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We structurally estimate an investment-based asset pricing model, in which firms’ exposure to macroeconomic 
risk is unknown. Bayesian beliefs about this parameter are updated from firms’ and industry peers’ comovement 
between their productivity and consumption growth. The model implies that discount rates rise endogenously 
with the perceived risk exposure of firms, thereby depressing investment and valuation ratios. We test these 
predictions in the data and find strong support for them. We also confirm that cross-sectional learning from 
peers is crucial and that alternative Bayesian risk estimates, which ignore peer observations, do not predict firm 
variables.
1. Introduction

The consumption-based asset pricing paradigm states that risk pre-

mia arise from the comovement between consumption growth and 
returns. Despite its intuitive appeal, many early empirical tests did 
not find support for this prediction.1 Inspired by a neoclassical invest-

ment model with a consumption-based pricing kernel and parameter 
uncertainty about firms’ exposure to macroeconomic risk, we propose 
a novel cash flow beta of productivity to consumption growth based 
on Bayesian learning. We find strong support for a consumption-based 
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pricing kernel, as the evolution of Bayesian beliefs about cash flow be-

tas predicts investment rates, valuations ratios, and risk premia.

In our neoclassical investment model, firms’ productivity is stochas-

tic and correlated with consumption, rendering firms exposed to 
macroeconomic risk. We make two key assumptions about the pa-

rameter controlling the exposure of firms’ productivity to consumption 
shocks. First, this parameter is constant over time but unknown. In re-

sponse, agents learn about it through Bayesian updating. Second, firms 
in the same industry share the same exposure parameter. Because of 
the identical risk exposure among industry constituents, it is optimal 
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Fig. 1. Beliefs about Risk Exposure and Investment Rates. This figure illustrates 
the correlation between changes in the perceived risk exposure from 2006 to 
2009 and changes in investment rates from 2007 to 2010 across industries, 
where investment rates are equally weighted within an industry.

for individual firms to incorporate peers’ productivity as a signal into 
their learning about their own risk exposure. Using the collective obser-

vations of peers, firms thus learn from a rich source of cross-sectional 
information compared to the case in which they would learn solely from 
their own history.2

Our model features a consumption-based pricing kernel. As a result, 
Bayesian beliefs about the productivity exposure parameter affect firm 
decisions and characteristics. Intuitively, an increase in risk exposure 
beliefs upon the arrival of new information means that the perceived 
covariance between productivity and consumption has increased. Due 
to the consumption-based pricing kernel, this elevated covariance trans-

lates into higher risk premia, even though the true risk exposure is 
constant. Higher discount rates depress the value of new investment 
projects, thereby lowering investment rates and valuation ratios.

We test these predictions in the data by using panel regressions, 
and we find strong support for them. Specifically, we find that capi-

tal investment rates and valuation ratios, as measured by Tobin’s 𝑄, 
respond strongly negatively to the posterior mean risk exposure at 
the 1% significance level, when we control for other known cross-

sectional determinants. These links are also economically significant. 
A one-standard-deviation increase in the mean risk exposure leads to, 
on average, a 5.6% decrease in investment and a 4.6% decrease in To-

bin’s 𝑄.

To illustrate our results, we present in Fig. 1 the response of changes 
in investment rates from 2007 to 2010 to changes in the perceived risk 
exposure from 2006 to 2009 across industries. This period highlights 
the impact of learning on firm policies, as the large drop in consump-

tion during the Great Recession caused a substantial revision in beliefs. 
The figure illustrates the negative response of firm investment to shifts 
in risk exposure beliefs. Investment rates fell significantly for industries 
with a surge in perceived risk exposure, such as cruise, housing con-

struction, and iron and steel mills. In contrast, industries with a drop 
in risk exposure, such as colleges and universities, child and elder care, 
and hospitals, increased their investment.

2 While we are not the first to measure cash flow betas (e.g., Bansal et al. 
(2005) and Da (2009)), our cash flow betas are distinctively based on Bayesian 
learning that uses the cross section of productivity growth among industry con-
2

stituents.
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In our model, the synchronous response of investment and valua-

tion is driven by endogenous shifts in discount rates that learning about 
the risk exposure parameter induces. To test this conjecture, we em-

ploy both the implied cost of capital from accounting information3

and realized stock returns as a proxy for discount rates. We find that 
both discount rate measures relate positively to the posterior mean risk 
exposure with a strong statistical significance. Economically, a one-

standard-deviation rise in the mean risk exposure is accompanied by, 
on average, a 0.45% increase in the annualized implied cost of capital 
and a 0.71% increase in the realized return.

A key identification assumption underpinning our Bayesian learn-

ing is that firms learn from both their own history and industry peers. 
In the data, we identify each firm’s peers using the SIC, NAICS, and 
Hoberg and Phillips (2016) text-based industry classification systems. 
We confirm that industry peers indeed have a commonality in firm-

level productivity; the first principal component explains on average 
35.9% of productivity variance within industries. Next, we illustrate 
the importance of industry peers by considering three alternative forms 
of learning. First, firms learn from their own history only; second, they 
learn from their own history plus randomly assigned peer firms; and 
third, they learn from industry peer observations only, ignoring their 
own history. We find that the first two approaches, which do not in-

clude peer observations, result in insignificant links between firm vari-

ables and risk exposure beliefs. In contrast, beliefs in the last approach 
strongly predict firm variables, similar to our baseline results, and thus 
highlight information spillovers across peer firms. In sum, all three ex-

periments support the assumption that industry peers share the same 
risk exposure parameter.

Our neoclassical investment model features a decreasing returns 
to scale production function, convex capital adjustment costs, and 
Bayesian learning from peers about the risk exposure parameter. To 
quantitatively evaluate the model performance, we estimate with simu-

lated method of moments the depreciation rate, capital share of produc-

tion, adjustment cost parameter, idiosyncratic volatility, productivity 
exposure to consumption risk parameter, and price of risk in the pric-

ing kernel. We identify these six parameters based on eight moments, 
which are the mean and variance of the investment rate, equity returns, 
Tobin’s 𝑄, and the posterior mean of risk exposure.

Overall, the model matches all moments well. Both in the model and 
data, investment rates average around 25% annually with a standard 
deviation of around 21%. In the data, stock returns are close to three 
times more volatile than investment rates, which the model can almost 
replicate. Specifically, stock returns have a volatility of 58% in the data, 
compared to 53% in the model. The model can match these moments 
with a large depreciation rate of 56%, an idiosyncratic volatility of 92%, 
and an adjustment cost parameter of 2.15. The large adjustment costs 
drive the wedge between the volatility of investment and stock returns. 
The magnitude of the adjustment costs parameter implies that firms 
spend around 6.4% of their output on capital adjustments. The model 
can also match firm-level average excess returns of 10% with a price of 
risk of 2.35.

The model also replicates fairly well an average 𝑄 of around 1.9 
with a capital share of 0.75. Relative to the existing literature (e.g., 
Nikolov and Whited (2014)), our model also generates a volatile Tobin’s 
𝑄. Intuitively, the time variation of valuation ratios such as 𝑄 reflects 
time variation in discount rates. Learning about risk exposure generates 
time variation in discount rates, even though the true parameter is con-

stant. In our benchmark specification, each industry is assumed to have 
five firms to reflect the average number in the data. When the num-

ber of peers increases, the volatility of stock returns and Tobin’s 𝑄 both 
decrease because the agent observes more signals from which to learn. 
Yet even with ten industry peers, our learning model significantly im-

3 We measure the implied cost of capital following the approach of Hou et al. 

(2012).
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proves on explaining the volatility of stock returns and 𝑄 compared to 
the literature, which has ignored parameter uncertainty.

Even though we did not target any regression coefficients in the 
estimation, the model can quantitatively generate the negative response 
of investment rates and Tobin’s 𝑄 to risk exposure beliefs. The model 
also produces a positive relationship between risk exposure beliefs and 
the cost of capital, which resembles patterns in the data. In addition, 
we confirm that our model generates informational spillover effects. As 
captured in the data, beliefs about risk exposure driven only by industry 
peer observations negatively predict both investment and the valuation 
ratio and, simultaneously, positively predict the cost of capital.

To ensure robustness, we confirm that our main empirical findings 
hold, even when the true exposure to systematic risk is stochastic and 
even when there is uncertainty about the drift. Suppose that the true 
exposure changes over time, contrary to our baseline assumption. In 
this case, the learning-based estimate–derived from the constant-risk 
assumption–might misleadingly capture variations in true risk char-

acteristics. To address this concern, we explicitly model the true risk 
exposure as an autoregressive process and estimate the beliefs distribu-

tion by using the Kalman filter. In this setting, we focus on ambiguity 
about the unconditional mean of systematic risk, the true value of which 
is constant by nature. In ways that mirror our baseline findings, the 
mean beliefs about this parameter still predict firm observables in our 
analysis.

Distinct from our focus on risk exposure, many prior studies have 
considered uncertainty with respect to the drift of productivity (e.g., 
Pastor and Veronesi (2003), Alti (2003), and Andrei et al. (2019)). In 
response, we extend our model and consider the joint learning about 
the drift and risk exposure of productivity. We confirm that beliefs 
about the drift predict firm observables, consistent with previous stud-

ies. More importantly, when we control for learning about the drift, we 
find that risk exposure beliefs are still powerful predictors of firm vari-

ables, similar to our baseline findings. Our analysis thus establishes that 
firms’ real decisions and market valuation respond to learning about 
both systematic productivity risk and expected productivity growth.

The remainder of this paper is organized as follows. In Section 2, 
we describe the dynamics of aggregate consumption and firm-level pro-

ductivity and derive the dynamics for Bayesian learning. In Section 3, 
we present empirical evidence that links beliefs about firms’ risk expo-

sure, investment, and valuation. We rationalize these empirical results 
by using a neoclassical investment model with cross-sectional learning 
in Section 4. In Section 5, we show that our empirical results are robust 
to a setting with time variation in the true risk exposure and learning 
about the productivity drift.

Literature Review

Our paper builds on the literature that studies parameter learning 
and its implications for asset valuations. Pastor and Veronesi (2009)

provide a comprehensive review of learning models in finance. Jo-

vanovic and Nyarko (1994), David (1997), Weitzman (2007), Collin-

Dufresne et al. (2016), and Johannes et al. (2016) show that learning 
about parameters governing the economy generates regularities in as-

set returns and business cycles, which otherwise seem puzzling. Other 
papers study learning about an unknown aggregate state4 or endoge-

nous information acquisition, such as Veldkamp (2006). Focusing on 
the aggregate implications, however, these studies have not examined 
how learning affects the cross section of corporate valuations and in-

vestment, which is the goal of our paper.

The Bayesian learning proposed in this paper is related to the lim-

ited attention literature. As a particular form of non-Bayesian learning 
arising from limited attention, Malmendier and Nagel (2016) and Nagel 
and Xu (2022) document learning with fading memory. Both forms of 

4 These include Veldkamp (2005), Lettau et al. (2007), Ai (2010), Boguth and 
3

Kuehn (2013), and Croce et al. (2014).
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learning share the same insight that past observations shape the be-

liefs about parameters affecting asset valuations. In contrast to Bayesian 
learning, agents with fading memory put more weight on recent obser-

vations and thus the influence of past data on beliefs gradually fades 
over time.

Our paper is also closely related to prior studies that highlight uncer-

tainty about a firm-level parameter, such as dividend growth (Veronesi 
(2000)), mean productivity (Pastor and Veronesi (2003); Alti (2003)), 
return-to-scale in the production function (Johnson (2007)), and mean 
cash flow (Andrei et al. (2019)). Distinctive from these studies, we focus 
on ambiguity with respect to exposure to macroeconomic risk, similar 
to the idea of Ai et al. (2018) and Li et al. (2023). We complement 
these recent studies by elaborating upon the learning mechanism. In our 
model, agents learn from the history of realized productivity instead of 
noisy independent signals, as is the case in prior studies. Furthermore, 
we propose learning from peer observations, which results in unique 
information spillovers.

The idea of learning from peers is related to Foucault and Fresard 
(2014), who document firm investment responding to peers’ Tobin’s 𝑄. 
In their model, managers learn from peers’ stock prices because demand 
is correlated across firms and investors trade based on private informa-

tion. In the absence of private information, we rationalize peer learning 
with a neoclassical investment model, where firms in the same indus-

try share the same risk exposure parameter. Relatedly, informational 
spillover effects on earnings announcement days have been found by 
Patton and Verardo (2012) and Savor and Wilson (2016).5

This study is also related to the literature on consumption-based as-

set pricing, including studies by Bansal et al. (2005), Da (2009), and 
Boguth and Kuehn (2013). These studies reveal that the cross-sectional 
dispersion in expected returns is driven by the comovement between 
consumption growth and securities’ cash flows. Distinct from these prior 
studies, we consider Bayesian learning about risk exposure from the co-

movement between productivity and consumption growth and expand 
the implications of consumption risk to the time series dimension.

More broadly, our paper is also related to dynamic investment mod-

els, which examine the implications of firms’ optimal decisions for asset 
returns. Prior studies, including Berk et al. (1999), Gomes et al. (2003), 
Carlson et al. (2004), Zhang (2005), and Kuehn and Schmid (2014), all 
show that observed patterns in stock and bond returns emerge as a re-

sult of corporate investment policy. We complement this literature by 
establishing new regularities about investment and returns caused by 
parameter learning. In our measurements of firm investment, Tobin’s 
𝑄, and firm-level productivity, we explicitly account for the role of in-

tangible assets. We measure the intangible components by following 
Eisfeldt and Papanikolaou (2013) and Peters and Taylor (2017).

Finally, our structural estimation follows Nikolov and Whited (2014)

and Hennessy and Whited (2007), who apply the simulated method of 
moments to dynamic models. While these prior studies focus mainly 
on the impact of financing frictions on firm investment, we consider 
optimal firm policies under parameter uncertainty.

2. Bayesian learning about systematic risk

In this section, we describe the dynamics of aggregate consumption 
and firm-level productivity. Firms are exposed to aggregate consump-

tion risk via their productivity process. Importantly, the exposure to 
consumption risk is unknown and must be learned over time. Firms 
observe their own productivity growth and aggregate consumption 
growth. Moreover, firms observe productivity growth of their peers in 
the same industry as signals. This set of signals is informative because 

5 In a different context, Boguth and Kuehn (2013) and Jurado et al. (2015)

underscore the importance of using a cross section of signals that share a com-

mon truth. We extend this idea to the context of firm investment and show that 

cross-sectional information is crucial for optimal corporate decisions.
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firms in the same industry share the same exposure to consumption 
risk. Based on this setup, we derive the dynamics for the Bayesian be-

liefs about the risk exposure parameter.

2.1. Dynamics

Aggregate consumption growth 𝑔𝑐,𝑡+1 is normally distributed with 
drift 𝜇 and volatility 𝜎𝑐 and given by

𝑔𝑐,𝑡+1 = 𝜇 + 𝜎𝑐𝜂𝑡+1, (1)

where 𝜂𝑡+1 is an i.i.d. standard normal innovation. Even though the 
specification for consumption growth does not allow for time varying 
uncertainty, our empirical results are not affected by this assumption 
because Bayesian learning requires only demeaned consumption growth 
as an input. As in Kuehn and Schmid (2014), firms’ productivity is 
stochastic and correlated with consumption, rendering firms exposed 
to macroeconomic risk. Specifically, firm 𝑖 productivity growth 𝑔𝑖,𝑡+1 is 
a mixture of an idiosyncratic and aggregate shock and given by

𝑔𝑖,𝑡+1 = 𝜇 + 𝑏𝜎𝑐𝜂𝑡+1 + 𝜎𝜀𝑖,𝑡+1, (2)

where 𝜀𝑖,𝑡+1 is a firm-specific i.i.d. standard normal innovation, 𝜎 quan-

tifies the magnitude of idiosyncratic risk, and 𝑏 controls the exposure of 
productivity to aggregate risk.

The risk exposure parameter 𝑏 is our main focus. Intuitively, an 
increase in 𝑏 amplifies the covariance between productivity and con-

sumption and results in productivity displaying more systematic risk. In 
a consumption-based asset pricing framework, this elevated covariance 
translates into higher risk premia, thereby depressing optimal invest-

ment. We explore these theoretical channels in detail in Section 4.

