately 10% of all cases.
We process the file in the same manner as international reports.

Given that an average report in our dataset contains around 20,000
tokens, we need an appropriate model that can handle this token size
as input. A suitable model for this task would be GPT-4-turbo, which
is capable of processing up to 128,000 tokens. However, because of
the large number of reports to be processed, we decided to limit the
number of tokens to accommodate less expensive models like GPT-
3.° Additionally, as Liu et al. (2023) note, language models with
significant input contexts often “lose” information in the middle of a

2 In written communication with officials from SDC Platinum, we were
assured that the business descriptions presented refer to the description valid
prior to the corporate event. Thus, for companies covered by SDC Platinum, we
have a time series of historical business descriptions. However, this time series
has significant temporal gaps for most companies, depending on the number
of recorded corporate events.

3 Using GPT-4-turbo, this would result in costs of around 0.2$ for the model
input of one report alone. Given that we deal with hundreds of thousands of
reports, this would quickly add up to costs of five-digit figures.
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long document. Given the varying information order in international
reports, a model with such large input capacity might hence not be
ideal anyway.

For token reduction, we focus on sentences in the report that most
likely contain business-relevant information. Specifically, we semanti-
cally compare all sentences in the reports to sentences extracted from
LSEG’s 2022 actual business descriptions using text embeddings.* We
compare English sentences using the sentence transformer model all-
mpnet-base-v2 (Reimers and Gurevych, 2019) and non-English sentences
using the paraphrase-multilingual-mpnet-base-v2 (Reimers and Gurevych,
2020). Sentences that are not sufficiently similar (no sentence pair
with cosine similarity above 0.5) to any exemplary business-related
sentences are considered irrelevant to our purpose. To maintain the
token count within GPT-3’s capacity, we select only as many sentences
of the business-related sentences with the highest cosine similarity such
that the sum of tokens does not surpass the model’s token input limit.

Using OpenAI’s API, we next instruct GPT-3 to construct business
descriptions from this masked business information, focusing on the
business model, segments served, and products offered, using only the
provided information. The full prompt is as follows:

Based on the provided information on company X, generate an
English business description that describes the main business model,
the segments company X operates in and the products company X
offers. The description should be written from an outsider’s perspec-
tive. Do not use other information you may have on the company.
The description should not exceed 200 tokens. Just provide the
description, do not add further comments.

To better align with the general structure of LSEG’s descriptions,
we extend the AI-Gen descriptions by adding information on the head-
quarters location and founding year as long this is not already present
in the description. Finally, we unmask company and product names in
the generated descriptions.

2.3. Measuring firm similarity with embedding models

Choosing a suitable similarity measure is essential for identifying
firms with similar business operations. One commonly adopted ap-
proach is bag-of-words (BOW), where text is encoded as a vector of its
constituent words. For example, Hoberg and Phillips (2010, 2016) use
BOW by first identifying a set of relevant words and then constructing
binary high-dimensional vectors based on the presence of words in
the text. By doing so, all word vectors possess a standard dimen-
sionality which facilitates the parallelization of the cosine similarity
calculations.®

Despite its widespread use, BOW has two main drawbacks. First,
measuring document similarity by counting common words may not be
accurate, as firms with dissimilar businesses may use the same words
in different contexts (e.g., “security” could refer to cyber security,
production security, or health security). This issue is exacerbated with
short texts, where informative words are typically scarce. Second, BOW
does not account for synonyms. For example, firms might describe their
business as “selling cars” or “selling automobiles”.

Researchers may circumvent these issues by leveraging the latest
advances in NLP. These advances were sparked with the invention of
the transformer (Vaswani et al., 2017). This architecture substantially
improved the training speed and performance of deep learning models,

4 Note that we do not consider the entire universe of sentences from LSEG’s
business descriptions, but only a random 10% sample to reduce computation
time. All company and product names have been masked using a named entity
recognition model from the Python package “spaCy”.

5 In contrast, Cohen et al. (2020) calculate pairwise similarities using a list
of relevant words determined on a per-pair basis, resulting in a challenging
parallelization problem due to the lack of a fixed vector size.
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leading to the development of several milesone models, notably BERT
in 2018 (Devlin et al.,, 2019), RoBERTa in 2019 (Liu et al., 2019),
and GPT-3 in 2020 (Brown et al., 2020). Since OpenAl presented GPT-
4 (OpenAl, 2023), a substantially more powerful language model that
might even possess “sparks of artificial general intelligence” (Bubeck
et al., 2023), numerous other powerful models followed, including one
from Meta (Touvron et al., 2023), Google (Reid et al., 2024) and the
French startup Mistral Al (Jiang et al., 2024).

Language models can be fine-tuned to assess textual similarity using
embeddings, which are high-dimensional vector representations that
capture the semantic meaning of text. Unlike word frequency vectors
from the bag-of-words approach, where each dimension corresponds
to the frequency of individual words, embeddings collectively encode
meaning across dimensions using real numbers. This produces a more
nuanced and comprehensive representation of linguistic information.
Regardless of input size, these models generate fixed-size vectors, en-
abling comparison through common similarity measures like cosine
similarity or Euclidean distance.

For instance, Reimers and Gurevych (2019) introduce Sentence
Transformer models, which generate embeddings for sentences or short
paragraphs. Of the 38 pre-trained Sentence Transformer models that are
currently available as open-source, we use T5 — XX L to gauge textual
similarity between business descriptions. This model is trained explic-
itly on sentence similarity and yields the best average performance on
a set of 14 diverse sentence similarity tasks.®

Besides open-source models, commercial solutions are available. For
instance, OpenAl offers pre-trained models for sentence similarity via
an API. The text-embedding-3-small (OpenAI — .S) and text-embedding-3-
large (OpenAI — L) models can generate vector representations for up
to 8192 tokens. Using these two recently published embedding models,
we investigate three state-of-the-art embedding models in this paper.
This allows us to investigate if our approach to identifying economic
links is robust to different models and to examine whether signifi-
cant differences exist in the accuracy of open-source and commercial
models.

We benchmark these methodologies against the bag-of-words ap-
proach we construct every year by assembling word-frequency vectors
akin to Hoberg and Phillips (2010, 2016). Precisely, upon identifying
the most recently available description for all firms, we extract all
nouns that occur in at least two different business descriptions. We
classify those words as nouns that are recognized as such by the tok-
enizers of the Python packages spaCy and NLTK. Finally, we construct
word-frequency vectors with the dimension n,, where » is the number
of unique nouns in a given year y. If a noun is present in a description,
we assign a value of one and zero otherwise.

2.4. Mitigating a potential look-ahead bias of LLMs

Applying an embedding model, that is based on a large language
model, to business descriptions might introduce a look-ahead bias in
our study. The reason is that the embeddings obtained from such
a model might be influenced by information beyond the era of the
historical business descriptions we analyze. For instance, Amazon’s
evolution from a bookseller to a diverse technology giant could be
reflected in the embeddings. This may potentially skew the embeddings
of Amazon’s 2000 business description to show a heightened cosine
similarity with the embeddings of Microsoft’s description from the same
period, thus creating anachronistic associations.

6 A disadvantage of T5 — XXL is its limit of 256 tokens. We therefore
discard excess tokens in a business description. For more information on all
available models, their performance, and their primary objectives, see https:
//www.sbert.net/docs/pretrained_models.html. We also run a performance
comparison between 75— X X L and alternative models and provide the results
in the Online Appendix.
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The extent of this LLM look-ahead bias is not clear ex-ante and likely
case-specific. In our setting, one may argue that business descriptions,
typically phrased in general terms, rarely reference specific, time-bound
events. This should lead to a lower exposure to the bias. Nonethe-
less, there could be research questions in which the LLM look-ahead
bias becomes significant even when using relatively stable business
descriptions.

Eliminating this bias, or at least estimating its magnitude, is chal-
lenging. Ideally, we would utilize a language model trained solely on
data preceding our evaluation period. However, while the computa-
tional and data demands of developing such a custom model would be
substantial, this approach would arguably also limit model performance
by restricting the amount of available training data.

A more practical method involves masking company-specific iden-
tifiers, such as names and product terms, in descriptions before gen-
erating embeddings. This tactic limits the model’s capacity to link
future-relevant company-specific data with historical descriptions. For
instance, Glasserman and Lin (2023) use this approach to investigate a
look-ahead bias in stock return predictions based on sentiment analysis
with GPT-3. While other information like industry or macroeconomic
trends learned by the model over time could still influence embeddings,
the likelihood of such biases affecting anonymized business descriptions
seems low. Thus, masking should at least significantly reduce a look-
ahead bias, ensuring a more accurate analysis of historical business
relations.

