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We study the horizon dimension of cross-sectional return predictability using a model where characteristics 
contain both persistent and transitory components. We test the implications of this model for the average returns 
of popular characteristic-based trading strategies at short versus long horizons after portfolio formation. Our 
evidence supports the claim that the relative compensation for persistent and transitory components varies across 
characteristics, in both magnitude and sign. Benchmark factor models cannot explain the returns of portfolios 
sorted on characteristics where either the persistent or transitory component is dominant. Finally, we discuss 
implications for the long-term discount rates of firms.
1. Introduction

In this paper, we study the relative compensation for persistent 
and transitory components of firm characteristics. Recent literature ar-

gues that transitory components of characteristics are the major driver 
of cross-sectional return predictability. For instance, Keloharju et al. 
(2021) decompose a large set of characteristics into their persistent 
and transitory components and argue that only the average transitory 
component predicts returns. Liu et al. (2021) further argue that the 
mispricing captured by characteristics is more transitory than the risk. 
Instead, we argue that the relative compensation for persistent and 
transitory components varies across characteristics, both in magnitude 
and sign. Since the return predictability from a characteristic such as 
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book-to-market is quite persistent, it seems unlikely that no persistent 
component is priced.

To fix ideas, consider a characteristic that consists of a persistent 
and a transitory component: 𝑋𝑡 = 𝑋𝑃

𝑡 + 𝑋𝑇
𝑡 . We assume that a firm’s 

expected return is determined by its market beta and compensation for 
these components:

𝐸𝑡(𝑅𝑡+1) = 𝜆𝑀𝛽𝑀 + 𝜆𝑃𝑋𝑃
𝑡 + 𝜆𝑇𝑋𝑇

𝑡 . (1)

We further assume that the two components of 𝑋𝑡 contribute equally to 
𝑋-factor exposure. The 𝑋-factor exposure is our measure of factor risk 
or beta, consistent with numerous studies that construct factors from 
sorting stocks on not-decomposed characteristics.
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We ask two questions to assess the importance of variation in the 
relative compensation 𝜆𝑃 versus 𝜆𝑇 . First, what are the horizon dy-

namics in returns of characteristic-sorted portfolios? Second, what are 
the long-term discount rates of firms? Although existing literature on 
characteristic-based return predictability focuses almost exclusively on 
short-term returns, studying returns at longer horizons is economically 
important. Characteristics that predict returns more persistently either 
have a larger impact on firm’s discount rates (Keloharju et al., 2021) or 
imply more mispricing (Van Binsbergen and Opp, 2019), and the hori-

zon of most investors is longer than a single month.1

To evaluate the horizon dynamics of returns, we simulate from a 
model that accounts for important properties of real-world data. We 
track the return after formation of the high-minus-low decile portfolio 
sorted on 𝑋𝑡. We denote these returns as 𝑅𝑋,(𝑡−𝑠),𝑡+1, where (𝑡 −𝑠) refers 
to the sorting date and 𝑡 + 1 denotes the return observation date. The 
null hypothesis – of a standard characteristic-based model of expected 
returns – is equal compensation for persistent and transitory compo-

nents, that is, 𝜆𝑃 = 𝜆𝑇 > 0. In this case, the alpha in a regression of the 
return to old sorts (𝑠 > 0) on the newest sort (𝑠 = 0) is zero, because ex-

pected returns decay exactly at the same speed as the characteristic 𝑋𝑡

and, therefore, risk (as measured by 𝑋-factor beta).2 Instead, this al-

pha is negative when only the transitory component is priced (𝜆𝑃 = 0), 
because expected returns decay too fast relative to 𝑋𝑡 and risk. Con-

versely, this alpha is positive when only the persistent component is 
priced (𝜆𝑇 = 0). Testing the null using alphas is attractive because the 
regression beta controls for persistence, which varies strongly across 
firm characteristics in the data. Simply comparing the average returns 
of new and old sorts, as in Keloharju et al. (2021), does not speak to the 
relative compensation for persistent and transitory components in our 
model.

We compare model-implied distributions under the various hypothe-

ses to the distribution obtained empirically from a large set of 56 
characteristics (studied also in Freyberger et al. (2020)). For each char-

acteristic, we construct value-weighted portfolios and track the buy-

and-hold return of the high-minus-low strategy from one month up to 
five years after portfolio formation from 1972 through 2019. We find 
that old sorts provide a significantly negative alpha for 23 character-

istics, whereas this alpha is positive and significant for another eight 
characteristics.3 The magnitude of alphas in the left tail cannot be ex-

plained under the null of the standard characteristic-based model. In 
turn, the magnitude of alphas in the right tail cannot be explained 
under the assumption that only the transitory component of charac-

teristics is priced (as argued in Keloharju et al., 2021). For instance, 
three years after portfolio formation, a high-minus-low book-to-market 
strategy provides a positive annualized alpha of 4.40% (𝑡-stat=2.28) 
relative to the newest book-to-market strategy. This alpha translates to 
a large improvement in Sharpe ratio: from 0.23 for the newest book-to-

market sort to 0.45 for its optimal combination with the three-year-old 
book-to-market sort. Among the characteristics where old sorts provide 
a significant alpha, relative increases in Sharpe ratio of 100% or more 
are commonplace.