We make two key assumptions about the risk exposure parameter. 
First, the parameter 𝑏 is constant over time but unknown. In response, 
decision makers learn about it through Bayesian updating. Second, 
firms in the same industry share the same exposure parameter. These 
industry peers become heterogeneous ex-post due to idiosyncratic pro-

ductivity shocks, but they share a common characteristic.

A limitation of our specification is that the risk exposure does not 
change over time. This implies that in the long run, agents can perfectly 
learn this parameter. In Section 5.1, we confirm that our main findings 
hold, even when the true exposure to systematic risk is dynamic. We 
also provide empirical evidence that justifies our assumption that in-

dustry peers share the same risk exposure parameter; we discuss this 
evidence in Section 3.7 by considering three alternative forms of learn-

ing.

2.2. Learning

In this section, we derive the Bayesian beliefs about the risk expo-

sure parameter 𝑏. Agents are equipped with prior beliefs about the pa-

rameter 𝑏, which are normally distributed with mean 𝑚𝑏,0 and standard 
deviation 𝜎𝑏,0. Thereafter, they receive new information: the realized 
productivity of every industry constituent and consumption growth. Be-

cause of the identical risk exposure among industry constituents, peers’ 
productivity should be informative with respect to each other’s risk 
exposure. Recognizing this, agents refer to their peers’ collective ob-

servations in updating their parameter beliefs. Nevertheless, learning 
about 𝑏 is nontrivial because productivity is subject to unobservable id-

iosyncratic shocks, which agents cannot distinguish from the systematic 
component.

To formulate the learning process, we let 𝑔𝑡 denote the 𝑛𝑡 × 1 vec-

tor of productivity growth for 𝑛𝑡 constituents of a specific industry at 
time 𝑡.6 Conditional on the observations of productivity and consump-

tion, beliefs about the parameter are revised according to Bayes’ law. 
4

6 To save on notation, we do not include an index for industries.
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This learning mechanism induces a recursive structure of the posterior 
distribution

Prob(𝑏|𝑔1, .., 𝑔𝑡, 𝑔𝑐,1, .., 𝑔𝑐,𝑡)
∝ Prob(𝑔𝑡|𝑏, 𝑔𝑐,𝑡) × Prob(𝑏|𝑔1, .., 𝑔𝑡−1, 𝑔𝑐,1, .., 𝑔𝑐,𝑡−1),
where we use the fact that 𝑔𝑡 depends only on current consumption 
growth and risk exposure. Since we assumed a Gaussian prior, the poste-

rior distribution remains normal with mean 𝑚𝑏,𝑡 and standard deviation 
𝜎𝑏,𝑡. As we show in Appendix A, the conditional mean and standard 
deviation of beliefs follow a recursive structure given by

𝑚𝑏,𝑡 = (1 − 𝜅𝑡𝜎
2
𝑏,𝑡)𝑚𝑏,𝑡−1 + 𝜅𝑡𝜎

2
𝑏,𝑡𝑏̂𝑡 (3)

1
𝜎2
𝑏,𝑡

= 1
𝜎2
𝑏,𝑡−1

+ 𝜅𝑡, (4)

where 𝜅𝑡 = 𝑛𝑡𝜂
2
𝑡 𝜎

2
𝑐 ∕𝜎

2 ≥ 0 is the scaled consumption shock, and 𝑏̂𝑡 mea-

sures the covariance between consumption and productivity shocks 
based on time-𝑡 observations only, i.e., 𝑏̂𝑡 =

[
𝜎𝑐𝜂𝑡

∑𝑛
𝑖=1(𝑔𝑖,𝑡 − 𝜇)

]
∕

(𝑛𝑡𝜎2
𝑐 𝜂

2
𝑡 ).

7

In belief updates, the posterior mean 𝑚𝑏,𝑡 is a weighted average of 
the prior mean 𝑚𝑏,𝑡−1 and the sample estimate 𝑏̂𝑡, with the weights 
determined by the parameter uncertainty (measured by 𝜎2

𝑏,𝑡
) and the 

informativeness of the data (measured by 𝜅𝑡).8 The revision is more 
sensitive to new observations when agents are more uncertain about 
the parameter (i.e., when 𝜎𝑏,𝑡 is high), and also when the new data has 
higher informativeness 𝜅𝑡. The informativeness improves when there 
are more firms to learn from and when the ratio of consumption to 
productivity volatility is larger. Lastly, the precision of beliefs, 1∕𝜎𝑏,𝑡, 
increases monotonically over time.

In our formulation, each firm’s own productivity and peers’ observa-

tions constitute sources of learning by determining the sample estimate 
𝑏̂𝑡. Specifically, this updating places equal weights between a firm’s own 
observation and each of its peers. In a more generalized setting in which 
accounting noise makes observations from peers less precise compared 
to a firm’s own, the learning mechanism would assign different weights. 
In this case, the Bayesian update imposes more weight on the accurate 
signal (own productivity) than it does on the inaccurate signal (peers’ 
productivity).

2.3. Measurement

To measure productivity growth in the data, we assume that firms 
employ a decreasing-returns-to-scale production technology using capi-

tal as input. The profit 𝑌𝑖,𝑡 of firm 𝑖 at time 𝑡 is given by

𝑌𝑖,𝑡 =𝑋1−𝛼
𝑖,𝑡 𝐾𝛼

𝑖,𝑡, (5)

where 𝑋𝑖,𝑡 denotes the level of productivity, 𝐾𝑖,𝑡 the capital stock, and 
0 < 𝛼 < 1 is the capital share of the production. Productivity follows 
a random walk 𝑋𝑖,𝑡 =𝑋𝑖,𝑡−1𝑒

𝑔𝑖,𝑡 , for which its growth 𝑔𝑖,𝑡+1 is given in 
equation (2). Given data on profit and capital, the neoclassical produc-

tion function implies that log productivity growth can be computed as

𝑔𝑖,𝑡 =
𝑔𝑦,𝑖,𝑡 − 𝛼𝑔𝑘,𝑖,𝑡

1 − 𝛼
, (6)

7 These updating equations are based on the sampling probability that assigns 
equal weight to all past observations. As an alternative to Bayesian learning, 
we consider learning with fading memory, in which more recent observations 
receive greater weight. The belief updates for this alternative form of parameter 
learning are provided in Internet Appendix E.

8 With more observations over time, the posterior mean 𝑚𝑏,𝑡 converges to the 
ordinary least squares estimate in the regression of productivity onto consump-

tion growth. The comparison between Bayesian and frequentist approaches is 

provided in Internet Appendix D.
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Table 1

Summary Statistics. This table presents descriptive statistics based on the merged 
CRSP-Compustat sample from 1964 to 2021. In Panel A, the investment rate is the 
ratio of total investment (tangible plus intangible investment) to lagged total capital 
(tangible plus intangible capital stock). 𝑄 is the market value of assets divided 
by total capital. The implied cost of capital (ICC) is measured from accounting 
information and excess returns from CRSP. Size is defined as the logarithm of a 
firm’s total assets. Profitability is income before extraordinary items divided by 
lagged total assets. Leverage is the ratio of book debt to the market value of assets. 
Firm age is the logarithm of the number of years since a firm’s stock price first 
appeared in CRSP. In Panel B, 𝑚𝑏,𝑡 is the mean and 𝜎𝑏,𝑡 the standard deviation 
of the distributions of risk exposure beliefs. The belief distributions are estimated 
based on observations of industry peers identified by either SIC, NAICS, or the text-

based industry classification (TNIC). The last column reports the within-industry 
dispersion of variables, which are the target of our structural estimation.

Panel A: Firm Variables

Across Firms Within Industry

Variable Mean Std. Dev. 25% 50% 75% Std. Dev.

Investment rate 0.247 0.217 0.136 0.206 0.298 0.213

𝑄 1.940 2.349 0.871 1.307 2.123 2.295

ICC 0.046 0.279 -0.015 0.016 0.057 0.277

Excess returns 0.099 0.577 -0.231 0.015 0.301 0.576

Size 1.330 2.106 -0.227 1.226 2.797 1.853

Profitability 0.027 0.141 0.001 0.046 0.090 0.139

Leverage 0.323 0.309 0.062 0.232 0.499 0.283

Age 2.621 0.614 2.079 2.639 3.091 0.598

Market cap. 5.096 2.325 3.338 4.980 6.749 2.147

Panel B: Bayesian Beliefs about Risk Exposure

Across Firms Within Industry

Variable Mean Std. Dev. 25% 50% 75% Std. Dev.

𝑚𝑏,𝑡 (SIC) 3.632 3.866 1.399 3.239 5.585 1.837

𝑚𝑏,𝑡 (NAICS) 3.744 3.923 1.281 3.401 6.033 2.261

𝑚𝑏,𝑡 (TNIC) 5.885 8.075 0.659 4.699 9.761 6.811

1∕𝜎𝑏,𝑡 (SIC) 0.316 0.097 0.245 0.287 0.357 0.041

1∕𝜎𝑏,𝑡 (NAICS) 0.359 0.125 0.258 0.334 0.426 0.053

1∕𝜎𝑏,𝑡 (TNIC) 0.503 0.258 0.312 0.424 0.614 0.077
where 𝑔𝑦,𝑖,𝑡 denotes the log growth rate of profits, and 𝑔𝑘,𝑖,𝑡 denotes the 
log growth rate of capital of firm 𝑖. We use the same functional form 
for profit in the empirical exercise in Section 3 and in the model in 
Section 4.

3. Empirical evidence

In this section, we present the empirical evidence linking beliefs 
about firms’ risk exposure, investment, and valuation. These empirical 
results are rationalized by a neoclassical investment model with cross-

sectional learning in Section 4.

3.1. Data

Our data consist of annual observations for non-financial and non-

utility firms from the merged CRSP-Compustat dataset for the years 
1964 to 2021. Among firm-year observations, we exclude data points 
with negative or missing values for sales, total assets, or the net value 
of property, plant, and equipment. Also, we exclude observations with 
missing stock prices or returns within a year. Our final dataset includes 
121,394 firm-year observations. In Table 1, we report summary statis-

tics of the variables employed in our analysis in Panel A.

The estimation of firms’ risk exposure requires data on firm-level 
productivity (6) and consumption growth. To measure firm-level prof-

its, we use sales (SALE) minus the costs of goods sold (COGS), as in 
Imrohoroglu and Tuzel (2014) and Ai et al. (2020). The total capi-

tal stock is the sum of tangible and intangible capital. The tangible 
component is given by the net value of property, plant, and equip-

ment (PPENT), and the intangible one is estimated by Peters and Taylor 
5

(2017). We adjust the growth rates for profit and capital for inflation 
by using the GDP deflator. We also lag the growth rate of capital by one 
year to account for one-period time-to-build as in the neoclassical in-

vestment model. To measure consumption, we use the real per capita 
growth rate of nondurable goods and services expenditures.

Following Peters and Taylor (2017), the investment rate is the ra-

tio of total investment divided by the lagged value of total capital. 
Similarly, Tobin’s 𝑄 is the market value of assets divided by total 
capital.9 Total investment is the sum of intangible and tangible invest-

ment. Intangible investment equals research and development expense 
(XRD) plus 30% of SG&A expenses, which are given by (XSGA) minus 
(XRD) minus (RDIP). As in Bai et al. (2019), we measure the amount 
of tangible investment as a change in the net value of property, plant, 
and equipment (PPENT) plus depreciation, which is computed as de-

preciation (DP) minus amortization (AM). Regression control variables 
include firm size, profitability, leverage, firm age, and market capital-

ization.10

9 Our baseline measurement of investment rates and 𝑄 requires the variable 
PPENT; however, its value is missing for 23% of firm-year observations in the 
merged CRSP-Compustat dataset. In Internet Appendix B, we extend the sample 
size by utilizing total assets (AT) when PPENT is missing and confirm that our 
empirical results remain significant.
10 Firm size is defined as the logarithm of total assets (AT). Profitability is 
income before extraordinary items (IB) divided by lagged total assets. Leverage 
is the ratio of book debt to the market value of assets. Book debt is the sum of 
debt in current liabilities (DLC) and long-term debt (DLTT). The market value 
of assets is book debt plus the market capitalization equity, which is the product 
of common shares outstanding (CSHO) and the stock price (PRCC). Firm age is 
the logarithm of the number of years since the firm’s stock price first appeared 

in CRSP.
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Fig. 2. Common Fluctuations in Productivity. This figure shows the histogram of the explained variance (in percent) generated by the common fluctuation of 
productivity among industry peers. The common fluctuation for each industry is identified by the first principal component using subsamples of 10 years of data.
We measure firms’ implied cost of capital using accounting data as 
in Hou et al. (2012). Specifically, the cost of capital is the particular dis-

count rate that makes the present value of expected future cash flows 
equal to the firms’ market value. The future cash flow is forecast by a 
cross-sectional model that relates firms’ earnings to other accounting 
variables, such as total assets, dividends, and accruals. In addition, as 
an alternative measure of the cost of capital, we use realized stock re-

turns over the risk-free rate, the latter obtained from Kenneth French’s 
website. As is common in the literature, we compute realized returns 
from July of the corresponding year until June of the following year. 
Both the implied cost of capital and realized returns are annualized.

We follow the literature and identify each firm’s peers using the in-

dustry classifications SIC or NAICS (e.g., Kahle and Walking (1996) and 
Krishnan and Press (2003)). We begin with four-digit classifications of 
each system. If a firm has too few peers at this granular level of indus-

try, we relax the definition of peers to ensure a sufficient number of 
cross-sectional observations for learning. Specifically, for four-digit in-

dustries that have fewer than five constituents at any point in time, we 
expand the reference set to include firms in the same three-digit indus-

tries throughout the course of learning.11 As an alternative definition of 
industries, we employ the text-based classification recently developed 
by Hoberg and Phillips (2010). This classification is based on prod-

uct similarity among firms as measured through a text-based analysis 
of 10-K filings. This text-based network industry classification system 
(hereafter, referred to as TNIC) is obtained from the Hoberg-Phillips 
Data Library.

3.2. Commonality in firm-level productivity

Assuming a capital share in production 𝛼 of 0.65 as in Cooper and 
Ejarque (2003) and given data on real profit and capital growth, we can 

11 In an alternative analysis, we use four-digit SIC and NAICS industries with-

out relaxing the definition of peers. Our main empirical findings continue to 
6

hold when we use this alternative definition of peers.
compute productivity growth (6) for each firm-year. A key premise un-

derlying our analysis is that industry peers have common fluctuations in 
productivity. This section examines whether such commonality among 
peers is indeed present in the data. To this end, we conduct a principal 
component analysis on the dataset of industry constituents’ productiv-

ity.12 This analysis produces the first principal component, which we 
interpret as representing the common fluctuation. We then focus on the 
share of variance explained by the first component to assess the signifi-

cance of the common fluctuation.

Fig. 2 shows the histogram of the percentage of productivity vari-

ance explained by each industry’s common fluctuation, which is identi-

fied for each 10-year subperiod. We find that the median fraction of 
firm-level variability explained by the first components ranges from 
31.5% to 45.0% across subperiods. When all estimates across subpe-

riods are pooled, the common fluctuations explain on average 35.9% of 
productivity variance. This result supports the assumption that a com-

mon factor is present in firm-level productivity, and therefore peers’ 
observations are informative of each other’s risk exposure.

At the same time, the residual variance not explained by the first 
component is non-trivial, suggesting that idiosyncratic innovations con-

stitute another sizable share of productivity variability. In learning 
about the common risk exposure parameter, the idiosyncratic compo-

nent adds substantial noise to productivity observations. Therefore, we 
expect that the formation of precise beliefs about risk exposure will re-

quire many observations.

In addition, we confirm that the common fluctuation in productivity 
highly correlates with aggregate consumption. Using a principal com-

ponent analysis, we identify the common trend in productivity by com-

puting the equal-weighted average across industries of their respective 
first principal components. The resulting time series of economy-wide 

12 This analysis requires balanced panel data; consequently, we must subsam-

ple firms with no missing observations during the entire analysis period. To 
ensure sufficient observations for each industry, we shorten the estimation win-
dow to 10 years and conduct the analysis for each of the 10-year subperiods.
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Fig. 3. Cross-Sectional Distribution of Risk Exposures. This figure depicts the cross-sectional distribution of mean risk exposure 𝑚𝑏,𝑡 (Panel A) and the beliefs’ 
standard deviation 𝜎𝑏,𝑡 (Panel B) across industries as a function of industry age. The solid line is the median of the distribution for each age. The dark shaded area 
indicates the distribution between the 25th and 75th percentiles and the light shaded area the distribution between the 10th and 90th percentiles.
productivity correlates significantly with consumption, as the correla-

tion coefficient ranges from 0.42 to 0.80 across subperiods. This high 
correlation coefficient lends empirical support to our formulation of the 
productivity process, where productivity loads on aggregate consump-

tion, leading to common fluctuations.