In principle, there exist multiple ways to mask company-specific
information. For example, Glasserman and Lin (2023) implement an
anonymization algorithm that builds on a Google Knowledge Graph.
However, we could not retrieve product information for roughly two-
thirds of the firms in our dataset.” It seems that Google primarily lacks
information on smaller and foreign firms, rendering this approach less
suitable for us. As alternatives, we could apply named entity recogni-
tion (NER) models from the Python package spaCy to identify company
and product names, or we could instruct general-purpose language
models like GPT-3 or GPT-4 to mask company-specific information, but
this approach may be costly, depending on the amount of data that has
to be masked.

To test the performance of different masking approaches, we in-
struct GPT-3 to determine the firm name based on the masked business
description. If the firm name is not correctly identified, we assume the
masking was successful.

Fig. 1 provides an overview of the accuracies of different masking
strategies. We find that the smaller spaCy NER model performs worst.
The share of successful masking attempts is only 87.25%, which is
in line with the observation of Glasserman and Lin (2023) that the
model overlooks many entities. However, we find that the most potent
transformer-based NER model (en_core web_trf) achieves a substantially
better performance. Here, the masking attempt fails in only 0.36% of
the business descriptions, thus successfully masking company-specific
information in 99.64% of the cases. This methodology even outper-
forms GPT-3 which yields a successful masking rate of 97.27%. Based
on these findings, we decide to rely on the transformer-based NER
model from spaCy to mask company-specific information, as it yields
the best performance and does not induce API costs.

2.5. Defining business networks

After creating the Al-based business descriptions and applying the
various embedding models to gauge textual similarity, we need to
formalize the construction of the (global) BNs. This entails making two
critical decisions. First, we must determine which description to use if

7 We randomly selected 1000 firms, queried Google’s Knowledge Graph API
and obtained information for only 34.4% of the firms.
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historical business descriptions from commercial data providers and Al-
Gen descriptions are available for a specific firm-year. Here, we decide
to primarily use the Al-based descriptions and resort to the actual
descriptions (primarily S&P Global and, secondarily, SDC Platinum) in
the absence of AI-Gen descriptions. Considering that the descriptions
of S&P Global are not available before September 2014 and that the
SDC Platinum dataset has a selection bias, this prioritization seems
sensible to us. To assess the quality of the AI-Gen descriptions and the
resulting BNs, we also repeat critical analyses of our study excluding
the descriptions of the commercial data providers, which can be found
in the Online Appendix.

Second, we need to establish a threshold for identifying sufficiently
similar business descriptions. Here, we follow Hoberg and Phillips
(2016) and select a percentile threshold, as this also controls for
differences in the cosine similarity distributions of different embedding
models. Specifically, firms are deemed economically linked if their
business description similarity ranks within the top 1% in a given
model’s cosine similarity matrix. As a consequence, some firms may
reveal a lack of sufficiently similar companies. The concerned firms
are excluded from our BNs in such instances. To ensure the robustness
of our findings, we repeat key analyses using alternative thresholds
to construct the BNs, which rely on the top 5% and top 0.1% of the
similarity rankings. The results of these robustness tests are also shown
in the Online Appendix.

Finally, due to the absence of an established global BN for bench-
marking, we also construct US-only networks in a similar manner, al-
lowing us to benchmark our results against TNIC (Hoberg and Phillips,
2010, 2016).

3. Data
3.1. Global stock sample

We gather stock market and accounting data from CRSP and Com-
pustat for the US, and from LSEG (formerly Refinitiv) Datastream and
Worldscope for non-US, i.e., international markets. Our global stock
sample is confined to common equity from countries included in one of
the major MSCI regional indices as of June 2021 (namely, MSCI North
America, Europe, Pacific, Emerging Markets, and Frontier Markets). It
covers the period from January 2000 to December 2021.

To eliminate any non-common equity, we apply several filters. In
the US, we focus exclusively on NYSE, AMEX, and NASDAQ-listed
stocks with CRSP share codes of 10 or 11. For other countries, where
data comes from Datastream/Worldscope, we (i) select only securities
that are classified as common equity, (ii) focus on the firm’s ma-
jor security if it has multiple securities, (iii) consider only primary
exchange listings, and (iv) require all stocks to have a valid World-
scope identifier to further exclude non-common equity securities, such
as ADRs. Furthermore, to avoid a survivorship bias, we select both
“active” and “dead” equities from Datastream. In total, this selection
strategy yields a comprehensive view of the global equity landscape
consisting of 68,402 stocks with 9.28 million stock-month observations
across 67 countries. 56,105 stocks with 8.13 million stock-months
are from international markets, and 12,297 stocks with 1.15 million
stock-months are from the US.

For US stocks, we use returns from CRSP, and for international
stocks we use Datastream’s total return index, including dividends (data
variable: RI), to calculate monthly stock returns in US dollar. We clean
stock data from LSEG as recommended in the literature (Griffin et al.,
2010; Ince and Porter, 2006; Jacobs and Miiller, 2020). Most notably,
we winsorize returns at the 0.1% and 99.9% level to account for the
presence of few data outliers, and we include delisted stocks in our
analysis only up to the point of their actual delisting by using the
methodology of Ince and Porter (2006) to detect stale prices.

To add potentially missing information about the founding year
and headquarters location to the AI descriptions, we also use Datas-
tream/Worldscope. The founding year is sourced from the foundation
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Fig. 1. Quality assessment of different masking techniques. This figure examines the accuracy of different masking methodologies. We mask the company and product names in
the most recently available Al-generated business description for each firm. We then instruct GPT-3 to identify the company name given the masked description using the following
prompt: “You will receive a business description. If you know to which company the description belongs, return the company name, otherwise return ‘Unknown’. We rate a

masking attempt as successful, if GPT-3 was unable to identify the correct company name.

or incorporation date (variables WC18272 and WC18273) primarily,
and the listing date (variable BDate) when the former are unavailable.
The headquarters location is retrieved from data item WC06023.

We match annual financial reports to our sample firms by accessing
SEC’s EDGAR service for US stocks and the Refinitiv Filings API from
LSEG for international stocks and those US stocks, for which we could
not parse the Item 1 section. Data on M&A deals of US and international
firms from 2001 until 2022 is obtained from SDC Platinum, which is
also maintained by LSEG. We restrict our sample to deals in which
publicly traded acquirers purchase publicly traded targets.

3.2. Commercial business descriptions

We collect global business descriptions for our stock sample from
LSEG at the beginning of August 2022. The descriptions are written in
English and contain 300 words or less. Although these brief descriptions
are less comprehensive compared to the Item 1 section in 10-K filings,
they cover the critical aspects of a firm’s business model. The first sen-
tence of the business description typically describes the core business
model of a company, followed by an enumeration of the company’s
segments in the following sentences and a list of products offered.
The description typically closes with information on the company’s
headquarters and founding year.

A boxplot is provided in Fig. 2, illustrating the 90% confidence in-
terval for token counts® across different NYSE size deciles to guarantee
adequate business description lengths for smaller firms. On average, the
largest firms exhibit marginally higher character counts than those in
the lowest decile. Nonetheless, over 95% of descriptions for firms in the
lowest decile exceed fifty tokens, suggesting a representative coverage.

The LSEG business descriptions are stored in Worldscope data item
WC06092. This is a so-called “static” variable, that is regularly over-
written. For this reason, we cannot use the descriptions directly to

8 We tokenize the descriptions with the cl100k_base tokenizer included in
the Python package tiktoken.

construct time-varying BNs, even though they prove to be a helpful
template for GPT-3 to generate historical business descriptions from the
annual reports, as described in Section 2.2.

In contrast, the business descriptions which we obtain from SDC
Platinum and S&P Global are historical and partially time-varying. We
can identify 51,129 companies in our sample that have at least one
corporate event in SDC Platinum. We maintain the descriptions from
SDC Platinum in the dataset until there is a new record with an updated
description. For S&P Global, we are able to match 24,664 business
descriptions to our sample. These descriptions refer to September 2014,
and we carry them forward until the end of our sample period.

3.3. Al-generated business descriptions

AI-Gen descriptions are available for 47,853 firms (433,744 firm-
years) in our sample. To evaluate the quality of these descriptions
anecdotally, Table 1 shows the three most recent examples for auto-
motive manufacturers Ford Motor, Volkswagen, and Toyota Motor. While
the Al description for Ford uses Item 1 of the company’s 10-K filing, the
descriptions for Volkswagen and Toyota are based on annual reports
obtained from LSEG.

The examples in Table 1 convey the impression that the descriptions
adequately cover the companies’ business models. They highlight the
various business segments and, in some cases like Volkswagen, also
address sales markets. While all descriptions list product categories,
specific products or brand names are explicitly mentioned only in the
description for Toyota Motor. The likely reason is that we mask product
names in the information provided to GPT-3 to prevent the model from
mapping additional information via the product name.