This evidence suggests that the compensation for persistent and tran-

sitory components varies in magnitude and sign across characteristics.4

An advantage of our model setup is that we can easily analyze alter-

1 Recent work studies optimal rebalancing frequencies and finds large varia-

tion across characteristics (Novy-Marx and Velikov, 2016; Jensen et al., 2022).
2 This null also holds approximately in popular theoretical explanations of 

characteristics-based return predictability, such as Gomes et al. (2003) and 
Zhang (2005).

3 Our robustness checks confirm that this conclusion extends in subsamples 
and when estimating alternative definitions of the alpha between old and new 
sorts, for instance, using the decay in the characteristic spread.

4 If the relative compensation were fixed across characteristics, the model 
would imply a large correlation between persistence and alphas. This prediction 
2

is also strongly rejected in the data.
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native characteristic-based trading strategies. One such strategy is to 
decompose the return of the newest sort into the return coming from 
new and old stocks. These stocks together make up the extreme high or 
low characteristic-sorted portfolio today, but only the old stocks were 
in (or close to) that same characteristic-sorted portfolio in the past. This 
decomposition is useful because real-world characteristic-based strate-

gies have drawn inspiration from evidence based on the newest sorts. 
If either the persistent or transitory component is dominant, it is more 
profitable to trade only one of the two subsets of stocks.

We find empirically that the average return of old-minus-new stocks 
is highly correlated across characteristics with the alpha of old-versus-

new sorts, as predicted by the model. Old-minus-new stock returns also 
vary strongly in magnitude and sign. For instance, a book-to-market 
strategy that uses only old stocks obtains an annualized return that is 
7.37% (𝑡-stat = 2.48) higher than a strategy that uses only new stocks. 
This result occurs even though these two sets of stocks generate the 
same spread in book-to-market today. Thus, firms with a persistently 
high book-to-market ratio capture a higher return than firms for which 
the same book-to-market ratio is more transitory.

We next ask whether these results are surprising from the point 
of view of benchmark factor models.5 Any model that prices the 
newest sorts will also price the older sorts under the null of a stan-

dard characteristic-based model of expected returns. Challenging mod-

els with moments based on old-versus-new sorts is useful, because 
characteristic-based factors are routinely defined as the return on a new 
sort. Such factors have been sequentially added to the CAPM to improve 
explanatory power for cross-sections of new sorts. Hence, some of the 
improved fit at short horizons may be due to overfitting (Harvey et al., 
2016; Harvey and Liu, 2021).

To reduce the dimensionality of our data, we extract the first princi-

pal component (PC1) at each horizon after portfolio formation. Aggre-

gating over the 56 characteristics using the PC1 loadings, old-versus-

new sorts generate large abnormal average returns with 𝑡-statistics well 
above three in all models we study.6 The aggregated old-versus-new 
strategy is difficult to price, because the PC1 loadings correlate strongly 
with the alpha between old and new sorts.7 We use this insight to split 
PC1 in two sub-components, that is, the component coming from char-

acteristics on which PC1 loads with a positive versus negative sign. We 
find that the benchmark models unanimously struggle to price both 
sub-components. This finding represents strong, joint evidence that ex-

isting factor models cannot explain why returns decay too fast for some 
characteristics, but too slow for others.

Through the lens of our model, the failure of benchmark models is 
unsurprising. Factors based on new sorts capture the total compensa-

tion for loading on a characteristic. However, to price old-versus-new 
sorts and stocks, factors must also account for the relative compensa-

tion of persistent and transitory components. Independent of whether 
new asset pricing models describe expected returns as a function of risk 
or mispricing, models looking for a challenge should target the hori-

zon dynamics presented in this paper. Indeed, any model that prices 

5 The complete set of models we study includes the CAPM as well as the 
models of Fama and French (1993), Frazzini and Pedersen (2014), Fama and 
French (2015), Hou et al. (2015), Stambaugh and Yuan (2016), Daniel et al. 
(2020a), and Daniel et al. (2020b).

6 We find qualitatively and quantitatively similar results when we aggregate 
the old-minus-new stock strategies using PC1 loadings. This aggregated old-

minus-new stock strategy is particularly interesting because it does not load 
meaningfully on any of the 56 characteristics we study (i.e., the strategy is 
characteristic-neutral).