3.3. Beliefs

Given our estimates for productivity growth, we are now equipped 
to estimate Bayesian beliefs about risk exposure formulated in equations 
(3) and (4). To do so, we measure idiosyncratic volatility 𝜎 for each 
industry as the standard deviation of the residuals in the regression 
of firm-level productivity growth onto consumption growth.13 Impor-

tantly, while Bayesian learning requires the measurement of idiosyn-

cratic risk, it does not depend on an estimate of consumption risk.14 We 
set the productivity drift 𝜇 equal to the consumption drift, which is in 
line with balanced growth in the economy.15

Bayesian learning requires a date-0 prior belief. We assume a diffuse 
prior by setting 𝑚𝑏,0 to 1 and 𝜎𝑏,0 to 5.16 This large dispersion repre-

sents decision makers’ ambiguity with respect to risk exposure at the 
beginning of the learning process. In addition, we skip the first 5 years 
of beliefs so that date-0 prior’s impact on the results is muted.17 After 
initializing the belief distribution, we update the distribution 𝑚𝑏,𝑡 and 
𝜎𝑏,𝑡 for each industry using the cross-section of firm-level productivity.

Prior to delving into our regression analysis, we provide summary 
statistics regarding the distribution of beliefs in Panel B of Table 1. The 
average estimates of risk exposure, denoted as 𝑚𝑏,𝑡, exhibit a variation 
from 3.63 to 5.89, contingent on the industry classification. Similarly, 
the precision of beliefs, represented as the inverse of the beliefs’ stan-

13 Our baseline estimation assumes that each industry’s idiosyncratic volatility 
𝜎 is constant over time. In practice, however, the volatility may fluctuate and 
therefore affect the belief updates specified in equations (3) and (4). In Internet 
Appendix A, we show that our results are robust to this concern. Specifically, 
we estimate each industry’s conditional volatility 𝜎𝑡 and update risk exposure 
beliefs accordingly. We find that our empirical results are robust to the het-

eroskedasticity of idiosyncratic shocks.
14 In the belief dynamics specified in equations (3) and (4), the aggregate 
signal and informativeness depend on 𝜎𝑐𝜂𝑡, which is identical to demeaned con-

sumption growth 𝑔𝑐,𝑡 − 𝜇. Importantly, demeaned consumption growth can be 
identified without specifying the dynamics of consumption volatility.
15 In section 5.2, we relax this assumption and formulate the parameter learn-

ing when the productivity drift is specific to each industry and also uncertain.
16 To ensure robustness, we alternatively choose different values ranging from 
0.5 to 2 for 𝑚𝑏,0 and from 3 to 10 for 𝜎𝑏,0 ; when we do so, we find that our main 
empirical findings continue to hold.
17 For robustness, we conduct an alternative estimation in Internet Appendix 
C, in which we skip the first ten years of beliefs. Our empirical results continue 
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to hold for this longer burn-in period.
dard deviation 1
𝜎𝑏,𝑡

, shows a mean value that varies between 0.32 and 
0.50, also dependent on the particular industry classification.

In Fig. 3, we present the evolution of the cross-sectional distribu-

tion of mean risk exposure 𝑚𝑏,𝑡 (Panel A) and the standard deviation 
of beliefs 𝜎𝑏,𝑡 (Panel B) across industries, as a function of industry age. 
Panel A illustrates the dynamics of the cross-sectional variance in mean 
risk exposures over a span of more than 50 years of parameter learn-

ing. The initial risk exposure estimate for each industry begins at a prior 
value of 𝑚𝑏,0 = 1. In the early years, the cross-sectional dispersion in the 
mean risk exposures widens due to the idiosyncratic character of each 
industry’s parameter learning process. However, with the accumulation 
of observations over time, the mean risk exposure estimates gradually 
settle to form a steady distribution. Panel B depicts the refining preci-

sion of beliefs for each industry over time. The standard deviation of 
beliefs for each industry, which initially starts from the prior value of 
𝜎𝑏,0 = 5, decreases as more observations become available over time, 
thus demonstrating an increase in the precision of beliefs.

In our following analysis, we ignore the impact of beliefs’ standard 
deviation on firm variables. Because the true risk exposure parameter 
is assumed to be constant, the beliefs’ dispersion is a monotonically 
declining process. As a result, the dynamics do not capture interesting 
cross-sectional patterns.

3.4. Firm investment

In this section, we test whether firms’ investment policies respond 
to their estimated risk exposures. Intuitively, as the estimated risk ex-

posure increases, firms are more exposed to aggregate productivity risk, 
which raises their discount rate and thus lowers the NPV of new invest-

ment projects. As a result, we expect a negative relationship between 
investment rates and risk exposure.

We test this hypothesis by running panel regressions of the form

𝐼𝑖,𝑡

𝐾𝑖,𝑡

= 𝛼𝐼 + 𝛽 ×𝑚𝑏,𝑡−1 + 𝛾 × Controls𝑖,𝑡−1 + 𝜖𝑖,𝑡, (7)

where 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 denotes firm 𝑖’s investment rate, and 𝛼𝐼 an industry fixed 
effect. Pastor et al. (2017) point out that a firm fixed effect is designed to 
capture the time series response of explanatory variables. We choose the 
industry fixed effect over the firm fixed effect because the latter might 
introduce a spurious regression bias, as studied in Ferson et al. (2003), 
for firms with few data points.18 With parameter beliefs being updated 
over time, we expected firm responses to be particularly pronounced 
in the time-series dimension. The controls include variables that have 

18 In alternative specifications that replace the industry fixed effect with a firm 
fixed effect, we confirm that all of our regression results continue to hold with 

a similar significance.
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Table 2

Risk Exposure Beliefs and Investment. This table presents panel regressions of investment rates 
on risk exposure beliefs and controls. The investment rate is the ratio of total investment (tan-

gible plus intangible investment) to lagged total capital (tangible plus intangible capital stock). 
Mean risk exposure beliefs 𝑚𝑏,𝑡 are calculated from cross-sectional observations of industry con-

stituents, which are identified based on SIC or NAICS codes or the text-based classification 
system TNIC. The controls are size, age, profitability, leverage, and 𝑄. Industry fixed effects 
are included in all but specification (5), where only year fixed effects are included. Specifica-

tions (6) include both industry and year fixed effects. Standard errors are clustered by firms. 
𝑡-statistics are presented in parentheses below the parameter estimates. *, **, and *** denote 
statistical significance at the 10%, 5%, and 1% levels, respectively.

Specification (1) (2) (3) (4) (5) (6)

Industry class. SIC NAICS TNIC SIC SIC SIC

𝑚𝑏,𝑡−1 -0.0035∗∗∗ -0.0036∗∗∗ -0.0017∗∗∗ -0.0032∗∗∗ -0.0019∗∗∗ -0.0016∗∗∗

(-7.36) (-7.31) (-11.06) (-7.15) (-6.70) (-3.28)

Size -0.0103∗∗∗ -0.097∗∗∗ -0.0088∗∗∗ -0.0115∗∗∗ -0.0061∗∗∗ -0.0077∗∗∗

(-17.37) (-16.07) (-11.64) (-19.24) (-11.10) (-12.97)

Age -0.0028∗∗∗ -0.0029∗∗∗ -0.0027∗∗∗ -0.0025∗∗∗ -0.0029∗∗∗ -0.0024∗∗∗

(-32.88) (-32.84) (-28.87) (-30.50) (-29.13) (-24.95)

Profitability 0.2496∗∗∗ 0.2427∗∗∗ 0.2566∗∗∗ 0.1562∗∗∗ 0.2058∗∗∗ 0.2295∗∗∗

(24.49) (23.76) (22.18) (18.20) (20.99) (22.94)

Leverage -0.1076∗∗∗ -0.1078∗∗∗ -0.1067∗∗∗ -0.0795∗∗∗ -0.1313∗∗∗ -0.1185∗∗∗

(-20.55) (-19.66) (-17.17) (-15.64) (-25.08) (-22.64)

𝑄 0.0258∗∗∗

(26.82)

Industry FE Yes Yes Yes Yes No Yes

Year FE No No No No Yes Yes

𝑁 112,155 107,131 72,634 112,155 112,155 112,155

adj. 𝑅2 0.117 0.113 0.139 0.191 0.100 0.137
been found to affect investment, namely firms’ size, age, profitability, 
leverage, and Tobin’s 𝑄.19

We report our regression results in Table 2. In specification (1), 
firms’ peers are identified by SIC codes. The mean risk exposure 𝑚𝑏,𝑡

derived from these peers’ observation forecasts investment with strong 
statistical significance, as documented by a 𝑡-statistic of -7.36. This 
time-series association suggests that when beliefs about risk exposure 
are revised upward (downward), firms reduce (raise) investment.

This negative connection persists under alternative industry classifi-

cations. In specifications (2) and (3), we refer to NAICS or TNIC instead 
of SIC codes to identify industry peers. The resulting 𝑚𝑏,𝑡 obtained from 
these alternative peers continues to be a significant and negative pre-

dictor of investment at the 1% level. Economically, a rise in the mean 
risk exposure by one standard deviation is accompanied by, on average, 
a 5.6% decrease in investment (i.e., the annual investment rate changes 
from 0.247 to 0.233).

In specification (4), we find that 𝑚𝑏,𝑡 continues to affect investment, 
even after controlling for 𝑄. This finding suggests that risk exposure be-

liefs reveal firms’ risk characteristics beyond what Tobin’s 𝑄 represents. 
This additional informativeness of 𝑚𝑏,𝑡 is consistent with our structural 
model, in which the estimated parameters indicate decreasing returns 
to scale in production, resulting in a divergence between marginal and 
average 𝑄. Consequently, state variables affecting marginal 𝑄, such as 
risk exposure beliefs, convey additional information to which firm in-

vestment responds.

Beyond the temporal response, 𝑚𝑏,𝑡 appears to explain the cross sec-

tion of investment as well. In specification (5), we include a year fixed 
effect and find a strongly negative coefficient on 𝑚𝑏,𝑡. This result shows 
that at a given point in time, firms with greater risk exposure invest 
less. This cross-sectional evidence further testifies to the impact of risk 

19 Gala et al. (2020) find that firm size and cash flow (roughly equivalent to 
our measure of profitability) contain information about the marginal value of 
capital beyond what average 𝑄 conveys. Also, investment is affected by agency 
conflicts associated with leverage (e.g., Myers (1977)). Investment opportuni-
8

ties often change with firms’ age, as discussed in Adelino et al. (2017).
exposure beliefs on firm policy. As a robustness test, we include both 
industry and time-fixed effects in specification (6). We find that 𝑚𝑏,𝑡

continues to negatively predict the investment rate.

It is worth noting that fluctuations in our risk estimate are only 
attributable to learning, while the true parameter is assumed to be con-

stant. In contrast to this assumption, one might argue that the true risk 
exposure itself possibly changes over time. In such a case, our learning-

based risk estimate might misleadingly capture variations in the true 
parameter. We address this concern in Section 5.1 by extending our 
model to consider parameter learning when the true risk exposure is 
dynamic. There, we show that beliefs about the unconditional mean 
risk exposure still predict empirical investment.

3.5. Firm valuation

Considering that risk exposure is a fundamental characteristic, we 
expect that learning about this parameter will also influence other firm 
variables beyond investment. Here, we consider the firms’ market valu-

ation. If market participants engage in learning about risk exposure, the 
market value of firms compared to their book value is likely to respond 
to updates in parameter beliefs. More specifically, a rising risk exposure 
raises discount rates and thus depresses valuations.

To examine this link empirically, we conduct a panel regression of 
the form

𝑄𝑖,𝑡 = 𝛼𝐼 + 𝛽 ×𝑚𝑏,𝑡 + 𝛾 × Controls𝑖,𝑡 + 𝜖𝑖,𝑡, (8)

where 𝑄𝑖,𝑡 represents the valuation ratio, and 𝛼𝐼 an industry fixed ef-

fect. Control variables are firm size, age, profitability, and leverage. 
This regression specification is similar to that of Pastor and Veronesi 
(2003), except that we additionally include risk exposure beliefs.20 In 
this analysis, we test the contemporaneous link between valuation and 

20 Pastor and Veronesi (2003) propose a model that predicts the market-to-

book ratio of equity. In our model, firms’ financing choices are not considered, 

so 𝑄 represents the valuation ratio of total firm value.
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Table 3

Risk Exposure Beliefs and 𝑄. This table presents panel regressions of 𝑄 on risk 
exposure beliefs and controls. Mean risk exposure beliefs 𝑚𝑏,𝑡 are calculated from 
cross-sectional observations of industry constituents, which are identified based on 
SIC or NAICS codes or the text-based classification system TNIC. The controls are 
size, age, profitability, and leverage. Industry fixed effects are included in all but 
specification (4), where only year fixed effects are included. Specification (5) in-

cludes both industry and year fixed effects. Standard errors are clustered by firms. 
𝑡-statistics are presented in parentheses below the parameter estimates. *, **, and 
*** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Specification (1) (2) (3) (4) (5)

Industry class. SIC NAICS TNIC SIC SIC

𝑚𝑏,𝑡 -0.0176∗∗∗ -0.0208∗∗ -0.0149∗∗∗ -0.0001 -0.0278∗∗∗

(-2.80) (-3.45) (-5.03) (-0.02) (-4.54)

Size 0.0497∗∗∗ 0.0445∗∗∗ 0.0806∗∗∗ 0.0248∗∗ 0.0412∗∗∗

(4.76) (4.16) (6.10) (2.61) (3.90)

Age -0.0117∗∗∗ -0.0147∗∗∗ -0.0150∗∗∗ -0.0292∗∗∗ -0.02226∗∗∗

(-8.64) (-10.45) (-9.51) (-17.79) (-14.45)

Profitability 3.3459∗∗∗ 3.2981∗∗∗ 3.8931∗∗∗ 3.4656∗∗∗ 3.6701∗∗∗

(19.04) (18.47) (17.35) (18.71) (20.35)

Leverage -0.9771∗∗∗ -1.0341∗∗∗ -1.0806∗∗∗ -1.1617∗∗∗ -0.9378∗∗∗

(-10.78) (-10.81) (-9.93) (-11.56) (-10.31)

Industry FE Yes Yes Yes No Yes

Year FE No No No Yes Yes

𝑁 121,410 115,715 76,308 121,410 121,410

adj. 𝑅2 0.130 0.128 0.156 0.096 0.160
parameter beliefs. Unlike investment, which is a flow variable, firm val-

ues are measured by a snapshot of time, and thus parameter beliefs do 
not have to be lagged.

Table 3 reports the regression results. We find that 𝑄 is strongly con-

nected to risk exposure beliefs. In specifications (1) to (3), the mean risk 
exposure negatively predicts 𝑄 at the 1% level across industry classifi-

cations. Economically, the coefficient estimates indicate that a rise in 
the mean exposure by one standard deviation is associated with an av-

erage 4.64% decline in the valuation ratio (i.e., 𝑄 changes from 1.940 
to 1.850).

In specification (4), we include a year fixed effect only and find that 
𝑚𝑏,𝑡 becomes insignificant. However, 𝑚𝑏,𝑡 turns strongly significant in 
specification (5), which includes both year and industry fixed effects. 
We, therefore, conclude that the negative link between risk exposure 
beliefs and 𝑄 holds even when relevant trends common to all firms are 
taken into account.

So far, we have reported that both investment and valuation respond 
strongly to risk exposure beliefs. We conjecture that these synchronous 
reactions are driven by shifts in firms’ discount rates, which the param-

eter learning induces. In the following sections, we test this hypothesis.

3.6. Cost of capital

In a consumption-based asset pricing model, firms’ cash flow ex-

posure to consumption risk is a crucial determinant of their discount 
rates. If the risk exposure parameter is unknown, belief dynamics about 
this parameter will affect discount rates. In this section, we test this 
hypothesis by examining the direct link between risk exposure beliefs 
and discount rates. This analysis requires the measurement of discount 
rates, and we use both the implied cost of capital and realized stock 
returns as the proxy.