Overall, the output meets our prompt’s specifications by containing
information on the business model, the segments served, and the prod-
uct categories offered. This was also the case for most other descrip-
tions, which we manually reviewed. Furthermore, regarding structure
and content, the Al-based descriptions seem remarkably similar to the
actual descriptions from LSEG.

Fig. 3 illustrates the distribution of the number of tokens contained
in AI-Gen descriptions across different NYSE size deciles. The boxplot
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Fig. 2. Business description length (LSEG Refinitiv). This figure shows the distribution of the number of tokens in a business description from LSEG (Worldscope item WC06092)
across different NYSE size deciles. Business descriptions are obtained in August 2022.

Table 1
Exemplary Al business descriptions as of 2021.
Ford Motor
EDGAR FORD MOTOR is a global automotive company that operates in various segments of the industry. The company is committed to
sustainable development goals and has a strong focus on environmental responsibility. FORD MOTOR offers a range of products,
including automotive components such as radiators, wiring, circuitry, and printed circuit boards. The company also provides
management tools for fleet managers to analyze their vehicles and make informed decisions. FORD MOTOR is dedicated to improving
fuel economy and reducing carbon emissions through the development of electric vehicles and hydrogen fuel cell vehicles. The company
has a diverse supply chain that includes component suppliers and indirect suppliers of facilities, equipment, materials, and services.
Additionally, FORD MOTOR is invested in creating a customer-centric experience and has a loyalty rewards program for its customers.
The company prioritizes sustainability in its manufacturing processes by investing in state-of-the-art facilities and emerging technologies.
Overall, FORD MOTOR aims to have a positive influence on the future by providing innovative and environmentally friendly mobility
solutions. The company was founded in 1903. The company is based in DEARBORN, USA.
Volkswagen

Filings API

VOLKSWAGEN is a global company operating in various segments, including dealer and customer financing, leasing, banking, insurance,
fleet management, and mobility services. In the automotive segment, the company is involved in the development, production, and
distribution of cars, motorcycles, and commercial vehicles, as well as the sale of original parts and components. The company’s product
portfolio ranges from small cars to luxury vehicles. The company has a strong presence in Asia-Pacific, Europe, South America, and
Africa. The company also offers financial services such as dealer and customer financing, vehicle leasing, and insurance. The company
has a diverse production network with numerous manufacturing sites worldwide. VOLKSWAGEN aims to promote sustainable growth
and shareholder value through continuous innovation and investment in technology and cybersecurity. The company is also committed
to advancing electric mobility and developing software and interfaces for electric vehicles. The company was founded in 1937. The
company is based in WOLFSBURG, Germany.

Toyota Motor

Filings API

TOYOTA MOTOR is a mid-size company that specializes in passenger vehicle planning, development, and production. The company
offers a wide range of vehicles, including the Corolla, Coaster, Land Cruiser, Alphard, and more. The company’s core technology,
TOYOTA MOTOR, is used in all electrified vehicles and greatly impacts vehicle performance. TOYOTA MOTOR also provides after-sales
services, such as insurance and maintenance, to ensure customer satisfaction. The company is actively involved in the development and
provision of connected devices and services. Additionally, TOYOTA MOTOR collaborates with other companies to create innovative and
differentiated products. The company is committed to improving fuel efficiency and reducing CO2 emissions. TOYOTA MOTOR also
offers financial services to enable more customers to use their cars. The company is dedicated to building sustainable relationships with
stakeholders and contributing to sustainable development. The company was founded in 1937. The company is based in TOYOTA-SHI,
Japan.

This table contains the most recent AI-Gen descriptions of Ford Motor, Volkswagen and Toyota Motor, as well as information from which source the annual report used for the data
generation process has been collected from.

generally does not reveal meaningful differences in the token counts
across size buckets, with the exception that the Al descriptions are
somewhat shorter for stocks in the lowest NYSE size decile. However,
even for stocks in the smallest NYSE size decile, over 95% of AI-
Gen descriptions exceed 170 tokens, ensuring sufficient information for
large-cap stocks and the majority of small stocks.

Next, we conduct an empirical analysis to assess the quality of the
Al-based descriptions. We determine the cosine similarity between the
T5 — XX L embeddings of the actual descriptions from commercial

providers and the Al descriptions for the same year. For example, we
compare the 2014 business descriptions from S&P Global with the 2014
AI-Gen descriptions.® Fig. 4 presents the median cosine similarity be-
tween AI-Gen and commercial business descriptions (LSEG, S&P Global,
and SDC Platinum).

9 We compare AI-Gen descriptions from 2021 with LSEG descriptions from
2022, as we lack access to LSEG’s 2021 descriptions.
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Fig. 3. Business description length (AI descriptions). This figure shows the distribution of the number of tokens in AI-Gen descriptions across different NYSE size deciles.
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Fig. 4. Comparison of Al descriptions to the actual descriptions from data vendors. This figure shows the median cosine similarity of AI-Gen descriptions to the descriptions from
LSEG (blue bars), S&P Global (orange bars), and SDC Platinum (green bars). We generate Al descriptions with GPT-3 using information from annual reports. For each company,
we calculate the similarity between the LSEG (S&P Global, SDC Platinum) description and the AI-Gen description of the same firm on the basis of T5 — XX L. We consider the Al
description of the year the commercial description was generated. We display results for three subgroups (EDGAR, LSEG, and TOTAL, i.e., EDGAR + LSEG) to further investigate
potential differences between the accuracy of descriptions constructed from US and international annual reports.

Overall, this figure indicates that AI-Gen descriptions are highly a perfect semantic text match. The median cosine similarities of the Al
similar to commercial business descriptions. The median cosine sim- description to the actual descriptions of S&P Global and SDC Platinum,
ilarity between a firm’s AI business description and its actual LSEG respectively, are slightly lower at 0.94 and 0.92.
description is 0.95. This indicates a high textual overlap, given that It might be more challenging for GPT-3 to generate business de-

cosine similarities range between —1 and 1, and the upper limit implies scriptions from unstructured annual reports as they might be less
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Availability of business descriptions over time.
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Year #Stocks USA (CRSP) #Stocks Non-US (LSEG Refinitiv)
#AI AI-MV #All All-MV #Al AI-MV #All All-MV

2000 7553 65.35 79.27 82.85 91.61 21298 22.16 55.03 45.35 79.85
2001 7178 69.46 83.06 86.01 93.64 23028 34.51 67.91 53.73 83.80
2002 6447 76.11 87.59 89.65 96.12 23785 43.09 73.28 61.56 87.92
2003 5762 83.48 91.17 92.33 97.32 24527 48.45 76.53 67.65 90.09
2004 5358 86.95 92.56 93.88 97.77 24829 50.82 78.70 71.13 92.03
2005 5172 88.65 93.48 94.43 97.92 25861 53.12 79.38 74.33 92.83
2006 5114 90.05 94.05 95.03 98.08 27 666 54.76 78.87 77.38 93.38
2007 5027 91.23 94.35 95.90 98.45 29286 56.85 81.32 80.91 94.50
2008 4999 91.74 94.66 95.94 98.61 30915 59.13 81.05 84.10 95.17
2009 4714 93.64 95.29 96.86 98.88 31858 61.26 82.76 86.36 95.66
2010 4431 94.65 94.82 97.36 98.88 31984 61.66 82.25 87.27 95.76
2011 4237 95.80 94.93 98.25 98.94 32784 61.72 83.16 87.76 96.09
2012 4067 95.97 95.35 98.33 98.93 33539 62.55 82.95 88.75 96.03
2013 3914 96.17 95.27 98.36 99.09 33633 63.20 84.19 89.73 96.58
2014 3879 96.29 94.62 98.50 99.09 33484 64.21 84.38 97.20 99.25
2015 3963 96.52 95.86 98.44 98.32 33885 65.00 82.23 97.49 99.33
2016 3981 96.66 97.55 98.44 99.33 34615 64.89 77.88 97.04 99.09
2017 3880 96.75 97.72 98.32 99.25 35018 65.10 80.02 96.90 98.88
2018 3819 96.83 98.21 98.25 99.38 36024 64.86 81.55 96.46 98.76
2019 3809 96.95 99.43 98.37 99.83 36786 65.07 83.89 96.49 98.74
2020 3803 96.98 99.61 98.29 99.86 37116 65.10 83.19 96.59 98.71
2021 3911 95.45 99.68 96.86 99.83 37 466 64.67 80.00 96.39 98.26

This table outlines the extent of coverage (in %) provided by our dataset of AI-Gen descriptions, alongside an expanded version that incorporates commercial descriptions from S&P
Global and SDC Platinum. Coverage is assessed annually by identifying the most recent AI-Gen description. For the US, we relate the number of stocks with an Al description to
the number of all US stocks covered by CRSP at any of the major stock indices NYSE, NASDAQ and AMEX in the previous year (#AI). We also report coverage using all available
historical descriptions including Al and commercial descriptions (#All). The one-year lag is included to control for new listings where we lack annual reports to construct Al
business descriptions from. For stocks outside the US, we compare against the total number of actively traded stocks in the previous year as reported by the data provider LSEG
Refinitiv. We also calculate the relative market capitalization coverage in a similar manner (AI-MV and All-MV).

informative than the Item 1 sections of 10-K filings. Addressing this
concern, we also analyze the textual overlap separately for US firms
relying on 10-K filings from EDGAR and Al descriptions that are derived
from annual reports. Measuring the textual match with the actual LSEG
business descriptions, we do not observe a difference in the median co-
sine similarity, which is 0.95 for both firm groups. Comparable values
for both groups are also observed if we measure the similarity of the
Al text to the descriptions from SDC Platinum and S&P Global. Overall,
we conclude that the AI-Gen descriptions are qualitatively well-suited for
constructing global business networks.