We examine the contemporaneous relation between the implied cost 
of capital and risk exposure beliefs by conducting Fama-MacBeth re-

gressions. Specifically, we cross-sectionally regress the implied cost of 
capital on risk exposures and other firm characteristics
9

ICC𝑖,𝑡 = 𝛼𝑡 + 𝛽𝑡 ×𝑚𝑏,𝑡 + 𝛾𝑡 × Controls𝑖,𝑡 + 𝜖𝑖,𝑡, (9)
where ICC𝑖,𝑡 denotes the annual estimate of the implied cost of capital. 
As in Hou et al. (2015), control variables are the log market capitaliza-

tion, investment rate, and profitability.

In Table 4 Panel A, specifications (1) through (3) present the re-

sults of univariate regressions on the mean risk exposure. Importantly, 
the risk exposure belief is strongly positively related to the implied cost 
of capital across different industry classifications at the 1% or 5% sig-

nificance level. Economically, a one-standard-deviation increase in the 
mean risk exposure leads to a rise in the implied cost of capital by 
0.45% per year, on average. We note that this rise in the cost of capi-

tal is consistent with the response of investment and valuation, which 
both decrease with 𝑚𝑏,𝑡. In addition, when other risk characteristics are 
taken into account in specifications (4) through (6), risk exposure be-

liefs continue to associate positively with the cost of capital in most 
specifications.

Instead of using the implied cost of capital, we next employ realized 
returns as the proxy for discount rates and test their connection to risk 
exposure beliefs in the cross section. This specification resembles that of 
prior studies on consumption-based asset pricing, including Bansal et al. 
(2005) and Da (2009). Panel B of Table 4 report our regression results. 
Consistent with our results for the implied cost of capital, realized future 
returns are also positively associated with risk exposure beliefs. The 
positive link is statistically significant at the 1% or 5% level in both 
univariate and multivariate settings, except when the NAICS industry 
classification is used to identify peers. Economically, a one-standard-

deviation increase in 𝑚𝑏,𝑡 is accompanied by, on average, a 0.71% rise 
in realized annual returns.

In sum, we reveal that Bayesian beliefs about risk exposure are 
priced in the cross section of the cost of capital. This finding supports 
our intuition that parameter beliefs shape firms’ discount rates, which 
in turn simultaneously impact firm policy and valuation.

3.7. Peer learning

A key identification assumption of our Bayesian learning is that 
firms in the same industry share the same risk exposure parameter 𝑏. 
As a result, it is optimal for an individual firm to include the cross sec-

tion of productivity growth from its industry peers when it learns about 

its own risk exposure. In this section, we test whether this assump-
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Table 4

Risk Exposure Beliefs and the Cost of Capital. This table presents the Fama-MacBeth re-

gressions of the cost of capital on risk exposure beliefs and controls. The cost of capital is 
measured by either the implied cost of capital (ICC) from accounting information (Panel A) 
or realized return (Panel B). ICC and all regressors are measured at the beginning of each 
year and realized returns from July to June of the following year. Mean risk exposure beliefs 
𝑚𝑏,𝑡 are calculated from cross-sectional observations of industry constituents, which are iden-

tified based on SIC or NAICS codes or the text-based classification system TNIC. The controls 
are the log market capitalization (ME), investment rate (𝐼∕𝐾), and profitability. All regres-

sors are standardized. 𝑡-statistics are presented in parentheses below the parameter estimates. 
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Specification (1) (2) (3) (4) (5) (6)

Industry class. SIC NAICS TNIC SIC NAICS TNIC

Panel A: Implied Cost of Capital

𝑚𝑏,𝑡 0.0035∗∗ 0.0039∗∗∗ 0.0060∗∗∗ 0.0029∗∗∗ 0.0011 0.0045∗∗

(2.14) (2.68) (2.80) (2.72) (0.90) (2.17)

ME -0.0490∗∗∗ -0.0484∗∗∗ -0.0323∗∗∗

(-7.36) (-7.43) (-9.43)

𝐼∕𝐾 -0.0239∗∗∗ -0.0259∗∗∗ -0.0229∗∗∗

(-7.73) (-8.54) (-7.66)

Profitability -0.0300∗∗∗ -0.0276∗∗∗ -0.0279∗∗∗

(-4.80) (-5.18) (-5.59)

𝑁 91,486 86,364 61,292 91,486 86,364 61,292

adj. 𝑅2 0.00005 0.0001 0.0009 0.036 0.033 0.016

Panel B: Realized Returns

𝑚𝑏,𝑡 0.0072∗∗ 0.0036 0.0104∗∗ 0.0047∗∗ -0.0002 0.0049∗∗∗

(2.01) (0.73) (2.61) (2.35) (-0.05) (5.63)

ME -0.0112 -0.0197∗ -0.0198

(-0.93) (-1.86) (-1.38)

𝐼∕𝐾 -0.0294∗∗∗ -0.0291∗∗∗ -0.0269∗∗

(-3.58) (-3.87) (-2.47)

Profitability 0.0361∗∗∗ 0.0349∗∗∗ 0.0238∗

(4.28) (5.25) (1.88)

𝑁 108,349 103,425 73,411 108,349 103,425 73,411

adj. 𝑅2 0.00009 0.00008 -0.0007 0.0053 0.0054 0.0034
tion holds in the data. We do so by using three different approaches. 
First, we show that individual learning displays insignificant results in 
explaining firm variables. Second, we test whether the industry classi-

fication systems are informative when compared to a random industry 
assignment. Third, we measure the spillover effect from learning on 
firm variables when firms learn only from their peers, hence ignoring 
their own history. In sum, all three experiments support the assumption 
that industry peers share the same risk exposure parameter.

3.7.1. Learning from firms’ individual history

Compared to our benchmark results in which firms learn from peers, 
we consider here an alternative form of Bayesian learning in which each 
firm uses only its own history of productivity growth as a signal. This 
alternative form is worth considering because the classification systems, 
which we employ to identify industries, could be too noisy (e.g., Bhojraj 
et al. (2003)). In fact, even firms in the same industry might have very 
different business profiles, such that peers’ observations might not accu-

rately reflect each other’s risk profiles. If this is indeed the case, focusing 
instead on a firm’s individual history would result in more precise es-

timates. To entertain this possibility, we test whether the alternative 
estimates of beliefs 𝑚𝑖

𝑏,𝑡
derived from individual learning predict firm 

variables.

In Table 5, specifications (1) through (3) show regressions when in-

dividual learning is employed. We find that the beliefs from individual 
history are only weakly connected to firm outcomes, and the alternative 
beliefs relate to firm investment at only the 10% significance. Further-

more, their links to 𝑄 and the implied cost of capital are statistically 
10

insignificant. This poor performance contrasts with our baseline find-
ings that beliefs based on peer learning are a robust predictor of the 
same variables.

Why do firms respond only weakly to risk exposure estimates based 
on their own history? The main difference between the two forms of 
learning rests primarily in the number of observations involved. Our 
benchmark estimation of beliefs includes peer observations as an in-

formation source, which offers decision makers much richer data from 
which to learn than does individual learning.

In this particular context of learning about risk exposure, the dis-

tinction in the number of observations leads to noticeably different 
empirical results. The primary source of information is realized pro-

ductivity growth, which contains substantial noise. In the structural 
estimation of our model in Section 4, the volatility of idiosyncratic pro-

ductivity shocks (noise) is 92% annually relative to 2% volatility of 
consumption shocks (signal). Given this remarkably low signal-to-noise 
ratio, reliable identification of the risk exposure parameter requires a 
fairly large number of observations. To that end, individual learning 
lacks sufficient observations and thus leads to inaccurate risk estimates, 
which are unable to explain firm outcomes.

3.7.2. Counterfactual industry assignments

In our previous analysis, we showed that peer learning dominates 
individual learning in explaining firm variables. We next examine the 
extent to which these industry classification systems help to identify 
informative signals in the cross section. If the risk exposure is similar 
across firms irrespective of industry, then the histories of any group of 
firms would be informative with respect to this parameter. In this case, 
industry codes could not identify particularly informative signals in the 

cross section.
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Fig. 4. Learning about Risk Exposure from Counterfactual Industry Peers. This figure plots the histograms of 𝑡-statistics of the regression slope coefficients, based on 
1,000 counterfactual experiments. We regress investment rates (Panel A) and the 𝑄 (Panel B) on risk exposure beliefs and control variables as in regression models 
(7) and (8), respectively. Beliefs about each firm’s risk exposure are updated from observations of counterfactual industry peers, which are randomly assigned. The 
dots on the x-axis indicate the 𝑡-statistics of our baseline results, which are based on actual SIC, NAICS, and TNIC industry classifications.
Motivated by this conjecture, we consider learning from random 
groupings of firms and assess the resulting risk estimates’ predictive 
power for firm variables in comparison to learning from the actual 
systems of industry classification (SIC, NAICS, and TNIC). The test is de-

signed as follows. First, we create 385 hypothetical industries to match 
the total number of industries in the SIC system. Second, each firm is 
randomly assigned to an industry with five constituents (i.e., the av-

erage number of firms for SIC industries). Once assigned, each firm’s 
industry assignment is fixed over time. In turn, firms use the past ob-

servations of their counterfactual peers and their own history to update 
beliefs about their respective risk exposure.

Using the risk exposure beliefs estimated from counterfactual peers, 
we conduct regressions (7) and (8) to test the responses of firm invest-

ment and valuation. We repeat this experiment 1,000 times and present 
the histograms of 𝑡-statistics for the slope coefficient on 𝑚𝑏,𝑡 in Fig. 4.

If the industry classifications were irrelevant, then the risk exposure 
beliefs estimated from these counterfactual peers would strongly predict 
firm variables, as is the case with our baseline estimate. However, we 
find that the predictive power derived from random peers is noticeably 
lower than that of the baseline estimates. In the investment regression, 
in which the risk exposure beliefs should negatively predict investment, 
the estimates from every actual classification–derived from SIC, NAICS, 
or TNIC–far outperform all counterfactual estimates, as displayed by 
the absolute magnitude of 𝑡-statistics.

The actual industry classifications continue to play a significant role 
in predicting 𝑄. The 𝑡-statistics of the risk estimates from the actual 
classification are greater in absolute magnitude than 685 out of 1,000 
counterfactual estimates. We note that each firm’s own observations are 
still incorporated in these counterfactual estimates. Hence, the above 
distinction in the predictive power all depends upon whether or not the 
parameter learning refers to actual peers. That said, industry classifica-

tions are critical to identifying peers that provide informative signals.

3.7.3. Spillover in firm variables

The cross-sectional learning that we propose induces an interde-

pendence among firms: each firm’s decisions are affected by its peers’ 
observations. To highlight this relationship, we examine whether firm 
variables exhibit spillover effects. The basic idea is to consider an al-

ternative estimation of risk exposure beliefs based solely on peer obser-

vations without reference to each firm’s own history, denoted by 𝑚−𝑖
𝑏,𝑡

. 
We expect that these alternative beliefs will predict firm 𝑖’s decisions 
if agents do refer to industry peers in their parameter learning. To test 
this hypothesis, we conduct regressions (7), (8), and (9), replacing 𝑚𝑏,𝑡

with 𝑚−𝑖
𝑏,𝑡

.

Table 5 presents our regression results in specifications (4) to (6). 
We confirm the spillover effect in all firm variables. 𝑚−𝑖

𝑏,𝑡
is a strong neg-

ative predictor of investment and the total 𝑄. The results indicate that 
11

when peers’ productivity shocks imply a greater risk exposure, firms in 
the same industry see their market values decline and reduce their in-

vestment. Consistently, the implied cost of capital is strongly positively 
connected to their peer-inspired beliefs 𝑚−𝑖

𝑏,𝑡
. All of these findings sup-

port our hypothesis that peers’ observations are used to form parameter 
beliefs.

Compared to our baseline estimation, which utilizes firms’ own ob-

servations as well as those of their peers, firm responses to peer-inspired 
beliefs are relatively weaker, as indicated by regression coefficients 
that are slightly lower in absolute magnitude. This difference implies 
that firms’ own observations constitute an important source of learning. 
However, firms’ individual histories alone do not suffice in this learn-

ing context as we document in Section 3.7.1, and their information is 
optimally used only in conjunction with their peers’ histories.

4. Model

The goal of this section is to provide an economic model that ex-

plains the empirical link between firms’ beliefs about their consumption 
risk exposure and their investment decisions. To this end, we solve a 
neoclassical investment model in which firms learn about their produc-

tivity exposure to aggregate risk over time. In this model, firms observe 
their own productivity growth and aggregate consumption growth as 
signals. Moreover, firms observe the productivity growth of their peers 
in the same industry. This set of signals is informative because firms in 
the same industry share the same exposure to consumption risk.

4.1. Stochastic discount factor

For the sake of tractability, we do not model a full general equi-

librium model; instead, we specify an exogenous pricing kernel as in 
Berk et al. (1999). While the majority of the production-based asset 
pricing literature specifies the pricing kernel as a function of aggre-

gate productivity shocks, we model it as a function of aggregate con-

sumption shocks, similar to Kuehn and Schmid (2014). As such, this 
paper attempts to bridge the gap between the production-based and 
consumption-based asset pricing literature.

Specifically, we assume that the log stochastic discount factor is 
given by

log𝑀𝑡+1 = −𝑟𝑓 − 𝛾𝜂𝑡+1 − 0.5𝛾2, (10)

where 𝑟𝑓 denotes the log risk-free rate, 𝛾 the price of consumption risk, 
and 𝜂𝑡+1 is the aggregate shock to consumption growth as in equation 
(1). For the sake of simplicity, this pricing kernel does not feature time 

variation in its conditional moments, such as the risk-free rate or price 
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Table 5

Individual Learning and Spillover Effects from Peers. This table presents regressions 
of firm variables on alternative measures of risk exposure beliefs and controls. 𝑚𝑖

𝑏,𝑡

is estimated from each firm’s own observations only (individual learning), and 𝑚−𝑖
𝑏,𝑡

is 
based on peer observations only excluding a firm’s own observations (peer-only learn-

ing). Industry peers are identified by their SIC code. Specifications (1), (2), (4), and (5) 
present panel regressions of either investment rates (𝐼𝑖,𝑡∕𝐾𝑖,𝑡) or 𝑄𝑖,𝑡. The controls are 
size, age, profitability, and leverage. Industry fixed effects are also included, and stan-

dard errors are clustered by firms. Specifications (3) and (6) present Fama-MacBeth 
regressions of the implied cost of capital (ICC𝑖,𝑡). 𝑡-statistics are presented in parenthe-

ses below the parameter estimates. *, **, and *** denote statistical significance at the 
10%, 5%, and 1% levels, respectively.

Individual learning Peer-only learning

Specification (1) (2) (3) (4) (5) (6)

Dep. variable 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 𝑄𝑖,𝑡 ICC𝑖,𝑡 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 𝑄𝑖,𝑡 ICC𝑖,𝑡

𝑚𝑖
𝑏,𝑡

-0.0001∗ -0.00002 0.2940

(-1.71) (-1.30) (1.00)

𝑚−𝑖
𝑏,𝑡

-0.0021∗∗∗ -0.0162∗∗∗ 0.0031∗

(-4.55) (-2.84) (1.85)

Controls Yes Yes No Yes Yes No

Industry FE Yes Yes n.a. Yes Yes n.a.

Year FE No No n.a. No No n.a.

𝑁 111,259 120,441 90,680 111,259 120,441 90,680

adj. 𝑅2 0.116 0.129 -0.017 0.116 0.129 0.00005
of risk. A similar specification can be found in Carlson et al. (2004) and 
Hackbarth and Johnson (2015).21

4.2. Firms’ problem

As in Section 2, firms generate output 𝑌𝑖,𝑡 according to a decreas-

ing returns to scale production technology that uses capital as input, 
as specified in equation (5). Firm-level productivity growth 𝑔𝑖,𝑡+1 is a 
mixture of an idiosyncratic and aggregate shock and given by equation 
(2). Firms do not know their productivity exposure to consumption risk 
𝑏 and learn about this parameter from the cross section of productivity 
growth of firms within their industry. Since the Bayesian posterior has a 
normal distribution, the mean and variance of beliefs follow a recursive 
structure, as specified in equations (3) and (4), respectively.

The capital stock 𝐾𝑖,𝑡 accumulates according to

𝐾𝑖,𝑡+1 = (1 − 𝛿)𝐾𝑖,𝑡 + 𝐼𝑖,𝑡, (11)

where 𝐼𝑖,𝑡 denotes investment and 𝛿 the depreciation rate. As is common 
in the literature, we assume that firms face convex adjustment costs, 
given by 𝜙∕2 

(
𝐼𝑖,𝑡∕𝐾𝑖,𝑡

)2
𝐾𝑖,𝑡, in which 𝜙 denotes the adjustment cost 

parameter.

Firms’ net payouts 𝐷𝑖,𝑡 equal output net of investment and adjust-

ment costs and are given by

𝐷𝑖,𝑡 =𝑋1−𝛼
𝑖,𝑡 𝐾𝛼

𝑖,𝑡 − 𝐼𝑖,𝑡 −
𝜙

2

(
𝐼𝑖,𝑡

𝐾𝑖,𝑡

)2
𝐾𝑖,𝑡. (12)

Firms are all equity financed, exit the economy with probability 𝜋, and 
choose investment to maximize their market value, as given by

𝑉 (𝑆𝑖,𝑡) = max
𝐼𝑖,𝑡

{
𝐷𝑖,𝑡 + (1 − 𝜋)𝔼̃𝑡

[
𝑀𝑡+1𝑉 (𝑆𝑖,𝑡+1)

]}
, (13)

where 𝑆𝑖,𝑡 = (𝑋𝑖,𝑡, 𝐾𝑖,𝑡, 𝑚𝑏,𝑡, 𝜎𝑏,𝑡) is the vector of state variables. In the 
case of exit, the capital stock of the incumbent becomes worthless 
because the technology of the entrant renders the old technology ob-

solescent. The tilde above the expectation operator means that the 

21 This pricing kernel could be motivated with Epstein-Zin preferences, when 
consumption growth follows an i.i.d. normal process. While risk preferences 
also affect the risk-free rate under power utility, Epstein-Zin preferences allow 
12

for separate risk and time preferences.
integration over future shocks is conducted under the agent’s subjec-

tive beliefs. In addition to productivity and capital, Bayesian learning 
about the risk exposure parameter implies that the mean and variance 
of the posterior distribution are state variables, whose dynamics are 
given by equations (3) and (4), respectively.

A few distinctive features of this firm’s problem are noteworthy. 
First, the optimal investment policy is a function of the agent’s beliefs 
(i.e., 𝐼𝑖,𝑡 = 𝐼(𝑆𝑖,𝑡)), which implies that revisions in beliefs affect real 
outcomes. Second, firm 𝑖’s investment policy and valuation ratios are 
influenced by its peers’ histories of productivity shocks, via the updating 
of beliefs. Both of these model features are supported by the data.

Given a firm’s value, we can compute returns 𝑅𝑖,𝑡+1 = 𝑉𝑖,𝑡+1∕(𝑉𝑖,𝑡 −
𝐷𝑖,𝑡) and excess returns 𝑟𝑖,𝑡+1 =𝑅𝑖,𝑡+1 − 𝑟𝑓 . We solve the firm’s problem 
numerically and obtain the firm’s investment rate 𝐼𝑖,𝑡∕𝐾𝑖,𝑡, Tobin’s Q ra-

tio 𝑄𝑖,𝑡 = (𝑉𝑖,𝑡 −𝐷𝑖,𝑡)∕𝐾𝑖,𝑡, and expected returns 𝔼̃𝑡[𝑅𝑖,𝑡+1] as a function 
of the state variables. We provide additional details about the numerical 
solution in Appendix B.

4.3. Analytical solutions

Before solving the firm’s problem numerically, we consider a simpli-

fied model version in which the risk exposure parameter is known and 
capital adjustment is frictionless. This simplification lets us obtain ana-

lytic expressions for the investment policy of firms, market values, and 
expected stock returns. Using explicit solutions, we analyze the depen-

dence of these firm variables on the risk exposure parameter.

The following lemma presents the optimal investment policy and the 
valuation ratio.

Lemma 1. When the risk exposure parameter is known and capital adjust-

ment is frictionless, the optimal capital policy solving the value function (13)

is given by

𝐾𝑖,𝑡+1 = 𝜏∗𝑋𝑖,𝑡 𝜏∗ = 𝜒𝑒0.5
[
(1−𝛼)𝑏𝜎𝑐−𝛾

]2∕(1−𝛼) (14)

and average 𝑄 is

𝑄 =
𝜅1

1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

+ 1, (15)
where 𝜒 , 𝜅1, and 𝜅2 are all positive constants.
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Table 6

Sensitivity Matrix. This table shows the sensitivity of model-implied moments (in 
rows) with respect to model parameters (in columns). The sensitivity of moment 𝑖
with respect to parameter 𝑗 equals 𝜕𝑔𝑀

𝑖

𝜕𝜃𝑗

𝜃𝑗

𝑔𝑀
𝑖

and is evaluated at the vector of point 
estimates from Table 7.

𝛿 𝛼 𝜙 𝜎 𝑏 𝛾

Investment rate mean 3.13 -1.52 0.01 -1.65 -0.03 -0.10

var. 1.57 -8.05 -1.34 0.61 -0.01 -0.05

Stock return mean 0.36 -4.71 -0.04 -0.67 0.30 0.86

var. 1.06 -12.75 -0.38 1.06 -0.10 -0.10

Tobin’s 𝑄 mean 1.67 -7.79 0.63 -0.96 -0.13 -0.21

var. 3.80 -25.96 1.20 1.41 -0.56 -0.79

Bayesian posterior mean mean 0.00 0.00 0.00 -0.45 0.42 0.00

var. 0.00 0.00 0.00 1.30 0.13 0.00
The proof of this lemma is provided in Appendix C. Without fric-

tions in capital adjustment, firms choose a constant capital-productivity 
ratio 𝜏∗. Due to the i.i.d. stochastic discount factor and constant risk 
exposure, the discount rate is static, rendering average 𝑄 constant. 
Using these expressions, we can easily show that 𝜕𝜏∗∕𝜕𝑏 < 0 for 𝑏 <
𝛾∕ 

[
(1 − 𝛼)𝜎𝑐

]
, and 𝜕𝑄∕𝜕𝑏 < 0 for 𝑏 < 𝛾∕𝜎𝑐 .22 Intuitively, under realis-

tic values of 𝑏, greater risk exposure of productivity causes the present 
value of the marginal product of capital to fall. As a result, the opti-

mal capital policy weakens and thus investment decrease, as does the 
valuation ratio.

The firms’ expected return is presented in the next lemma.

Lemma 2. When the risk exposure parameter is known and capital adjust-

ment is frictionless, the expected gross return is a constant given by

𝔼
[
𝑅𝑖,𝑡

]
= (1 − 𝜋)

1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

𝜅1 + 1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

×

[
𝜅3𝑒

𝑟𝑓+(1−𝛼)𝑏𝜎𝑐𝛾 + (1 − 𝛿) +
𝜅1𝑒

𝜇+0.5𝑏𝜎2𝑐+0.5𝜎
2

1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

]
. (16)

In Appendix C, we prove that 𝜕𝔼 
[
𝑅𝑖,𝑡

]
∕𝜕𝑏 is positive under specific 

conditions on 𝑏, which hold for realistic parameter values. Thus, this 
analytic model explicitly states a positive link between risk exposure 
and expected returns.

Derived from the simplified setup, these predictions are qualitatively 
consistent with our empirical results. In the following, we will show 
that the same results also hold quantitatively in the full model, which 
features capital adjustment costs and learning.

4.4. Estimation

To quantitatively evaluate the model performance, we calibrate 
some parameters that can be easily measured in the data and struc-

turally estimate the remaining parameters, for which the existing lit-
erature provides only weak priors. In particular, we calibrate the con-

sumption process and risk-free rate to the data in Beeler and Campbell 
(2012). They report that consumption growth has an average growth 
rate 𝜇 of 1.93% and a volatility 𝜎𝑐 of 2.16% over the long sample of 
1930-2008. The average risk-free rate 𝑟𝑓 is 0.56%. These parameters 
are relevant for the pricing kernel.

The remaining model parameters are estimated with the simulated 
method of moments (SMM). Given the predefined parameters, we esti-

mate the depreciation rate 𝛿, capital share of production 𝛼, adjustment 
cost parameter 𝜙, idiosyncratic volatility 𝜎, and productivity exposure 

22 According to our estimation, 𝛾∕𝜎𝑐 ≈ 109, and 𝛾∕ 
[
𝜎𝑐(1 − 𝛼)

]
≈ 431. Risk 

exposure affects the dispersion in productivity and also the expected growth 
rate due to a Jensen effect. If 𝑏 exceeds these thresholds, then the growth rate 
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effect dominates the discount rate effect.
to consumption risk 𝑏 on the firm side, as well as the price of risk 𝛾 in 
the pricing kernel. For a given parameter vector 𝜃 = (𝛿, 𝛼, 𝜙, 𝜎, 𝑏, 𝛾), we 
solve the model numerically at an annual frequency.

We simulate 1,000 economies, each consisting of 385 industries for 
57 years with 5 years of burn-in. Initially, each industry has 5 peer 
firms, which represents the industry average. Firms exit the economy 
with a probability of 1∕14 to mimic the average firm lifespan of 14 
years. When firms exit, new firms enter the economy, and they ran-

domly draw their industry classification from a discrete uniform dis-

tribution with support between 1 and 385. As a result, the number of 
industry peers varies over time as in the data. We set the initial prior 
beliefs to have a mean 𝑚𝑏,0 of one and a dispersion 𝜎𝑏,0 of five, as in the 
empirical exercise.

Based on the simulated data, we calculate the model moments. The 
SMM objective function 𝐽 equals a weighted distance metric between 
moments from actual data 𝑔𝐷 and model moments 𝑔𝑀 with weighting 
𝑊 , i.e., 𝐽 (𝜃) = [𝑔𝐷 − 𝑔𝑀 (𝜃)]⊤𝑊 [𝑔𝐷 − 𝑔𝑀 (𝜃)]. The efficient weighting 
matrix is the inverse of the sample covariance matrix of the moments, 
which we estimate using influence functions clustered at the industry 
level, as in Hennessy and Whited (2007). Since covariances are esti-

mated with considerable noise, we use only its diagonal elements to 
compute the weighting matrix, similar to Schroth et al. (2014). We ob-

tain the parameter estimate 𝜃̂ by searching globally over the parameter 
space, which we implement via a particle swarm algorithm.

We identify the six parameters (𝛿, 𝛼, 𝜙, 𝜎, 𝑏, 𝛾) based on eight mo-

ments. In the estimation, we include the mean and variance of the 
investment rate 𝐼𝑖,𝑡∕𝐾𝑖,𝑡, equity excess returns 𝑟𝑖,𝑡, Tobin’s 𝑄𝑖,𝑡, and the 
posterior mean belief 𝑚𝑏,𝑡. The variances are demeaned at the industry 
level, as in the data, to remove persistent differences across industries, 
for which the model cannot account. While each parameter affects mul-

tiple moments, it is useful to discuss the main sources of identification. 
Table 6 reports the sensitivity of moment 𝑖 with respect to parameter 𝑗, 
𝜕𝑔𝑀

𝑖

𝜕𝜃𝑗

𝜃𝑗

𝑔𝑀
𝑖

, evaluated at the point estimates from Table 7.

The depreciation rate is identified by the average investment rate 
because firms must invest more when capital depreciates at a faster 
rate. The capital share of production is related to the mean and vari-

ance of returns and Tobin’s 𝑄. As the capital share rises, output growth 
becomes less volatile, as reflected in equation (5). This effect reduces 
the volatility of dividend growth. As a result, returns are less volatile, 
and expected returns are lower.

A rise in the capital share also lowers the growth rate of productiv-

ity, which is (1 −𝛼)𝜇. Although lower discount rates lead to an increase 
in the valuation ratio 𝑄, lower growth rates cause this valuation ra-

tio to drop; here, the second effect dominates. Capital adjustment costs 
are pinned down by the variance of the investment rate. As capital ad-

justments become more costly, it is optimal for firms to make small 
investments more frequently.

Idiosyncratic risk positively impacts the variance of investment 
rates, returns, Tobin’s 𝑄, and average Bayesian beliefs. The risk ex-
posure parameter is related to average returns and beliefs. As firms are 
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Table 7

SMM Estimation. This table summarizes the SMM es-

timation of six model parameters: depreciation rate 𝛿, 
capital share of production 𝛼, adjustment cost param-

eter 𝜙, volatility of idiosyncratic productivity 𝜎, expo-

sure to consumption risk 𝑏, and the price of risk 𝛾 . The 
estimation targets the mean and variance of investment 
rates, Tobin’s 𝑄, stock returns, and the Bayesian pos-

terior mean risk exposure. Standard errors are reported 
in parentheses and based on the sample covariance ma-

trix of the moments, which we estimate using influence 
functions clustered at the industry level.

Panel A: Parameter Estimates

Parameter Estimates

Depreciation rate 𝛿 0.5570

(0.0046)

Capital share of production 𝛼 0.7481

(0.0027)

Adjustment cost parameter 𝜙 2.1541

(0.0651)

Volatility of idiosyncratic productivity 𝜎 0.9206

(0.0094)

Exposure to consumption risk 𝑏 5.0107

(0.0752)

Price of risk 𝛾 2.3481

(0.0116)

Panel B: Moments

Moments Data Model

Investment rate mean 0.2466 0.2457

s.d. 0.2113 0.2203

Stock return mean 0.0987 0.0993

s.d. 0.5757 0.5314

Tobin’s 𝑄 mean 1.9399 2.0173

s.d. 2.2557 2.0722

Bayesian posterior mean mean 3.6217 3.5476

s.d. 1.8068 1.8887

more exposed to aggregate consumption risk, risk premia rise. As the 
true risk exposure parameter increases, the average Bayesian belief does 
so as well. The price of risk is identified by average returns because this 
parameter increases the curvature of the pricing kernel.

4.5. Estimation results

Table 7 summarizes the point estimates and moment conditions. 
Overall, the model matches all moments well. Both in the model and 
data, investment rates average around 25% annually with a standard 
deviation of around 21%. In the data, stock returns are close to 3 times 
more volatile than investment rates, which the model can almost repli-

cate. Specifically, stock returns have a volatility of 58% in the data, 
compared to 53% in the model. The model can match these moments 
with a large depreciation rate of 56%, an idiosyncratic volatility of 92%, 
and an adjustment cost parameter of 2.15. The large adjustment costs 
drive a wedge between the volatility of investment and stock returns 
and imply that firms spend around 6.4% of their output on capital ad-

justments. The model can also match firm-level average excess returns 
of 10% with a price of risk of 2.35.23

The model also replicates fairly well an average 𝑄 of around 1.9 
with a capital share of 0.75. Relative to the existing literature (e.g., 
Nikolov and Whited (2014)), our model also generates a volatile Tobin’s 
𝑄. Intuitively, the time variation of valuation ratios such as 𝑄 reflects 
time variation in discount rates. Learning about risk exposure generates 
time variation in discount rates, even though the true parameter is con-

stant. To understand the link between learning and uncertainty, we plot 

23 Even though the economic fit of the model is very good, statistically the 
14

model is rejected with a 𝐽 -value of 172.
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in Fig. 5 the volatility of stock returns (Panel A) and Tobin’s 𝑄 (Panel 
B) as a function of the number of peers 𝑛, when the risk exposure 𝑏 is 
subject to learning, denoted by plus signs. The blue dashed line shows 
the volatility in case 𝑏 is known, and the red solid line represents the 
data moment.

When the number of peers increases, the volatility of stock returns 
and Tobin’s 𝑄 decreases because the agent observes more signals from 
which to learn. However, even with ten industry peers, our learning 
model significantly improves on explaining the magnitude of the volatil-

ity of stock returns and 𝑄 compared to the literature, which has ignored 
parameter uncertainty. In our benchmark specification, each industry is 
assumed to have five firms to reflect the average number in the data. 
Stock returns and 𝑄 are not as volatile as in the data but the investment 
rate is slightly too volatile, which restricts the estimation to increase id-

iosyncratic risk. With fewer industry peers, the model can match either 
the high volatility of stock returns or Tobin’s 𝑄.

Lastly, the estimated risk exposure parameter is 5.0, even though the 
average risk exposure is only 3.6. The reason for this wedge is that we 
assume a date-0 prior for the mean risk exposure of one in the model 
and data. This estimate implies that 12% of the standard deviation of 
firm-level productivity growth comes from aggregate risk. As a compar-

ison, Bansal and Yaron (2004) assume a volatility scaling parameter of 
4.5 for aggregate dividends.