3.4. Availability of business descriptions

Our business description dataset contains 514,389 AI-Gen and com-
mercial business descriptions. For 63,486 out of the 68,402 firms in
our stock return dataset we have at least one business description,
representing a coverage of 92.8%. To better understand the availability
of business descriptions across the dataset, we examine the number and
the equally weighted and value-weighted coverage per year from 2000
to 2021. We report coverage separately for US stocks (from CRSP) and
international stocks (from LSEG) (see Table 2).

In 2000, our dataset covers 65.35% of all common US stocks,
translating to a value-weighted coverage of 79.27%. Over time, both
the equally weighted and value-weighted shares of covered US stocks
increase. By 2006, our dataset includes Al descriptions for 90.05% of
US stocks, representing 94.05% of total US market capitalization. By
2021, over 95% of all US stocks are covered, accounting for more than
99% of the total market capitalization.

Outside the US, Al descriptions are available for 22.16% of firms in
2000, covering 55.03% of the non-US market capitalization. The lower
initial international coverage results from the prevalence of scanned,
non-electronically readable annual reports in earlier years.'°

10 To ensure high input quality for the business descriptions, we avoid using
OCR tools due to frequent errors in scanned annual reports.

As electronically readable reports become more prevalent, interna-
tional coverage improves. By 2003, the dataset covers over 76.53% of
the international market capitalization, and the equally weighted share
of covered non-US stocks increases to 48.45%. From 2004 onwards, Al
descriptions are generated for more than 50% of international stocks,
reaching an equally weighted (value-weighted) coverage of 65% (over
82%) by 2015, and remaining stable in subsequent years. The higher
value-weighted coverage indicates that Al descriptions are primarily
missing for smaller stocks.

In summary, our method allows us to successfully create Al business
descriptions for a large number of stocks across the globe. However,
if we solely relied on AI-Gen descriptions, we would miss a meaningful
fraction of stocks in the global BNs, particularly for international stocks
in the early years of the sample period. Therefore, we also consider
the historical descriptions from S&P Global and SDC Platinum for those
firm years without an Al description. We carefully assign only those
descriptions to firm-year observations available at a particular time. As
a result, we observe a substantial increase in coverage in the US and
internationally.

Internationally, the inclusion of S&P Global and SDC Platinum de-
scriptions results in an approximate 23 percentage point increase in
stock coverage in 2000. This extension leads to a value-weighted inter-
national coverage of 79.9%. Since 2003, our dataset consistently covers
over 90% of the market capitalization of non-US stocks. Moreover,
equally and value-weighted coverage increases over the years to 96.4%
and 98.3% in 2021. The notable surge in coverage in 2014 can be
largely attributed to the incorporation of S&P Global descriptions from
that year.

The higher value-weighted coverage in comparison to the equally-
weighted coverage suggests that our dataset still lacks business de-
scriptions for smaller stocks, especially at the beginning of our sample
period, which should be considered by researchers using our data. Nev-
ertheless, we conclude that by utilizing all available business descrip-
tions, we can create comprehensive time-varying business networks
that include most global stocks.

We next investigate coverage across different countries in our Al
and full dataset of business descriptions. Table 3 displays the average



C. Breitung and S. Miiller

Journal of Financial Economics 166 (2025) 104007

Table 3

Average availability of business descriptions across countries.
Country # Al All Al All,,, Country # Al All Al Al
Argentina 80 80.6 89.2 79.1 96.6 Malaysia 918 96 98.4 97 99.1
Australia 1607 89.6 93.4 89.3 93.6 Mauritius 42 56 59.4 56.8 59.7
Austria 92 89.5 91.9 97.5 98 Mexico 133 77.9 85.2 80.1 82.9
Bahrain 40 81.4 87.8 94.9 96.9 Morocco 64 77.2 84.8 89 95.1
Bangladesh 94 54.8 58.4 62.7 64.2 Netherlands 146 90.5 95.7 93.6 99.3
Belgium 146 86.8 90 97.1 98.4 New Zealand 128 92.1 96.7 94.9 97.3
Brazil 166 83.2 87.5 91 93.6 Nigeria 144 68.2 80.6 79.7 95.9
Bulgaria 153 16.5 49.3 26.7 73.1 Norway 224 81.3 92.8 89.6 95.3
Canada 2750 42.1 81.9 68.6 93 Oman 103 92.1 92.9 93.8 94.2
Chile 182 86.2 88.3 94.6 97.4 Pakistan 335 85.2 86.9 85.9 93.4
China 2229 10.1 76.8 33.1 82.3 Peru 132 72.8 79.7 74.3 90.4
Colombia 57 57.9 71.8 68.7 84.3 Philippines 232 88 93.8 93.1 98.1
Croatia 98 41.3 67.7 80.2 90.8 Poland 410 82.6 90.3 94.1 97.5
Czech Rep. 31 66.5 78.8 96.4 97.6 Portugal 64 87.1 89.2 94.1 97.4
Denmark 180 93.5 95.9 97.1 98.1 Qatar 41 94.5 96.2 94.8 97.3
Egypt 178 16.3 66.9 56.3 86.5 Romania 111 24 43.6 77.3 85.7
Estonia 14 98.1 98.1 99.8 99.8 Russia 266 50.9 76.4 93.3 98.1
Finland 142 95.9 97.6 99.6 99.7 Serbia 58 23.2 42.3 51.8 71
France 866 81.1 88.4 95.9 98.9 Singapore 640 89.5 95.1 94 97.9
Germany 873 82.4 86.5 96.3 97.8 Slovenia 17 79.9 97.8 84.5 99.5
Greece 255 53.1 78.9 85.3 94.4 South Africa 359 80.3 88.5 84.2 94.6
Hong Kong 1275 92.2 96.5 80.5 85.7 Spain 179 45.9 84.1 64.4 96.8
Hungary 43 50.1 77.2 93.8 98.5 Sri Lanka 218 77.8 82.9 79.6 87.3
India 2540 80.2 84.8 90.1 94.8 Sweden 485 91.9 95.2 96.8 99.3
Indonesia 421 80.4 85.8 87.6 95.3 Switzerland 252 92.8 95.8 86.3 93
Ireland 60 80 89.2 74.9 86.1 Taiwan 1472 8.4 51.8 50 84.2
Italy 295 88.5 95.7 91.2 97.5 Thailand 556 78 88.4 76.7 95.8
Japan 3738 18.1 79.7 77.8 95.4 Tunisia 51 96 97 95.3 95.5
Jordan 210 135 69.7 71 91.5 Turkey 317 96.4 97.3 97.4 98.8
Kazakhstan 30 80.9 88.7 90.5 95.7 USA 4774 90.5 95.5 94 98.1
Kenya 51 60 72.2 77.2 86 Ukraine 60 28.6 68.2 63.1 82.6
Korea 1707 4.1 65.2 44.4 89.4 UK 1712 87.1 93.4 92.7 95.9
Kuwait 164 34.3 73.8 62.7 85.7 Vietnam 788 70.2 83.1 73.5 95.2
Lithuania 33 75.3 88 81.2 89.1

This table shows the average number of publicly traded companies per country between 2000 and 2021 (#). We further provide the average share (in %) of those firms included
in our Al (AI) and full business description dataset (All), which supplements Al descriptions with actual historical descriptions from S&P Global and SDC Platinum. We also provide
the average market value coverage per country over the same time horizon for our Al (AI-MV) and full description dataset (All-MV).

coverage at the country level between 2000 and 2021.

According to Table 3, our Al dataset encompasses over 80% of
stocks in most countries. The value-weighted coverage is even higher
and often exceeds 90%. However, certain countries are substantially
underrepresented. For instance, only 10% of Chinese firms are included
in our AI business description dataset, covering roughly 33% of the
Chinese stock market. This shortfall is attributed to the limitations of
the GPT-3 tokenizer in processing Chinese text. A similar underrepre-
sentation is observed for other Asian countries such as Japan and South
Korea.