4.6. Implications

In this section, we compare model implications with the data that 
were not targeted by the estimation, and can thus be viewed as an out-

of-sample validation of our model.

Firstly, our model replicates the productivity commonality among 
industry peers. To illustrate this point, we compare in Fig. 6 the percent-

age of productivity variance explained by the first principal component 
between data and model. Panel A displays the histogram of the ex-

plained variance pooled across 10-year subperiods from Fig. 2. Panel 
B shows the histogram from model simulations.24 The empirical dis-

tribution has more variability than the theoretical one; that said, the 
averages are fairly close. In particular, the average percentage of vari-

ance explained by common fluctuation is 36.2% in the model, compared 
to 35.9% in the data. This match provides empirical support for our pro-

ductivity process.

We next explore the model implications for how risk exposure beliefs 
should affect firm decisions. Fig. 7 depicts the investment rate 𝐼𝑡∕𝐾𝑡, 
Tobin’s 𝑄, and expected returns as a function of the mean risk exposure 
𝑚𝑏,𝑡, evaluated at the average capital stock. Expected returns increase 
in the average risk exposure because a large fraction of the volatility 
of productivity arises from systematic risk. As discount rates rise in av-

erage risk exposure, they depress both investment and the 𝑄 valuation 
ratio. These relationships are consistent with the theoretical predictions 
we derived from the simplified model in Section 4.3.

Next, we examine the quantitative association between risk expo-

sure beliefs and firm variables in the simulated model. To this end, we 
replicate regressions (7), (8), and (9) on the 1,000 economies that we 
simulated for the estimation. In the model, we measure size as the loga-

rithm of the capital stock, profitability as dividends divided by capital, 
and market equity (ME) as the logarithm of firm value.

In Table 8, we report the cross-simulation averages of regression 
coefficients. Overall, the model generates strong firm responses to risk 
exposure beliefs, which are similar to the empirical patterns. The model-

implied link between investment and 𝑚𝑏,𝑡 is negative. The slope coeffi-

cient of 𝑚𝑏,𝑡 is −0.013, implying that a one-standard-deviation increase 
in 𝑚𝑏,𝑡 leads to a 10.1% decrease in the investment rate. The magnitude 
is comparable to the empirical response of 5.6%.

24 We generate 100,000 economies, each of which has eight peer firms and 

lasts for ten years.
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Fig. 5. Volatility of Stock Returns and Tobin’s 𝑄. This figure depicts the volatility of stock returns (Panel A) and Tobin’s 𝑄 (Panel B) as a function of the number 
of peers, when the risk exposure 𝑏 is subject to learning, denoted by plus signs. The blue dashed line shows the volatility in case 𝑏 is known and the red solid line 
represents the data moment. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Common Fluctuations in Productivity. This figure shows the histogram of the explained variance (in percent) generated by the common fluctuation of 
productivity among industry peers in the pooled data (Panel A) and model (Panel B). The common fluctuation for each industry is identified by the first principal 
component using subsamples of 10 years of data.

Fig. 7. Risk Exposure Beliefs and Firm Variables. This figure depicts the investment rate 𝐼∕𝐾 , Tobin’s 𝑄, and expected excess returns as a function of the mean risk 
15

exposure 𝑚𝑏,𝑡, evaluated at the average capital stock.
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Table 8

Risk Exposure Beliefs and Firm Variables in the Model. This table presents panel regressions of firm variables 
on risk exposure beliefs on simulated data. We simulate 1,000 economies, each containing 385 industries 
with five peer firms per industry, for 57 years with five years of burn-in, as in the data. The table reports 
cross-simulation averages of regression coefficients and adjusted 𝑅2 . Across specifications, we regress invest-

ment rates 𝐼𝑖,𝑡∕𝐾𝑖,𝑡, Tobin’s 𝑄𝑖,𝑡, expected excess returns 𝔼𝑡[𝑟𝑖,𝑡+1], or realized excess returns 𝑟𝑖,𝑡+1 on risk 
exposure beliefs 𝑚𝑏,𝑡 and controls. In parentheses, we report the cross-simulation standard deviation of slope 
coefficients.

Specification (1) (2) (3) (4) (5) (6) (7) (8)

Dep. variable 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 𝑄𝑖,𝑡 𝔼𝑡

[
𝑟𝑖,𝑡+1

]
𝔼𝑡

[
𝑟𝑖,𝑡+1

]
𝔼𝑡

[
𝑟𝑖,𝑡+1

]
𝑟𝑖,𝑡+1 𝑟𝑖,𝑡+1 𝑟𝑖,𝑡+1

𝑚𝑏,𝑡 -0.0131 -0.1512 0.0360 0.0307 0.0346 0.0290

(0.0008) (0.0341) (0.0015) (0.0014) (0.0022) (0.0036)

Size -0.0216 1.1347

(0.0042) (0.2383)

Profitability 0.4013 6.8173 0.1719 0.0357 0.1636 0.0351

(0.0221) (1.4024) (0.0110) (0.0042) (0.0211) (0.0260)

ME -0.0054 -0.0015 -0.0062 -0.0026

(0.0027) (0.0025) (0.0062) (0.0062)

𝐼∕𝐾 -0.1698 -0.0310 -0.1615 -0.0306

(0.0090) (0.0041) (0.0176) (0.0237)

adj. 𝑅2 0.973 0.787 0.944 0.772 0.986 0.004 0.004 0.005

Table 9

Spillovers in Firm Variables in the Model. This table presents panel regressions of firm variables on risk 
exposure beliefs on simulated data. We simulate 1,000 economies, each containing 385 industries with five 
peer firms per industry, for 57 years with five years of burn-in, as in the data. The table reports cross-

simulation averages of regression coefficients and adjusted 𝑅2 . Across specifications, we regress investment 
rates 𝐼𝑖,𝑡∕𝐾𝑖,𝑡, Tobin’s 𝑄𝑖,𝑡, expected excess returns 𝔼𝑡[𝑟𝑖,𝑡+1], or realized excess returns 𝑟𝑖,𝑡+1 on the posterior 
mean belief 𝑚−𝑖

𝑏,𝑡
, which is based on peer observations only, excluding each firm’s own history, and controls. 

In parentheses, we report the cross-simulation standard deviation of slope coefficients.

Specification (1) (2) (3) (4) (5) (6) (7) (8)

Dep. variable 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 𝑄𝑖,𝑡 𝔼𝑡

[
𝑟𝑖,𝑡+1

]
𝔼𝑡

[
𝑟𝑖,𝑡+1

]
𝔼𝑡

[
𝑟𝑖,𝑡+1

]
𝑟𝑖,𝑡+1 𝑟𝑖,𝑡+1 𝑟𝑖,𝑡+1

𝑚−𝑖
𝑏,𝑡

-0.0056 -0.0678 0.0158 0.0045 0.0154 0.0045

(0.0014) (0.0217) (0.0011) (0.0006) (0.0020) (0.0019)

Size -0.0221 1.1297

(0.0040) (0.2413)

Profitability 0.3990 6.7912 0.1719 0.1627 0.1636 0.1545

(0.0221) (1.3987) (0.0110) (0.0110) (0.0211) (0.0216)

ME -0.0054 -0.0051 -0.0062 -0.0060

(0.0027) (0.0026) (0.0062) (0.0062)

𝐼∕𝐾 -0.1698 -0.1605 -0.1615 -0.1523

(0.0090) (0.0092) (0.0176) (0.0183)

adj. 𝑅2 0.965 0.777 0.184 0.772 0.785 0.0009 0.004 0.004
Furthermore, the model produces a positive relationship between 
risk exposure beliefs and the cost of capital, which resembles the regu-

larity in the data. On simulated data, both expected excess returns and 
future realized excess returns increase with the posterior mean risk ex-

posure. In univariate regressions presented by specifications (3) and (6), 
a one-standard-deviation increase in 𝑚𝑏,𝑡 raises the expected return (re-

alized return) by 3.60% (3.46%) per year. These model responses are 
reasonably close to the empirical reaction. For the same change in 𝑚𝑏,𝑡, 
the ICC (realized return) moves upward by 0.45% (0.71%) on average 
in the data.

Since we assume the existence of a unique pricing kernel (10), the 
fundamental equation of asset pricing, 𝔼𝑡[𝑀𝑡+1(1 +𝑅𝑖,𝑡+1)] = 1, implies 
that excess returns are given by 𝔼𝑡[𝑟𝑖,𝑡+1] = 𝛽𝑖,𝑡𝜆, where 𝛽𝑖,𝑡 denotes 
the conditional beta between the pricing kernel and returns and 𝜆 the 
price of risk. Importantly, the cash flow beta 𝑚𝑏,𝑡 is different from the 
return beta, which would align perfectly with expected returns in equi-

librium; nevertheless, the cash flow beta alone explains 94% of the 
cross-sectional variation in expected returns, as indicated by the 𝑅2 in 
specification (3). Interestingly, the cash flow beta dominates character-
16

istics in specification (4), in which we control for profitability, market 
equity, and investment rates. Similar results hold for realized returns in 
specifications (6) to (8).

Since in the model, we can exactly identify expected excess returns, 
the regression 𝑅2 for the univariate cash flow beta regression exceeds 
94%. When we instead use realized excess returns, the regression 𝑅2

drops below 1%, which is in line with the empirical evidence in Ta-

ble 4. Since realized excess returns equal expected excess returns plus 
idiosyncratic noise, this finding indicates that our model replicates the 
correct empirical composition of idiosyncratic to aggregate risk.

In addition, we confirm that our model reproduces spillover effects. 
In Table 9, we present the model-implied responses to beliefs derived 
from peer observations. As in the data, 𝑚−𝑖

𝑏,𝑡
negatively predicts both 

investment and the valuation ratio and, simultaneously, positively the 
cost of capital. These findings confirm the model’s ability to capture that 
peer observations shape the beliefs about a firm’s risk profile. Compared 
to Table 8, in which both firms’ own and peers’ observations are used in 
learning, firms respond relatively weakly to beliefs influenced by peers 

only. This comparison also aligns with our empirical evidence.



Journal of Financial Economics 152 (2024) 103759Y. Kim, L.-A. Kuehn and K. Li

Table 10

Time Variation in Risk Exposure. This table presents panel regressions of firm variables on 
risk exposure beliefs. Across six specifications, we regress investment rates 𝐼𝑖,𝑡∕𝐾𝑖,𝑡, 𝑄𝑖,𝑡, or 
the implied cost of capital ICC𝑖,𝑡 on beliefs about time-varying risk exposures and controls. 
The beliefs consist of the posterior mean about the unconditional risk exposure 𝑏̄ denoted by 
𝑚KF

𝑏̄,𝑡
and the posterior mean about the conditional risk exposure 𝑏𝑡 denoted by 𝑚KF

𝑏𝑡 ,𝑡
, which 

are estimated using the Kalman filter utilizing the cross-sectional observations of SIC peers. 
Specifications (1) through (4) present panel regression results with industry fixed effects. 
Controls are size, age, profitability, and leverage; standard errors are clustered by firms. 
Specifications (5) and (6) present Fama-MacBeth regression results. *, **, and *** denote 
statistical significance at the 10%, 5%, and 1% levels, respectively.

Dep. variable 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 𝑄𝑖,𝑡 ICC𝑖,𝑡

Specification (1) (2) (3) (4) (5) (6)

𝑚KF

𝑏,𝑡
-0.0273∗∗∗ -0.0250∗∗∗ -0.0859∗∗∗ -0.0385 0.0078∗∗∗ 0.0051∗∗

(-18.75) (-14.54) (-3.62) (-1.45) (3.25) (2.41)

𝑚KF
𝑏𝑡 ,𝑡

-0.0013∗∗ -0.0268∗∗∗ 0.0025∗∗

(-2.41) (-3.35) (2.59)

Controls Yes Yes Yes Yes No No

Industry FE Yes Yes Yes Yes n.a. n.a.

Year FE No No No No n.a. n.a.

𝑁 109,375 109,375 116,263 116,263 91,486 91,486

adj. 𝑅2 0.120 0.120 0.122 0.123 0.0004 0.0005
5. Robustness

In this section, we examine the robustness of our findings. First, we 
consider parameter learning when the true risk exposure is dynamic. 
Second, we show that firms’ response to risk exposure beliefs is distinct 
from learning about the drift of productivity growth.

5.1. Time variation in risk exposure

One of the stylized assumptions in our model is that the true ex-

posure of productivity to consumption shocks is constant over time. 
Changes in risk exposure beliefs are not driven by shifts in true risk 
profiles but are induced by the continuous updating of beliefs from 
growing observations. That said, what if the true exposure itself fluc-

tuates over time, contrary to our assumption? If so, our learning-based 
risk estimate might misleadingly capture variation in the true exposure, 
and thus overstate the importance of learning. To address this concern, 
we extend our model to incorporate possible shifts of true risk exposure 
and examine the learning impact in this context.

Specifically, we now assume that the true risk exposure follows a 
first-order autoregressive process

𝑏𝑡+1 = 𝜑𝑏𝑡 + (1 −𝜑)𝑏̄+ 𝜎𝑏𝜉𝑡+1, (17)

where 𝜉𝑡+1 is an i.i.d. standard normal innovation, 𝜑 denotes the auto-

correlation and 𝑏̄ the long-run average in risk exposure, and 𝜎𝑏 quan-

tifies the magnitude of time variation in risk exposure. This dynamic 
exposure 𝑏𝑡+1 enters the law of motion of productivity in equation (2), 
replacing the constant exposure 𝑏. Similar to the baseline model, we 
consider an agent who observes neither 𝑏̄ nor 𝑏𝑡 and instead infers them 
from realized productivity.

In Appendix D, we describe the updating of beliefs about risk ex-

posure in this setting. In sum, agents revise their beliefs about the risk 
exposure vector (𝑏𝑡, ̄𝑏) over time by using the Kalman filter. To con-

duct this filtering, we estimate the parameters in equation (17) using 
the expectation-maximization algorithm. Based on the parameter esti-

mates, we obtain the posterior means of 𝑏̄ and 𝑏𝑡 conditional on all 
observations available at time 𝑡, and we denote them by 𝑚KF

𝑏̄,𝑡
and 𝑚KF

𝑏𝑡,𝑡
. 

Next, we test whether the firm variables respond to these beliefs. In 
particular, we focus on their responses to the beliefs about the uncon-

ditional mean of risk exposure 𝑚KF

𝑏̄,𝑡
. We note that the true value of 𝑏̄ is 

constant by nature, so any change in the estimate of this parameter is 
17

entirely driven by learning.
We report the regression results in Table 10. Interestingly, the results 
here echo our baseline findings. In specifications (1), (3), and (5), the 
posterior mean of unconditional risk exposure 𝑚KF

𝑏̄,𝑡
negatively predicts 

investment and total 𝑄 and positively the cost of capital. All of these 
associations are statistically significant at the 1% level. Furthermore, 
when we control for the impact of the conditional risk exposure 𝑚KF

𝑏𝑡,𝑡
in 

specifications (2), (4), and (6), 𝑚KF

𝑏̄,𝑡
continues to connect strongly to in-

vestment and cost of capital. Therefore, we confirm that belief updates 
about the unconditional risk influence corporate decisions and market 
valuations, apart from what is induced by changes in the true risk pro-

file.

In sum, we conclude that the evolution of risk exposure beliefs is 
an important consideration in practice, irrespective of whether the true 
risk exposure is static or dynamic.

5.2. Joint learning about productivity drift and risk exposure

Distinct from our focus on risk exposure, many prior studies have 
considered uncertainty regarding the drift of productivity (e.g., Pastor 
and Veronesi (2003), Alti (2003), and Andrei et al. (2019)). In this sec-

tion, we ensure that our results are separate and not misleadingly driven 
by learning about the mean growth rate.

We begin this analysis with an alternative hypothesis: agents are 
uncertain about the drift 𝜇 of productivity as well as the risk exposure 
parameter 𝑏. We further assume that 𝜇 is identical for all industry peers, 
though different from the average of consumption growth. Hence, peers’ 
cross-sectional observations of productivity are the primary source of 
forming beliefs about 𝜇, as we assumed in the case of learning about 𝑏.