This issue can be mitigated by incorporating commercial descrip-
tions from S&P Global and SDC Platinum. By doing so, coverage in
China increases by more than 65 percentage points to 76.8%. In Japan,
coverage rises to 79.7%, and in South Korea, it improves to 65.2%.

Nevertheless, smaller countries such as Romania (43.59%), Taiwan
(51.80%), Bangladesh (58.35%), and Mauritius (59.45%) continue to
exhibit underrepresentation, even when external business descriptions
are additionally considered. This can be attributed to the lower avail-
ability of annual reports, language barriers, and fewer corporate events,
particularly M&A deals, recorded in SDC Platinum. Despite these gaps,
our dataset provides a good to very good coverage for the vast majority
of global stock markets.

4. Evaluation of the business networks
4.1. Anecdotal evidence
In this section, we evaluate the global BNs, starting with some

anecdotal evidence. For this purpose, we report the five most similar
firms to the car manufacturer Ford according to various networks as

of 2021 in Table 4. To ensure that the companies are known to the
readers, we restrict the lists to stocks in NYSE size decile eight or above.

In Panel A, we focus on US competitors as identified by TNIC
(Hoberg and Phillips, 2010, 2016), the open-source model (75— X X L),
and the large embedding model from OpenAl (OpenAI — L). According
to TNIC, General Motors is the most similar firm, a result also observed
in T5 — XX L and OpenAI — L networks.

In Panel B, considering global firm relations, BOW, T5— X X L, and
OpenAl — L also list General Motors as the most similar firm. For the two
context-aware embedding models, all other similar firms also operate
in the automotive sector. T5 — X X L lists Great Wall Motor Co., Maruti
Sugzuki India, Toyota Motor, and SAIC Motor. OpenAI — L includes Honda
Motor, Hyundai Motor, Nissan Motor, and Toyota Motor among the five
most similar firms. BOW, besides General Motors, lists only one other
automotive company, Great Wall Motor Co., among the most similar
firms.

To assess the stability of business relations over time, we display the
trajectories of textual similarity measured by the open-source model
(T5 - XX L) for selected global competitors of Ford in Fig. 5.

We find relative stability for most cosine similarities between Ford’s
business descriptions and those of its competitors. For example, General
Motors consistently had the highest similarity since 2010. Similarities
are also relatively stable and high for other peers like Volkswagen,
Daimler, and Hyundai. For Tesla, the cosine similarities are slightly
lower, fitting the expectation that its business operations differ more
from Ford’s.

To understand how our global BNs are populated by domestic and
foreign firms, we calculate the share of foreign relations (foreign-share).
This is the number of foreign firms in the network divided by the total
number of business relations for a given firm-year. We then calculate
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Fig. 5. Textual similarity to Ford Motor for selected competitors over time. This figure shows the similarity of the business description of Ford with the descriptions of other car

producers over time. We display the similarity based on the 75 — X X L embeddings.

the median foreign share based on the OpenAI — L network for 23
countries and globally aggregated for the starting (2000) and ending
year (2021) of our sample and provide the results in Fig. 6. This figure
highlights the importance of a global perspective on business networks
and shows significant cross-country differences in foreign-share. Smaller
countries like Denmark, Switzerland, and Singapore have the highest
foreign-share, ranging between 75% and 80% in 2000, due to their
relatively low number of domestic firms. In contrast, larger economies
like the United States, Japan, and Germany show substantially lower
foreign-share values. Over time, there is a general increase in the
number of foreign firms in business networks. This trend is observed
globally, with foreign-share rising from 39% in 2000 to 49% in 2021.
The US also sees a significant increase, with foreign-share rising by 38
percentage points from 23% in 2000 to 61% in 2021.

4.2. Performance evaluation

4.2.1. Network summary and similarities

We aim to comprehensively and systematically understand the dif-
ferences between the constructed BNs across multiple dimensions, in-
cluding industry and country congruence, based on the hypothesis
that business networks should be more homogeneous in these regards.
We also quantify to what extent networks overlap and correlate and
provide the results in Table 5.

Panel A of reports the average and median number of firm relations
across different global business networks. To enhance interpretability,
we also include a network with random firm pairs (“Random”). The
average values show minimal variation, ranging from 398 to 404,
but the median values reveal more pronounced differences. The BOW
network has a median of 188, compared to 281 for the smaller OpenAI
network, indicating fewer firms with disproportionately many relations
in the latter. This variation is due to differences in the concentration of
high cosine similarities across networks.

Panel A also shows that context-aware networks, compared to BOW,
have more relations with domestic firms. For instance, 40.22% of

11

BOW'’s relations are domestic, while the larger OpenAI model has
54.71%. A similar trend is observed concerning industry membership,
measured by SIC codes. A random pair of firms shares the same four-
digit SIC code in only 0.86% of cases, while this share is 5.93%
for the word-based network. However, context-aware networks yield
even higher shares, between 10.12% and 13.13%. This suggests that
context-aware networks better identify relevant business relations than
bag-of-words.

In Panel B, we analyze the overlap percentage, which is the share
of relations occurring in two networks. The average overlap between
a network of randomly selected firm pairs and the other networks is
below 2%, serving as a baseline. This is substantially smaller than the
15% to 17% overlap between word-based and context-aware networks.
The overlap between the two OpenAl models is significantly higher
(around 59%), and there is also a notable overlap of around 40% to
46% between T5 — X X L and the OpenAl models. This indicates that
word-based networks differ substantially from context-aware networks.

To further assess the similarity of the different business networks,
we correlate the stock returns of peers from different networks. For
each firm and model, we calculate the average return of all peers
in its global BN. We then correlate the average peer returns across
networks and report the average firm-level correlation in Panel C.
While correlations are about 0.6 for BOW and the embedding mod-
els, return correlations among context-aware networks, particularly
between the two OpenAl models, are markedly higher, reaching up to
0.85. This suggests that context-aware business networks share more
economically similar peers.

4.2.2. Identification of US competition links

We next validate our business networks by assessing how many
“actual” competitors (as marked in alternative datasets) are included in
our business networks. Due to the lack of a global competition dataset,
we evaluate US-only BNs, allowing us also a comparison with the TNIC
dataset.

First, we benchmark against the list of competitors disclosed by
firms themselves, adopting the approach of Eisdorfer et al. (2021) and
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Fig. 6. Average share of foreign relations per country. The figure shows the median foreign-share in our global BNs at the country-level. We present these values for 23 countries
and globally aggregated (the two right-most bars) for the years 2000 and 2021. Global BNs consist of firms with a business description similarity ranking in the top 1% of all
similarities, according to the large embedding model from OpenAl (OpenAI — L). We calculate foreign-share as the number of foreign firms in the network divided by the total
number of business relations for a given firm-year. We only consider firms with at least 30 business relations and countries with at least 100 firms fulfilling our criteria.

extract competitor names from the Item 1 “competition” subsection
of US 10-K filings.!! Second, following Guo et al. (2023), we extract
economic peers from merger and acquisition filings submitted to the
SEC in 2022, focusing on the “opinion of the financial advisor” section
of M&A documents like PREM14 A, DEFM14 A, and S-4/A. Third, we
compare our network against US firm competition relations included in
FactSet Revere.?

Table 6 summarizes the results of these validation tests by pre-
senting the recall scores for various business networks, each fixed at
a distinct count of most similar firms (10, 50, 100), in the context of
competitor identification.

We find that the 7N I C dataset, when restricted to the top 100 most
similar firm relations, identifies 52.60% of the competitor relations
reported in 10-K filings (Panel A). In contrast, a word-based network
based on our business descriptions has a notably lower recall score of
32.83%. A network using the larger embedding model from OpenAl
significantly surpasses the BOW but underperforms TNIC by around
five percentage points. The T5 — X X L network falls between the two
OpenAl models.

We replicate the analysis with networks based on masked business
descriptions to determine if the superior performance of LLM-based
embedding models is due to potential biases. This approach unexpect-
edly raises recall scores across all embedding models. For networks
containing the 100 most similar firms, the recall score of the T5— X XL

11 We use the Python package “spaCy” and a transformer-based entity
recognition model to identify company names from text, matching recognized
organizations with the SEC’s EDGAR database, the CRSP master file, and the
LSEG dataset.

12 Although this dataset contains some international firm relations, most
links are among US firms, so we refrain from using it to evaluate our global
network.

12

network increases by approximately three percentage points, while
the OpenAl models show increases of up to twenty-one and seven
percentage points, respectively. These results suggest that the presumed
upward bias associated with the look-ahead character of LLMs does not
exist in this context.

Extended analyses using competitor lists from merger and acqui-
sition filings (Panel B) and FactSet Revere (Panel C) corroborates
the initial findings. Embedding models from OpenAl consistently out-
perform the word-based approach. Notably, using masked business
descriptions, higher recall scores are observed for the OpenAl net-
works. This highlights the importance of text anonymization in such
applications.

In conclusion, the validation tests suggest that commercial em-
bedding models from OpenAl demonstrate superiority over traditional
word-based methods, underscoring the robustness and quality of the
business networks generated by these advanced models.

5. Applying the business networks
5.1. The lead-lag effect

The well-documented lead-lag effect (see e.g., Hou, 2007; Cohen
and Frazzini, 2008; Menzly and Ozbas, 2010; Cohen and Lou, 2012;
Huang, 2015; Hoberg and Phillips, 2018; Ali and Hirshleifer, 2020)
indicates cross-predictability in stock returns, suggesting a gradual
information diffusion. These informational spillover effects have been
primarily documented for economically linked stocks. Following this
argument, we should detect spillover effects using our BNs and compare
the generated alphas to assess network accuracy.

To do so, we construct equally-weighted (value-weighted) calendar-
time portfolios from 2001 to 2021. For every stock, we calculate the
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Table 4 Table 5

Most similar firms for Ford Motor in 2021. Global relations, overlaps, and correlations of business networks (2021).
Name Country Sector Random BOW T5-XXL OpenAl-S OpenAI-L
Panel A: US business networks Panel A: Summary
TNIC Mean #Relations 398 400 404 398 398
GENERAL MOTORS USA Automobiles and Parts Median #Relations 266 188 213 281 266
TESLA USA Automobiles and Parts Same coumrgl (%) 5.24 40.22 42.85 51 54.71
LKQ USA Automobiles and Parts Same SIC4 (o/o) 0.86 5.93 13.13 10.12 12.25
PACCAR USA Industrial Engineering Same SIC3 (D/D) 1.46 9.19 17.89 13.92 16.40
ON SEMICONDUCTOR USA Technology hardware and equipment Same SIC2 (%) 3.59 15.56 27.98 23.39 26.95
TS5 - XXL Panel B: Overlap (%)
GENERAL MOTORS USA Automobiles and parts Random 100 L15 L75 169 1.90
PACCAR USA Industrial engineering BOW 113 100 17.27 15.09 16.45
BORGWARNER USA Automobiles and parts T5-XXL 176 17.53 100 40.34 45.81
GENUINE PARTS USA Automobiles and parts OpenAl-S 1.69 1526 40.21 100 58.79
COPART USA General retailers OpenAI-L 1.90 16.65 45.69 58.84 100
OpenAl — L Panel C: Return correlation
GENERAL MOTORS USA Automobiles and parts Random 1 0.39 0.38 0.42 0.42
BORGWARNER USA Automobsiles and parts BOw - 1 0.60 0.62 0.62
ALLY FINANCIAL USA Financial services (Sector) T5-XXL - - 1 0.76 077
GENERAL ELECTRIC USA General industrials OpenALS - - - 1 085
MICROSOFT USA Software and computer services OpenAI'L - - _ 1

Panel B: Global business networks

BoOw

GENERAL MOTORS USA Automobiles and parts
GREAT WALL MOTOR CO. China Automobiles and parts
BASF Germany Chemicals
ZHONGSHENG GP. Hong Kong  General retailers
BOEING USA Aerospace and defense
T5-XXL

GENERAL MOTORS USA Automobiles and parts
GREAT WALL MOTOR CO. China Automobiles and parts
MARUTI SUZUKI INDIA India Automobiles and parts
TOYOTA MOTOR Japan Automobiles and parts
SAIC MOTOR China Automobiles and parts
OpenAl — L

GENERAL MOTORS USA Automobiles and parts
HONDA MOTOR Japan Automobiles and parts
HYUNDAI MOTOR Korea Automobiles and parts
NISSAN MOTOR Japan Automobiles and parts
TOYOTA MOTOR Japan Automobiles and parts

This table presents the five most similar firms with a sufficiently similar market
capitalization (the company should be at least in the 8th NYSE size decile) of the
car manufacturer Ford Motor as of 2021. We consider US-only networks as well as
global networks.

average past month’s return of peer firms at the start of each month.'®
We then pursue long (short) investments in the 20% of stocks whose
most similar firms performed best (worst) in the previous month. We
evaluate these portfolios using the five factors from Fama and French
(2015) plus momentum and short-term reversal. Next to US-only port-
folios, we also construct portfolios for global markets using global
factor data, as US factor data is arguably insufficient for explaining
international stock returns.'*

According to Panel A in Table 7, which shows equally-weighted
seven-factor alphas, the US BOW portfolio exhibits the lowest monthly
alpha of 119 bps. In contrast, OpenAI — L generates a 146 bps alpha
with a t-statistic of 6.72. The 27 bps increase compared to the word-
based network is significant at the 1% level.'® This is slightly lower

13 Ppeer firms are determined considering the BNs of the previous year to
avoid using future information.

14 The factors are calculated by following the methodology mentioned on the
website of Kenneth R. French as closely as possible. For additional information
about the construction of global asset pricing factors, see Huber et al. (2023),
who analyze the suitability of competing asset pricing models for global stock
markets.
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We analyze the similarities of different global business networks on the basis of the
most current descriptions available in 2021. Next to the average number of relations
and the number of relations within a country and industry, we also identify how similar
the relations are. Therefore, we calculate how many of the firm relations co-occur in
another network in Panel B. For example, 16.65% of all stocks in the BOW network are
also included in the network based on OpenAI— L, and conversely, 16.45% of all stocks
in the OpenAI — L network are also found in the BOW network. In Panel C, we report
the correlation between peer returns identified across the different networks for the
same firm. Next to the different business networks, we also construct a network that
contains random firm relations (Random). For a given stock, we identify the number
of peers as identified by the OpenAl-L network and randomly select the same number
of (fictitious) peers.

than the 156 bps generated by TN IC, but higher than the 132 bps of
T5—- XXL and 124 bps for OpenAI — S. When controlling for the LLM
look-ahead bias via masking, there is a 16 bps decrease for OpenAI — L,
but an increase of 14 bps for OpenAI — S.

Globally, Panel A illustrates that BOW achieves an alpha of 208
basis points (bps). However, context-aware networks exhibit higher
seven-factor alphas ranging from 265 to 281 bps, with -statistics above
10, and significantly outperforming BOW at the 1% level. Although
alphas for masked networks are lower, they still significantly exceed
those of BOW, again suggesting that the LLM look-ahead bias might not
have a strong presence in this application.

Panel B reveals that value-weighted portfolios can also achieve
highly significant seven-factor alphas. For OpenAI — L, global portfolios
yield highly significant alphas up to 74 bps, with statistical significance
at the 1% level. Considering masked networks, we even observe a 88
bps for (OpenAI — S). Notably, there is greater variation in the value-
weighted alphas of US portfolios. A portfolio based on OpenAI — L
generates a monthly seven-factor alpha of 40 bps (¢-statistic of 2.54),
whereas the alpha from a portfolio based on OpenAI — S is not statisti-
cally significantly larger than zero. This discrepancy could be attributed
to the presence or absence of mega-cap stocks in the long or short
portfolios, which may have a strong influence of the value-weighted
portfolio returns. We therefore follow the methodology of Jensen et al.
(2023) and present capped value-weighted portfolio alphas in Panel C.
Specifically, we cap market capitalizations at the 80th percentile within
each quintile to avoid a dominating influence of few extremely large

15 We test statistical significance by regressing the return difference of the
two portfolios on the seven factors of the asset pricing model and observe the
t-statistic of the intercept. Table 2 in the Online Appendix reports statistical
significance levels for all return differences between the word-based and
context-aware networks.
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Table 6
Detection rate of US competition links.
@ (2 3)
100 50 10

Panel A: Disclosed 10-K (%)
TNIC 52.60 44.46 25.65
BOW 32.83 23.37 10.44
T5-XXL 43.57 33.53 16.01
OpenAl-S 34.65 24.52 10.07
OpenAl-L 47.66 37.71 17.89
T5-XXL-Masked 46.42 34.48 15.64
OpenAI-S-Masked 56.43 45.85 24.38
OpenAl-L-Masked 54.67 45.10 24.55
Panel B: Comparable company analysis (%)
TNIC 44.16 34.79 16.69
BOW 28.43 21.76 9.69
T5-XXL 39.60 31.64 14.12
OpenAI-S 30.30 23.04 9.18
OpenAlI-L 43.20 32.67 13.67
T5-XXL-Masked 38.83 30.04 12.71
OpenAI-S-Masked 45.70 37.03 16.94
OpenAI-L-Masked 47.88 38.13 18.36
Panel C: FactSet revere (%)
TNIC 46.44 36.30 16.83
BOW 30.02 20.96 8.23
T5-XXL 42.64 30.40 12.83
OpenAI-S 34.67 23.60 8.50
OpenAlI-L 45.51 33.90 13.85
T5-XXL-Masked 43.86 32.88 13.35
OpenAI-S-Masked 53.70 41.33 18.99
OpenAl-L-Masked 52.28 40.29 18.33

We construct different US business networks on the basis of the most current
descriptions available in 2021. Next to the TNIC dataset from Hoberg and Phillips
(2010, 2016), we evaluate a word-based network (BOW) and multiple embedding-based
networks (T5— X XL, OpenAI — S, and OpenAl — L). To directly compare the accuracy
of our networks to the TNIC dataset, we modify the business networks so that they are
restricted to US firms that are also included in the TNIC dataset. We then calculate
in Panel A and B how many of the US competition links disclosed in the business
section (Item 1) of 10-K filings and in M&A acquisition files (PREM14A, DEFM14A,
and S-4/A) may be found in the networks (recall score). We repeat the analysis in
Panel C using the competition links reported in FactSet Revere, a dataset containing
competition, supplier-customer, and partnership links. The recall scores are presented
in percentage points. The highest recall scores in a column and panel are shown in
bold.

stocks. We observe highly significant capped value-weighted alphas
between 68 and 81 bps in the US, and 149 and 165 bps globally for
the embedding-based networks.