In Appendix E, we represent this joint learning in a state-space 
model, where the state variable is a vector of unknown parameters 
[𝜇, 𝑏]⊤. In turn, beliefs about the unobservable state are estimated us-

ing the Kalman Filter. As a result, we obtain the posterior mean of drift, 
𝑚KF

𝜇,𝑡, and the posterior mean of risk exposure, 𝑚KF
𝑏,𝑡

, conditional on all 
observations until time 𝑡. Having estimated the parameter beliefs un-

der this joint learning, we examine how firm variables respond to these 
beliefs.

Table 11 reports the regression results. Consistent with the prior lit-
erature, we find that investment rates rise and the costs of capital fall 
with respect to beliefs about the drift 𝑚𝜇,𝑡. More importantly, when we 
control for beliefs about the drift, beliefs about risk exposure maintain 
the strong association with all firm variables. Specifically, 𝑚KF

𝑏,𝑡
nega-
tively predicts investment rates and 𝑄 and positively the cost of capital. 
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Table 11

Joint Learning about Productivity Drift and Risk Ex-

posure. This table presents panel regressions of firm 
variables on parameter beliefs. Across three specifica-

tions, we regress investment rates 𝐼𝑖,𝑡∕𝐾𝑖,𝑡, 𝑄𝑖,𝑡, or the 
implied cost of capital ICC𝑖,𝑡 on beliefs about risk expo-

sure 𝑚KF
𝑏,𝑡

, beliefs about productivity mean growth 𝑚KF
𝜇,𝑡

and controls. Specifications (1) and (2) present panel 
regression results with industry fixed effects. Controls 
are size, age, profitability, and leverage; standard er-

rors are clustered by firms. Specification (3) presents 
Fama-MacBeth regression results. *, **, and *** denote 
statistical significance at the 10%, 5%, and 1% levels, 
respectively.

Specification (1) (2) (3)

Dep. variable 𝐼𝑖,𝑡∕𝐾𝑖,𝑡 𝑄𝑖,𝑡 ICC𝑖,𝑡

𝑚KF
𝑏,𝑡

-0.0079∗∗∗ -0.0312∗∗∗ 0.0044∗∗∗

(-15.04) (-3.67) (3.67)

𝑚KF
𝜇,𝑡

0.1631∗∗∗ 0.3393 -0.0120∗∗∗

(4.95) (0.78) (-8.07)

Controls Yes Yes No

Industry FE Yes Yes n.a.

Year FE No No n.a.

𝑁 109,375 116,263 91,486

adj. 𝑅2 0.115 0.122 0.0008

In all specifications, the coefficient estimate on 𝑚𝑏,𝑡 remains fairly un-

changed even after we include 𝑚𝜇,𝑡 as a control.

We, therefore, conclude that firm responses to risk exposure beliefs 
are clearly distinct from the conventional implications regarding the 
uncertain drift of productivity. While it is well known that market par-

ticipants attempt to forecast cash flow growth rates, our novel finding 
reveals that they also engage in learning about discount rate character-

istics, such as the exposure to aggregate consumption risk.

6. Conclusion

In the consumption-based asset pricing paradigm, firms’ exposure to 
consumption risk is a crucial characteristic and thus should impact firm 
decisions and valuations. Despite its importance, estimations of the risk 
exposure parameter have been elusive. Firm observables, which are po-

tentially informative about this parameter, are often primarily driven 
by idiosyncratic news, thus hampering the identification of the system-

atic component of cash flows. In response to this challenge, prior studies 
such as Bansal et al. (2005) and Da (2009), which have attempted to 
measure consumption cash flow betas, have relied on a portfolio-level 
analysis and static betas. To overcome these limitations, we propose a 
neoclassical investment model in which agents gradually learn about 
the parameter through Bayesian updating. In particular, parameter be-

liefs are updated from firms’ and industry peers’ comovement between 
their productivity and consumption growth.

We empirically establish that this parameter learning shapes firms’ 
real decisions and market valuations. As the Bayesian mean risk ex-

posure is continuously revised over time, discount rates respond posi-

tively, while the investment rate and Tobin’s 𝑄 respond negatively. We 
find that a key source of learning is cross-sectional information from 
peers. Alternative beliefs about risk exposure, which ignore peer obser-

vations, do not predict firm variables. To further support our empiri-

cal findings, we use our structurally estimated neoclassical investment 
model to reproduce the quantitative links between risk exposure beliefs 
and firm variables. All these findings suggest that consumption risk is 
an important consideration in practice, and that the evolution of risk 
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exposure beliefs is priced in financial markets.
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Appendix A. Derivation of the Bayesian posterior

For the sake of simplicity, we define the demeaned growth in con-

sumption and firm 𝑖’s productivity as

𝑔̄𝑐,𝑡 = 𝑔𝑐,𝑡 − 𝜇 = 𝜎𝑐𝜂𝑡

𝑔̄𝑖,𝑡 = 𝑔𝑖,𝑡 − 𝜇 = 𝑏𝜎𝑐𝜂𝑡 + 𝜎𝜀𝑖,𝑡.

Consider an industry with 𝑛 constituting firms. Let 𝑔̄𝑡 denote the vec-

tor consisting of the constituents’ growth, 𝑔̄𝑡 = (𝑔̄1,𝑡, 𝑔̄2,𝑡, ..., 𝑔̄𝑛,𝑡). Accord-

ing to Bayes’ law, the probability of 𝑏 conditional on all observations 
until time 𝑡 is

Prob
(
𝑏|𝑔̄1, ..., 𝑔̄𝑡, 𝑔̄𝑐,1, ..., 𝑔̄𝑐,𝑡) ∝ Prob

(
𝑏, 𝑔̄𝑡, 𝑔̄𝑐,𝑡|𝑔̄1, ..., 𝑔̄𝑡−1, 𝑔̄𝑐,1, ..., 𝑔̄𝑐,𝑡−1)

∝ Prob
(
𝑔̄𝑡|𝑏, 𝑔̄𝑐,𝑡)

×Prob
(
𝑏|𝑔̄1, ..., 𝑔̄𝑡−1, 𝑔̄𝑐,1, ..., 𝑔̄𝑐,𝑡−1) ,

where we use the fact that 𝑔̄𝑐,𝑡 is independent of past shocks and 𝑔̄𝑡 is 
conditionally independent of past observations, given 𝑏 and 𝑔̄𝑐,𝑡.

Suppose that beliefs about 𝑏 based on observations until time 𝑡 − 1
are normally distributed with mean 𝑚𝑏,𝑡−1 and standard deviation 
𝜎𝑏,𝑡−1. With the arrival of new observations at time 𝑡, the Bayesian pos-

terior becomes

Prob
(
𝑏|𝑔̄1, 𝑔̄2, ..., 𝑔̄𝑡, 𝑔̄𝑐,1, 𝑔̄𝑐,2, ..., 𝑔̄𝑐,𝑡)

∝
𝑛∏

𝑖=1
exp

(
−
(𝑔̄𝑖,𝑡 − 𝑏𝑔̄𝑐,𝑡)2

2𝜎2

)
× exp

(
−
(𝑏−𝑚𝑏,𝑡−1)2

2𝜎2
𝑏,𝑡−1

)

= exp

(
−
∑𝑛

𝑖=1(𝑔̄𝑖,𝑡 − 𝑏𝑔̄𝑐,𝑡)2

2𝜎2

)
× exp

(
−
(𝑏−𝑚𝑏,𝑡−1)2

2𝜎2
𝑏,𝑡−1

)

∝ exp

⎛⎜⎜⎜⎜⎝
−
𝑏2 − 2

𝜎2
𝑏,𝑡−1

∑𝑛
𝑖=1 𝑔̄𝑖,𝑡 𝑔̄𝑐,𝑡+𝜎

2𝑚𝑏,𝑡−1

𝜎2
𝑏,𝑡−1

∑𝑛
𝑖=1 𝑔̄

2
𝑐,𝑡+𝜎2

𝑏

2
𝜎2
𝑏,𝑡−1𝜎

2

𝜎2
𝑏,𝑡−1

∑𝑛
𝑖=1 𝑔̄

2
𝑐,𝑡+𝜎2

⎞⎟⎟⎟⎟⎠
.

In the exponential function, the denominator is

𝜎2
𝑏,𝑡−1𝜎

2

𝜎2
𝑏,𝑡−1

∑𝑛
𝑖=1 𝑔̄

2
𝑐,𝑡 + 𝜎2

= 1∑𝑛
𝑖=1 𝑔̄

2
𝑐,𝑡∕𝜎2 + 1∕𝜎2

𝑏,𝑡−1

= 1
𝑛𝜎2

𝑐 𝜂
2
𝑡 ∕𝜎

2

⏟⏞⏞⏟⏞⏞⏟
=𝜅𝑡

+1∕𝜎2
𝑏,𝑡−1

= 1
1∕𝜎2

𝑏,𝑡

= 𝜎2
𝑏,𝑡.

The second term in the numerator is

𝜎2
𝑏,𝑡−1

∑𝑛
𝑖=1 𝑔̄𝑖,𝑡𝑔̄𝑐,𝑡 + 𝜎2𝑚𝑏,𝑡−1

𝜎2
𝑏,𝑡−1

∑𝑛
𝑖=1 𝑔̄

2
𝑐,𝑡 + 𝜎2

=
(
∑𝑛

𝑖=1 𝑔̄
2
𝑐,𝑡)

−1∑𝑛
𝑖=1 𝑔̄𝑖,𝑡𝑔̄𝑐,𝑡 × 𝜅𝑡 +𝑚𝑏,𝑡−1∕𝜎2

𝑏,𝑡−1

𝜅𝑡 + 1∕𝜎2
𝑏,𝑡−1( )
= 𝜅𝑡𝜎
2
𝑏,𝑡𝑏̂𝑡 + 1 − 𝜅𝑡𝜎

2
𝑏,𝑡 𝑚𝑏,𝑡−1 =𝑚𝑏,𝑡,



Y. Kim, L.-A. Kuehn and K. Li

where we have defined 𝑏̂𝑡 = (
∑𝑛

𝑖=1 𝑔̄
2
𝑐,𝑡)

−1∑𝑛
𝑖=1 𝑔̄𝑖,𝑡𝑔̄𝑐,𝑡. We can now ex-

press the Bayesian posterior as

Prob
(
𝑏|𝑔̄1, 𝑔̄2, ..., 𝑔̄𝑡, 𝑔̄𝑐,1, 𝑔̄𝑐,2, ..., 𝑔̄𝑐,𝑡) ∝ exp

(
−
(𝑏−𝑚𝑏,𝑡)2

2𝜎2
𝑏,𝑡

)
.

Appendix B. Numerical solution

To solve the firm’s problem (13) numerically, we first state the value 
function in terms of stationary variables. To this end, we define

𝑘𝑖,𝑡 =
𝐾𝑖,𝑡

𝑋𝑖,𝑡

, 𝜏𝑖,𝑡 =
𝐾𝑖,𝑡+1

𝑋𝑖,𝑡

, 𝑖𝑖,𝑡 =
𝐼𝑖,𝑡

𝑋𝑖,𝑡

.

As a result, the stationary version of the law of motion for capital be-

comes 𝜏𝑖,𝑡 = (1 − 𝛿)𝑘𝑖,𝑡 + 𝑖𝑖,𝑡 and the stationary value function is given 
by

𝑣(𝑠𝑖,𝑡) =max
𝜏𝑖,𝑡

{
𝑘𝛼𝑖,𝑡 − 𝑖𝑖,𝑡 −

𝜙

2

(
𝑖𝑖,𝑡

𝑘𝑖,𝑡

)2
𝑘𝑖,𝑡

+ (1 − 𝜋)𝔼̃𝑡

[
𝑀𝑡+1𝑒

𝑔𝑖,𝑡+1𝑣(𝑠𝑖,𝑡+1)
]}

,

where 𝑠𝑖,𝑡 = (𝑘𝑖,𝑡, 𝑚𝑏,𝑡, 𝜎𝑏,𝑡) is the vector of state variables for the sta-

tionary problem. Since the agent does not know the true 𝑏, she forms 
Bayesian beliefs over 𝑏 denoted by 𝑏𝑡+1|𝑡 ∼𝑁(𝑚𝑏,𝑡, 𝑝𝑏,𝑡). Consequently, 
the perceived productivity process follows

𝑔̃𝑖,𝑡+1 = 𝜇 + 𝑏𝑡+1|𝑡𝜎𝑐𝜂𝑡+1 + 𝜎𝜀𝑖,𝑡+1.

We solve this firm problem using the value function iteration, in 
which we discretize the grid for capital with 100 points, the average 
Bayesian belief with 15 points, and the dispersion with 5 points. To 
compute the continuation value of the value function, we use a Gauss-

Hermite quadrature with 5 points to integrate over a 4-dimensional 
space: the idiosyncratic 𝜀𝑖,𝑡+1 and aggregate shock 𝜂𝑡+1, the subjective 
distribution over risk exposure 𝑏𝑡+1|𝑡, and the shock distribution of peer 
firms. Specifically, the mean belief can be written as

𝑚𝑏,𝑡 = 𝜎2
𝑏,𝑡

⎛⎜⎜⎜⎝
𝑚𝑏,𝑡−1

𝜎2
𝑏,𝑡−1

+
𝑔𝑐,𝑡

[
𝑏𝑔𝑐,𝑡 + 𝜎𝜀𝑖,𝑡 + (𝑛− 1)𝑏𝑔𝑐,𝑡 + 𝜎

∑
𝑗≠𝑖 𝜀𝑗,𝑡

]
𝜎2

⎞⎟⎟⎟⎠ ,
where 𝑛 is the number of constituents in the industry. This result im-

plies that firm 𝑖’s updating of 𝑚𝑏,𝑡 depends on its peers’ idiosyncratic 
shocks 𝜀𝑗,𝑡. However, only the sum of its peers’ idiosyncratic shocks 
matters. This sum is normally distributed 

∑
𝑗≠𝑖 𝜀𝑗,𝑡 ∼ 𝑁

(
0,
√

𝑛− 1
)

, 
because peers’ idiosyncratic shocks are independent of each other and 
follow a standard normal distribution.

Appendix C. Analytic solutions

Proof of Lemma 1. When the risk exposure parameter is known and 
capital adjustment is frictionless, the firm’s problem simplifies to

𝑣(𝑘𝑖,𝑡) = max
𝜏𝑖,𝑡

{
𝑘𝛼𝑖,𝑡 − 𝑖𝑖,𝑡 + (1 − 𝜋)𝔼𝑡

[
𝑀𝑡+1𝑒

𝑔𝑖,𝑡+1𝑣(𝜏𝑖,𝑡𝑒−𝑔𝑖,𝑡+1 )
]}

.

The envelope condition is

𝑣′(𝑘𝑖,𝑡) = 𝛼𝑘𝛼−1𝑖,𝑡 + (1 − 𝛿).

Integrating 𝑣(𝑘𝑖,𝑡) with respect to 𝑘𝑖,𝑡, we solve for the firm value

𝑣(𝑘𝑖,𝑡) = ∫ 𝑣′(𝑘𝑖,𝑡)𝑑𝑘𝑖,𝑡 = 𝑘𝛼𝑖,𝑡 + (1 − 𝛿)𝑘𝑖,𝑡 + 𝑐,
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where 𝑐 is a constant to be determined.
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The first-order condition is

0 = −1 + (1 − 𝜋)𝔼𝑡

[
𝑀𝑡+1𝑒

𝑔𝑖,𝑡+1𝑣′
(
𝜏𝑖,𝑡𝑒

−𝑔𝑖,𝑡+1
)
𝑒−𝑔𝑖,𝑡+1

]
.

Thus, optimal capital 𝜏∗𝑖,𝑡 is given by

𝜏∗ =
[

𝛼(1 − 𝜋)
1 − (1 − 𝜋)(1 − 𝛿)𝑒−𝑟𝑓

]1∕(1−𝛼)
𝑒−𝑟𝑓 ∕(1−𝛼)−0.5𝛾

2∕(1−𝛼)+𝜇+0.5(1−𝛼)𝜎2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝜒

× 𝑒0.5
[
(1−𝛼)𝑏𝜎𝑐−𝛾

]2∕(1−𝛼).
Note that 𝜒 > 0 for 0 < 𝛼 < 1 and 0 < 𝛿 < 1. To see the dependence of 
𝜏∗ on 𝑏, we differentiate 𝜏∗ with respect to 𝑏

𝜕𝜏∗

𝜕𝑏
= 𝜒𝑒0.5

[
(1−𝛼)𝑏𝜎𝑐−𝛾

]2∕(1−𝛼)𝜎𝑐 [(1 − 𝛼)𝑏𝜎𝑐 − 𝛾
]
.