We also examine the lead-lag effect using (Fama and MacBeth,
1973) regressions at the stock level to control for other known cross-
sectional return predictors, including alternative past month peer re-
turns (e.g., based on industry membership). These results, reported in
Table 8 in the Online Appendix, suggest our global business networks
reveal novel business links.

Overall, our findings suggest the potential for developing profitable
trading strategies with our context-aware BNs. The results are robust
to a potential LLM look-ahead bias and can be reproduced with alter-
native cosine similarity thresholds (see Online Appendix). Importantly,
the high strategy alphas indicate that our BNs consider economically
closely intertwined stocks.

5.2. Predicting M&A deals

We continue evaluating our business networks’ accuracy by test-
ing their ability to predict takeover targets. This analysis is inspired
by Hoberg and Phillips (2010), who find that firms tend to acquire
highly similar firms due to potential synergies. We compare the ac-
curacy of different business networks by calculating how many target
firms are included among the most similar 10, 30, 50, and 100 firms.
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Table 7
Lead-lag effect: US and global evidence for different business networks.

Business network TNIC BOW T5-XXL OpenAI-S OpenAI-L

Panel A: Equally-weighted

us 1.56%** 1.19%** 1.32%** 1.24%*x 1.46%**
(6.33) (6.38) (6.61) (5.94) (6.72)

US-Masked - - 1.34%%* 1.38%x* 1.3%%%
- - (6.26) (6.69) (6.46)

GLOBAL - 2.08%** 2.65%** 2.68%** 2.81%%*
_ (9.01) (10.02)

GLOBAL-Masked - - 2.6%%*
- - (10.69) (10.54)

Panel B: Value-weighted

us 0.32* 0.15 0.38** 0.15 0.4%*
(1.75) (1.12) (2.49) (0.95) (2.59)

US-Masked - - 0.21 0.35** 0.23
- - (1.18) (2.07) (1.44)

GLOBAL - 0.45** 0.71%%* 0.67*** 0.74%**
- (2.55) (3.56) (3.05) (3.25)

GLOBAL-Masked - - 0.84%%* 0.88%*** 0.77%**
- - (3.92) (4.19) (3.69)

Panel C: Capped value-weighted

us 0.93*** 0.62%** 0.72%%* 0.68%** 0.81%**
(4.34) (4.24) (4.37) (4.26) (4.68)

US-Masked - - 0.76%** 0.78%*** 0.687***
- - (4.45) (4.8) (4.2)

GLOBAL - 1.14%%* 1.56%** 1.53%%* 1.65%%*
- (4.43) (5.65) (5.14) (5.52)

GLOBAL-Masked - - 1.49%%* 1.59%* 1.55%**
- - (5.59) (6.22) (5.84)

We study the lead-lag effect in the US and globally by constructing calendar-time
portfolios that are rebalanced every month. We go long (short) in the 20% stocks whose
most similar firms showed the best (worst) return in the previous month. In Panel A, we
report seven-factor alphas (Fama and French, 2015 five-factor model plus momentum
and short-term reversal) for equally weighted portfolios. Panel B, we display alphas for
value-weighted portfolios. We also provide capped value-weighted alphas as suggested
by Jensen et al. (2023) in Panel C. We consider several networks, including the TNIC
dataset (available for the US only), a word-based network (BOW), an open-source
Sentence Transformer model (75 — XX L) as well as a small and a large embedding
model from OpenAl (OpenAl — S and OpenAl — L) that are based on our full dataset
of business descriptions (AI-Gen and commercial descriptions). We also show seven-
factor alphas for portfolios based on masked business networks to explore the effect
of a potential LLM look-ahead bias. We use Newey—West standard errors with two lags

and denote the corresponding r-statistics of the coefficients in parentheses. * indicates

significance at the 10% level, ** indicates significance at the 5% level and *** indicates
significance at the 1% level.

We gather data from SDC Platinum on public firms that acquired
publicly traded companies from 2000 to 2021. We calculate the recall
score by counting how many target firms of M&A deals are included in
our business networks.

According to Fig. 7, we observe a recall score of 29.22% for
OpenAIl — L, which is smaller (although not statistically significantly)
than the 32.52% for T N IC, if we restrict our M&A dataset to US firms
and consider the ten most similar firms. Considering the 100 most
similar firms from OpenAI — L, we observe a recall score of 50.68%,
compared to the 58.53% for T NIC. However, this difference is not
statistically significant.

If we consider global M&A deals, we find that up to 23.54% of the
acquired firms were among the ten firms with the most similar business
description, according to OpenAI — L, in contrast to roughly 6.68% for
BOW . This difference is statistically significant at the 1% level. We
observe a similar pattern if we consider a larger number of firms. For
example, among the 100 most similar firms, OpenAI — L achieves a
recall score of 49.73%, whereas a word-based approach significantly
underperforms with a recall score of 17.73%.

We repeat our analysis of M&A cases using masked business net-
works to control for a potential LLM look-ahead bias and present the
results in Fig. 8. Here, we observe different effects for the US and



C. Breitung and S. Miiller Journal of Financial Economics 166 (2025) 104007

Us

70' @® TNIC

[l OpenAl-L
60 o
50 ° I
40
301
201

101

Recall (%)
ne
[ K J

1510 30 50 100
Most relevant relations

Global (US + International)

€ BOwW
OpenAl-L
501 ® t

—~ 40+ .
X m
— 30
(v)
g [ |
120 m <
10 ¢ *
l"
S

1510 30 50 100
Most relevant relations

Fig. 7. M&A target firm detection. These figures examine the proportion of M&A target firms that are included in the different US (global) business networks (recall scores). The
shadow areas in our visualizations represent the 95% confidence intervals of the data.
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Table 8
Predicting M&A deals with logistic regressions.
(€8] 2) 3 @
Same SIC4 39.63*** 4.805*** 10.69" 4.478*
(23.83) (8.68) (11.57) (8.10)
Same country 28.03** 4.789* 9.770*** 4.476"*
(32.87) (17.93) (20.14) (16.71)
Debt ratio 1.082%* 1.078** 1.100*** 1.083**
(3.65) (2.19) (3.47) (2.28)
ROE 1.060** 1.067** 1.062* 1.067*
(2.84) (2.11) (2.38) (2.07)
Cash 1.014 1.062** 1.051* 1.067*
(0.58) (2.26) (2.28) (2.48)
Similarity 1.228***
(47.41)
Masked similarity 1.159* 1.240*
(34.03) (43.26)
Similarity difference 1.211%
(44.81)
Pseudo-R2 0.338 0.554 0.441 0.556
N 666 297 666 297 666 297 666 297

This table presents the results of logistic regressions that examine the relation between business description similarity and
the likelihood of an M&A. We use M&A data from SDC and randomly select 100 times as many non-merger firm pairs. We
restrict the number of deals per acquirer and year to one. In total, we consider 6598 deals, 1600 deals with an US acquirer
and 4998 deals with a non-US acquirer. The cosine similarity of the business descriptions is measured using the embedding
model OpenAl-L and is displayed in percentage points. To further control for a potential LLM look-ahead bias, we split the
similarity into two parts: The similarity based on masked descriptions and the difference between the two similarity measures
(unmasked minus masked). We control for other relevant factors, such as whether the firm pair shares the same four-digit SIC
code and country. Additionally, we consider fundamental information of the (fictitious) target firms, such as their profitability
(ROE), cash amount (Cash), and debt share (Debt Ratio). All non-categorical variables other than the similarity measures
are grouped into quintiles. We report odds ratios to ease the interpretation of the results. We cluster standard errors at the
industry level. *indicates significance at the 10% level, ** indicates significance at the 5% level and *** indicates significance

at the 1% level.

globally. In the US, the recall score for OpenAI — L increases by
about three percentage points when focusing on the top 10 most
similar firms according to a masked network. Conversely, the recall
score decreases by about three percentage points in a global setting.
Importantly, masked embedding-based networks still outperform word-
based networks, suggesting that a potential look-ahead bias does not
explain the outperformance of these models.