This derivative is negative if 𝑏 < 𝛾∕ 
[
(1 − 𝛼)𝜎𝑐

]
.

Next, we can solve for the unknown constant 𝑐 by plugging the func-

tional form of 𝑣(𝜏∗𝑒−𝑔𝑖,𝑡+1 ) into the firm’s problem. As a result, we obtain

𝑐 =

≡𝜅1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
−1 + 1∕𝛼 + 𝑒−𝑟𝑓 (1 − 𝜋)(1 − 𝛿)(1 − 1∕𝛼)

]
𝜏∗

1 − (1 − 𝜋)𝔼𝑡

[
𝑀𝑡+1𝑒

𝑔𝑖,𝑡+1
] .

Tobin’s 𝑄 is the ex-dividend firm value divided by capital

𝑞𝑖,𝑡 =
𝑣(𝑘𝑖,𝑡) − 𝑘𝛼𝑖,𝑡 − (1 − 𝛿)𝑘𝑖,𝑡 + 𝜏∗

𝜏∗

=
𝜅1

1 − (1 − 𝜋)𝑒−𝑟𝑓−0.5𝛾
2+𝜇+0.5𝜎2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝜅2

𝑒0.5(𝑏𝜎𝑐−𝛾)
2
+ 1.

This result implies that the Tobin’s 𝑄 is constant, which we denote by 
𝑞. Also, note that 𝜅1 and 𝜅2 are all positive for 0 < 𝛼 < 1 and 0 < 𝛿 < 1. 
The derivative of 𝑞𝑖,𝑡 with respect to 𝑏 is

𝜕𝑞

𝜕𝑏
=

𝜅1𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2 (𝑏𝜎𝑐 − 𝛾)𝜎𝑐[

1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

]2 .

This derivative is negative if 𝑏 < 𝛾∕𝜎𝑐 . In addition, 𝑞 is positive only 
if 𝑒(𝑏𝜎𝑐−𝛾)2∕2 < 1∕𝜅2 or 𝑒(𝑏𝜎𝑐−𝛾)2∕2 > (1 + 𝜅1)∕𝜅2. Thus, in the following 
analysis, we only consider the range of 𝑏 values that satisfy this condi-

tion.

Proof of Lemma 2. The expected gross return is

𝔼𝑡

[
𝑅𝑖,𝑡

]
= 𝔼𝑡

[ (1 − 𝜋)𝑉 (𝑋𝑖,𝑡+1,𝐾𝑖,𝑡+1)
𝑉 (𝑋𝑖,𝑡,𝐾𝑖,𝑡) −𝐷𝑖,𝑡

]

= (1 − 𝜋)
𝔼𝑡

[
(𝜏∗)𝛼−1 𝑒(1−𝛼)𝑔𝑖,𝑡+1 + (1 − 𝛿) + 𝑐

𝜏∗
𝑒𝑔𝑖,𝑡+1

]
𝑞

.

Let 𝑁(𝑏) denote the numerator of the expected return expression, which 
we expand as follows

𝑁(𝑏) = 𝔼𝑡

[(
𝜏∗

)𝛼−1
𝑒(1−𝛼)𝑔𝑖,𝑡+1 + (1 − 𝛿) + 𝑐

𝜏∗
𝑒𝑔𝑖,𝑡+1

]
= 1 − (1 − 𝛿)𝑒−𝑟𝑓

𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≡𝜅3

𝑒𝑟𝑓+(1−𝛼)𝑏𝜎𝑐𝛾 + (1 − 𝛿)
𝜅1𝑒

𝜇+0.5𝑏𝜎2𝑐+0.5𝜎
2

1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

.

Combining the expressions for 𝑁(𝑏) and 𝑞, we obtain the expected re-

turn as[ ] 𝑁(𝑏)
𝔼𝑡 𝑅𝑖,𝑡+1 = (1 − 𝜋)
𝑞
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= (1 − 𝜋)
1 − 𝜅2𝑒

0.5(𝑏𝜎𝑐−𝛾)2

𝜅1 + 1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

×

[
𝜅3𝑒

𝑟𝑓+(1−𝛼)𝑏𝜎𝑐𝛾 + (1 − 𝛿) +
𝜅1𝑒

𝜇+0.5𝑏𝜎2𝑐+0.5𝜎
2

1 − 𝜅2𝑒
0.5(𝑏𝜎𝑐−𝛾)2

]
.

The derivative of the expected return with respect to 𝑏 is

𝜕𝔼𝑡

[
𝑅𝑖,𝑡+1

]
𝜕𝑏

= (1 − 𝜋)

𝜅3𝑒
𝑟𝑓 +(1−𝛼)𝑏𝜎𝑐 𝛾 (1 − 𝛼)𝛾𝜎𝑐 + 𝑏𝜎2𝑐

𝜅1𝑒
𝜇+𝑏2𝜎2𝑐 ∕2+𝜎

2∕2

1−𝜅2𝑒
(𝑏𝜎𝑐−𝛾)2∕2

1 + 𝜅1 − 𝜅2𝑒
(𝑏𝜎𝑐−𝛾)2∕2

+ (1 − 𝜋)

(1 − 𝛿)(𝛾 − 𝑏𝜎𝑐 ) + 𝜅3𝑒
𝑟𝑓 +(1−𝛼)𝑏𝜎𝑐 𝛾 (−𝑏𝜎2𝑐 + 𝛼𝛾𝜎𝑐 ) +

𝜅1𝑒
𝜇+𝑏2𝜎2𝑐 ∕2+𝜎

2∕2

1−𝜅2𝑒
(𝑏𝜎𝑐−𝛾)2∕2

(
𝜎𝑐𝛾 − 2𝑏𝜎2𝑐

)
(
1 + 𝜅1 − 𝜅2𝑒

(𝑏𝜎𝑐−𝛾)2∕2
)2

× 𝜅1𝜅2𝑒
(𝑏𝜎𝑐−𝛾)2∕2

+ (1 − 𝜋)
𝑒(𝑏𝜎𝑐−𝛾)

2∕2𝜅2
(
1 − 𝜅2𝑒

(𝑏𝜎𝑐−𝛾)2∕2
)

(
1 + 𝜅1 − 𝜅2𝑒

(𝑏𝜎𝑐−𝛾)2∕2
)2

×
⎡⎢⎢⎣(1 − 𝛿)(1 − 𝜎𝑐 )(𝛾 − 𝑏𝜎𝑐 ) − 𝑏𝜎2𝑐

𝜅1𝑒
𝜇+𝑏2𝜎2𝑐 ∕2+𝜎

2∕2

1 − 𝜅2𝑒
(𝑏𝜎𝑐−𝛾)2∕2

⎤⎥⎥⎦ .
When 𝑒(𝑏𝜎𝑐−𝛾)2∕2 < 1∕𝜅2, it follows that 𝑒(𝑏𝜎𝑐−𝛾)2∕2 < (1 +𝜅1)∕𝜅2 because 
𝜅1 > 0. Thus, the derivative of return is positive if 𝑏 satisfies

𝑏 ≤max
(
𝛼𝛾

𝜎𝑐
,

𝛾

2𝜎𝑐

)
and

(1 − 𝛿)(1 − 𝜎𝑐)𝛾 ≥ (1 − 𝛿)(1 − 𝜎𝑐)𝜎𝑐𝑏+ 𝑏𝜎2
𝑐

𝜅1𝑒
𝜇+𝑏2𝜎2𝑐 ∕2+𝜎

2∕2

1 − 𝜅2𝑒
(𝑏𝜎𝑐−𝛾)2∕2

.

Appendix D. Learning about dynamic risk exposure

In this section, we formulate the updating of beliefs about risk expo-

sure when the true parameter is stochastic, following an autoregressive 
process as in equation (17). To facilitate the formulation, we express 
the law of motion of risk exposure using a state-space representation[
𝑏𝑡+1
𝑏̄

]
⏟⏟⏟
=𝐵𝑡+1

=
[
𝜑 1 −𝜑

0 1

]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=Φ

[
𝑏𝑡
𝑏̄

]
⏟⏟⏟

=𝐵𝑡

+𝜎𝑏
[
𝜉𝑡+1
0

]
. (D.1)

Our goal is to update beliefs about 𝐵𝑡+1 using new observations at time 
𝑡 +1 along with the transition equation (D.1). The new observations are 
the demeaned growth of productivity of industry constituents, which is 
given by

⎡⎢⎢⎢⎣
𝑔̄1,𝑡+1
𝑔̄2,𝑡+1
⋮

𝑔̄𝑛,𝑡+1

⎤⎥⎥⎥⎦
⏟⏞⏟⏞⏟
=𝑌𝑡+1

=
⎡⎢⎢⎢⎣
𝑔̄𝑐,𝑡+1 0
𝑔̄𝑐,𝑡+1 0
⋮ ⋮

𝑔̄𝑐,𝑡+1 0

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=𝐴𝑡+1

[
𝑏𝑡+1
𝑏̄

]
⏟⏟⏟
=𝐵𝑡+1

+𝜎
⎡⎢⎢⎢⎣
𝜖1,𝑡+1
𝜖2,𝑡+1
⋮

𝜖𝑛,𝑡+1

⎤⎥⎥⎥⎦
⏟⏟⏟
=𝑉𝑡+1

. (D.2)

We now have the state-space model consisting of the transition equa-

tion (D.1) and observation equation (D.2). We next apply the Kalman 
filter to derive the distribution of 𝐵𝑡+1 conditional on all observations 
until time 𝑡 + 1. Suppose that 𝐵𝑡 conditional on all observations un-

til time 𝑡 is normally distributed with mean 𝑚𝐵,𝑡 and covariance Σ𝐵,𝑡. 
Then, the covariance between 𝐵𝑡+1 and 𝑌𝑡+1 and the variance of 𝑌𝑡+1
are given by25

25 We assume that the consumption growth in 𝐴𝑡+1 is known prior to updating 
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beliefs at time 𝑡 + 1.
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v𝑡
(
𝐵𝑡+1, 𝑌𝑡+1

)
=
(
ΦΣ𝐵,𝑡Φ⊤ +

[
𝜎2
𝑏

0
0 0

])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Σ𝐵,𝑡+1|𝑡
𝐴⊤

𝑡+1

Var𝑡
(
𝑌𝑡+1

)
=𝐴𝑡+1Σ𝐵,𝑡+1|𝑡𝐴⊤

𝑡+1 + 𝜎2𝐼𝑛,

ere Σ𝐵,𝑡+1|𝑡 is the prior of the covariance, and 𝐼𝑛 is the (𝑛 ×𝑛) identity 
trix. Because 𝐵𝑡+1 and 𝑌𝑡+1 follow a joint normal distribution, the 

nditional mean and covariance of 𝐵𝑡+1 can be updated

,𝑡+1 = Φ𝑚𝐵,𝑡 + Cov𝑡
(
𝐵𝑡+1, 𝑌𝑡+1

) [
Var𝑡

(
𝑌𝑡+1

)]−1 (
𝑌𝑡+1 −𝐴𝑡+1Φ𝑚𝐵,𝑡

)
=Φ𝑚𝐵,𝑡 +

[
Σ𝐵,𝑡+1|𝑡𝐴⊤

𝑡+1
] [
𝐴𝑡+1Σ𝐵,𝑡+1|𝑡𝐴⊤

𝑡+1 + 𝜎2𝐼𝑛
]−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝕂𝑡+1

×
(
𝑌𝑡+1 −𝐴𝑡+1Φ𝑚𝐵,𝑡

)
,

,𝑡+1 =
(
𝐼 −𝕂𝑡+1𝐴𝑡+1

)
Σ𝐵,𝑡+1|𝑡,

ere 𝕂𝑡+1 is the Kalman gain.

This filtering depends on the model parameters. We estimate the pa-

eters 
(
𝜑,𝜎𝑏

)
for each industry using the expectation-maximization 

orithm. Plugging these parameter estimates into the updating equa-

n, we obtain the posterior beliefs about the risk exposure vector 𝐵𝑡. 
e time-𝑡 beliefs are normally distributed with the following condi-

nal mean and covariance:

F
,𝑡 =

[
𝑚KF

𝑏𝑡,𝑡

𝑚KF

𝑏̄,𝑡

]
, ΣKF

𝐵,𝑡 =
⎡⎢⎢⎢⎣

(
𝜎 KF
𝑏𝑡,𝑡

)2
CovKF

𝑡

(
𝑏𝑡, 𝑏̄

)
CovKF

𝑡

(
𝑏𝑡, 𝑏̄

) (
𝜎KF

𝑏̄,𝑡

)2

⎤⎥⎥⎥⎦ .
pendix E. Joint learning about productivity drift and risk 
posure

In this section, we assume that both drift 𝜇 and risk exposure 𝑏
productivity are unknown constants and must be learned simulta-

ously. We formulate this joint learning using a state-space model 
d estimate parameter beliefs through the Kalman Filter as in section 
pendix D. First, we let 𝑋 denote a column vector of the unknown 
rameters

=
[
𝜇

𝑏

]
.

 assume that beliefs about 𝑋 conditional on all observations until 
e 𝑡 are normally distributed with mean 𝑚𝑋,𝑡 and covariance Σ𝑋,𝑡. 
 aim to update the beliefs about 𝑋 using new observations of pro-

ctivity at time 𝑡 + 1. The cross-sectional observations of productivity 
 stacked in vector 𝑌𝑡+1, which is given by

1,𝑡+1
2,𝑡+1
⋮

𝑛,𝑡+1

⎤⎥⎥⎥⎦
⏞⏟

𝑌𝑡+1

=
⎡⎢⎢⎢⎣
1 𝑔̄𝑐,𝑡+1
1 𝑔̄𝑐,𝑡+1
⋮
1 𝑔̄𝑐,𝑡+1

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=𝐴𝑡+1

[
𝜇

𝑏

]
⏟⏟⏟

=𝑋

+𝜎
⎡⎢⎢⎢⎣
𝜖1,𝑡
𝜖2,𝑡
⋮
𝜖𝑛,𝑡

⎤⎥⎥⎥⎦
⏟⏟⏟
=𝑉𝑡+1

. (E.1)

We now have a state-space model with observation equation (E.1)

t without transition in the underlying state 𝑋. Next, as in section 
pendix D, we apply the Kalman filter to update the distribution of 
conditional on new observations at time 𝑡 + 1. The key inputs to the 
lman filter are

v𝑡
(
𝑋,𝑌𝑡+1

)
= Σ𝑋,𝑡𝐴

⊤
𝑡+1

Var𝑡
(
𝑌𝑡+1

)
=𝐴𝑡+1Σ𝑋,𝑡𝐴

⊤
𝑡+1 + 𝜎2𝐼𝑛.

ally, the conditional mean and covariance of 𝑋 are updated as fol-

ing ( ) [ ( )] ( )

𝑚𝑋,𝑡+1 =𝑚𝑋,𝑡 + Cov𝑡 𝑋, 𝑌𝑡+1 Var𝑡 𝑌𝑡+1

−1
𝑌𝑡+1 −𝐴𝑡+1𝑚𝑋,𝑡
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=𝑚𝑋,𝑡 +
[
Σ𝑋,𝑡𝐴

⊤
𝑡+1

][
𝐴𝑡+1Σ𝑋,𝑡𝐴

⊤
𝑡+1 +𝑆

]−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝕂𝑡+1

(
𝑌𝑡+1 −𝐴𝑡+1𝑚𝑋,𝑡

)
Σ𝑋,𝑡+1 =

(
𝐼 −𝕂𝑡+1𝐴𝑡+1

)
Σ𝑋,𝑡.

Specifically, the time-𝑡 beliefs are normally distributed with the follow-

ing conditional mean and covariance

𝑚𝑋,𝑡 =
[
𝑚KF

𝜇,𝑡

𝑚KF
𝑏,𝑡

]
, Σ𝑋,𝑡 =

⎡⎢⎢⎢⎣
(
𝜎 KF
𝜇,𝑡

)2
CovKF

𝑡 (𝜇, 𝑏)

CovKF
𝑡 (𝜇, 𝑏)

(
𝜎KF
𝑏,𝑡

)2

⎤⎥⎥⎥⎦ .
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