Next, we establish a logistic regression framework to account for
the likelihood that companies are also more inclined to acquire firms
in the same industry and country. We control for the debt ratio, return
on equity, and cash amount of targets to determine the additional
explanatory power of textual similarity of business descriptions beyond
these known variables. We map 6598 deals from SDC Platinum to our
dataset, comprising 1600 deals with a US acquirer and 4998 deals with
a non-US acquirer. For each M&A deal, we randomly select 100 non-
merger firm pairs. The dependent variable in the logistic regressions
is a dummy variable “acquired” set to one if a firm pair represents an
M&A deal and zero otherwise. Our findings are presented in Table 8.

Table 8 confirms that firms in the same industry and country are
more likely to be targeted, with odds ratios significantly larger than
1 and r-statistics of 23.83 and 32.87, respectively (see column 1).
Acquiring firms also tend to purchase firms with higher debt ratios,
though with smaller #-statistics. Even after controlling for these factors,
the similarity between business descriptions remains statistically signif-
icant, with an odds ratio of 1.228 and a #-statistic of 47.41 (see column
2). The coefficient indicates that a one standard deviation increase in
description similarity leads to a 83.22% increase in merger probability.

To control for a potential LLM look-ahead bias, we run a regression
on the cosine similarity of masked descriptions in column (3). The odds
ratio for textual similarity is significant but lower at 1.159, with a ¢-
statistic of 34.03. In column (4), we add the difference between masked
and unmasked cosine similarity as a bias proxy. We find a highly
significant odds ratio for the Similarity Difference, which indicates that
a LLM look-ahead bias might play a role here. Nevertheless, we still
observe a significant odds ratio for the masked cosine similarity in
column (4), suggesting that the LLM look-ahead bias does not fully
explain our initial results. Based on these findings, we conclude that
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firms target peers in M&A deals with more similar businesses after
controlling for other factors.

6. Classification of business relations

Up to this point, our networks do not distinguish between the exact
types of firm relations, as they may include potential competitors, sup-
pliers, or customers. However, some applications may require networks
exclusively focused on one type of relationship. While databases like
FactSet Revere provide insights into firm relations, particularly in the
US, they do not cover all global stocks.

We propose fine-tuning a language model on the relationship data
from FactSet Revere to address this gap. Specifically, we train a three-
class prediction model on the business descriptions of the involved
firms (input data) and the relationship categories (competitor, supplier,
and customer). As a next step, we identify all active firm relations in
FactSet Revere and align the previous year business descriptions of
the corresponding firms. We then subdivide the dataset into distinct
training and test sets. In the test set, we include various relations: some
involving firms not present in the training set and others featuring
firms that appear in different relations within the training set. We
adopt an oversampling strategy to achieve a balanced representation
of competition, supplier, and customer relations in the training data,
ensuring equal distribution across these three categories.

The next phase involves fine-tuning a “Longformer” (Beltagy et al.,
2020), a BERT-style open-source transformer model capable of pro-
cessing up to 4096 tokens. As a robustness test, we further train a
similar model using masked descriptions to identify to what extent the
performance is biased by company or product names.'®

We calculate the accuracy, precision, recall, and F1 scores for the
model based on the full dataset of business descriptions in Panel A of
Table 9. The overall three-class accuracy is 78.14%, significantly better

16 Note that we refrain from training a BERT (Devlin et al., 2019) or
RoBERTa (Liu et al., 2019) model, because the concatenation of two business
descriptions can exceed their input limits of 512 tokens.
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Table 9

Business relation classifier.
Relation Accuracy Precision Recall F1
Panel A: All descriptions
Unmasked descriptions (original)
Three class dataset 78.14
Competitor vs. non-Competitor 83.33 84.38 76.21 80.09
Supplier vs. non-Supplier 87.06 52.04 73.76 61.02
Customer vs. non-Customer 85.88 84.50 81.56 83.01
Masked descriptions
Three class dataset 73.03
Competitor vs. non-Competitor 78.79 81.14 67.48 73.68
Supplier vs. non-Supplier 85.64 48.26 62.72 54.55
Customer vs. non-Customer 81.63 76.24 82.16 79.09
Panel B: Al descriptions
Unmasked descriptions (original)
Three class dataset 79.23
Competitor vs. non-Competitor 83.56 80.96 82.32 81.63
Supplier vs. non-Supplier 88.93 55.84 72.07 62.92
Customer vs. non-Customer 85.96 87.52 78.20 82.60
Masked descriptions
Three class dataset 85.73
Competitor vs. non-Competitor 88.55 89.29 84.29 86.72
Supplier vs. non-Supplier 92.81 67.08 88.07 76.15
Customer vs. non-Customer 90.09 89.86 86.50 88.15

This table provides a detailed comparative analysis of four multi-class classification models, that differentiate between
competition, supplier, and customer relations. Panel A displays the accuracy, recall, precision, and F1 score of a model that is
trained on AI-Gen and commercial business descriptions. Additionally, the multi-class problem is transformed into three distinct
binary classification tasks. For example, relationships are classified as either competitor or non-competitor (incorporating both
supplier and customer categories), followed by the calculation of accuracy, precision, recall, and F1 score for these binary
classifications. A similar approach is applied to the customer and supplier relationships. To control for a potential look-ahead
bias, we also train and evaluate a similar model that is based on the masked versions of the same business descriptions. In
Panel B, we evaluate the performance of two similar models, which they are trained on AI descriptions only.

than a random guess (33.33%), demonstrating the model’s predictive
capabilities. Transforming the multi-class problem into a binary classi-
fication task, the model also shows high accuracy (83.33%), precision
(84.38%), recall (76.21%), and an F1 score of 80.09% in identifying
competitors. Similar high accuracies are observed for identifying sup-
pliers (87.06%) and customers (85.88%), with reasonable F1 scores.
The performance metrics for masked descriptions are similar, indicating
the model does not solely rely on firm names and other identifiers.

Panel B reports the performance for a model trained only on AI-
Gen descriptions. Here, we observe an accuracy of 79.23% (85.73% for
masked descriptions), which is higher than in Panel A. This increase
may be due to the longer Al descriptions providing more critical
information than the often shorter commercial descriptions from SDC
Platinum and S&P Global.

Overall, we show that state-of-the-art language models can effec-
tively derive the likely nature of business relations from pairs of busi-
ness descriptions. Thus, our BNs can be used for research tasks focusing
on specific types of business relations, like competitor links, provided
the prediction model’s errors are tolerable.

7. Conclusion

We generate a novel dataset of historical business descriptions,
covering 91.6% to 99.8% of the US and 79.9% to 98.3% of international
stock market capitalization from 2000 to 2021. These descriptions are
constructed using business-relevant information extracted from annual
reports and harmonized with GPT-3. For firm years where Al descrip-
tions cannot be generated, we supplement with historical descriptions
from vendors like S&P Global and SDC Platinum.

We are the first to apply open-source and proprietary embedding
models to construct time-varying global business networks. Unlike
word-based methods, our approach handles synonyms and word con-
text to determine the similarity of business descriptions. Due to a
lack of global networks, we evaluate the accuracy of our networks by
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calculating the number of competitor relations of US firms identified by
our networks with those identified by TNIC and obtain a comparable
performance.

We demonstrate the usability of our context-sensitive networks in
two dimensions. First, we revisit the lead-lag effect and obtain signif-
icant equally weighted and value-weighted seven-factor alphas in the
US and globally. Second, we predict M&A deals with firm similarity and
find a significant relation in the US and globally, even when controlling
for other characteristics.

Our study also investigates a potential LLM look-ahead bias when
applying LLMs and their derivative embedding models in Finance and
Economics. By repeating the competitor identification, lead-lag effect,
and M&A prediction tasks using business networks based on masked
descriptions, we investigate the size of this LLM look-ahead bias in
different applications. While our findings indicate that the extent of
the bias depends on the specific task, it seems generally advisable to
anonymize information processed by LLMs to minimize the bias.

Finally, we demonstrate how open-source language models can be
fine-tuned to distinguish between competitor, supplier, and customer
relations, allowing us to refine our business networks further. This
approach enables a more focused analysis depending on the specific
research question.

Our networks, with their global reach and extensive coverage, un-
cover insights into worldwide economic connections and enable more
precise, firm-specific assessments of competitor, supplier, and customer
dynamics. To promote future research, we make the AI-Gen descriptions
and the resulting global BNs available.
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