7 Note that the principal component loadings are determined only by the co-

variance matrix of returns, thus ignoring the relative performance of old and 
new sorts. Moreover, we discuss in Online Appendix A an extension of our 
model that can match the empirical link between principal component loadings 
and the performance of old-versus-new sorts using minimal additional assump-
tions.
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returns at all horizons will get price levels right (Cho and Polk, 2020; 
van Binsbergen et al., 2023).

To assess the implications for long-term discount rates, we follow the 
approach in Keloharju et al. (2021, Section 6.3). The implied discount 
rate 𝑟 solves the Gordon growth equation: 𝑃 = 𝐷

𝑟−𝑔 , where 𝑃 follows 
from discounting an implied cash flow stream at rates derived from the 
realized average returns of a characteristic-sorted portfolio.8 The model 
implies that the high-minus-low portfolio difference in implied discount 
rate is small when only the transitory component is priced. In contrast, 
the difference can be large when the persistent component is priced.

In the data, the high-minus-low difference in discount rates is large 
at 2.5% (value-weighted portfolios) and 3.5% (equal-weighted portfo-

lios) when we zoom in on firms that load strongly on characteristics 
with returns that decay too slow, that is, the characteristics on which 
PC1 loads with a positive sign. These effects are at least 2.5 times larger 
than what is found in Keloharju et al. (2021) and are economically im-

portant.9 The reason for this gap is that these authors focus on firms 
that load strongly on the average of a large set of characteristics, which 
overweights characteristics with a dominant transitory component. Our 
simulations show that large discount rate effects are most likely gener-

ated in a world where the compensation for the persistent component 
of the characteristic is large relative to the transitory component. Sin-

gle sorts on some characteristics also imply meaningful discount rate 
differences. For instance, in the value-weighted (equal-weighted) case, 
firms in the high size and book-to-market deciles have an implied dis-

count rate that is, respectively, 2% and 1.5% (3% and 2.1%) larger than 
firms in the low deciles. In contrast, for characteristics like profitabil-

ity and investment, discount rate differences are smaller. We conclude 
that there are subsets of firms for which long-term discount rates are 
meaningfully affected by characteristic-based return predictability.

Overall, our evidence that the relative compensation for persistent 
and transitory components varies strongly across characteristics chal-

lenges popular explanations of the cross-section based solely on recent 
observations of firm characteristics. Our results are also important for 
investors, because most stock-picking applications explicitly reduce the 
information set to the most recent values of firm characteristics. Finally, 
characteristic-based return predictability should not be ignored in cap-

ital budgeting.

1.1. Literature

The literature on characteristics-based return predictability is vast, 
but almost exclusively studies the relation between characteristics and 
short-term returns. In recent machine learning literature, the goal has 
been to find the (potentially higher-order) functional form of a large set 
of characteristics that best predicts short-term returns (see, e.g., Kozak 
et al. (2020), Freyberger et al. (2020), and Gu et al. (2020)). Similarly, 
empirical asset pricing tests typically use factors and test assets derived 
from sorting stocks on recent observations of characteristics (see, e.g., 
Fama and French (2015, 2018), Hou et al. (2015, 2018)). We derive 
new moments from the returns at longer horizons after portfolio forma-

tion that challenge these models.

We share the objective of generating new moments to test for model 
misspecification with a number of recent papers. Chernov et al. (2022)

show that the restrictions implied by a stochastic discount factor (SDF) 
that prices single period returns of popular factors, like those of Fama 

8 We assume a growth rate 𝑔 = 1% in our main analyses, but present qualita-

tively similar results for 𝑔 = 5% in a robustness check. We track realized average 
returns up to 10 years after portfolio formation. After year 10, we assume the 
per period discount rate has converged back to the expected market return of 
8% (i.e., a 2% risk-free rate plus a 6% market risk premium).

9 For instance, if the discount rate for an asset is 9.5% and using 𝐷 = 1$ and 
𝑔 = 1%, the asset’s price would be 11.8. If the discount rate is only 6.5%, the 
3

price would be almost 55% larger at 18.2.
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and French, do not hold for long-term returns of the same factors. While 
the focus of Chernov et al. (2022) is on multi-period compounded re-

turns of rebalanced factors, we focus on the buy-and-hold returns of 
characteristic-sorted portfolios. Our test assets are motivated by a novel 
decomposition of characteristics in persistent and transitory compo-

nents, which allows us to speak directly to the popular characteristics-

based model of expected returns. Liu et al. (2021) discuss a related 
channel for model misspecification when mispricing is more transitory 
than factor risk. In this case, including factors that contain a mispricing 
component will distort the firm’s expected return after the mispricing 
is corrected. Their proposed channel is one motivation for our alter-

native hypothesis that the compensation for the transitory component 
of the characteristic is relatively large. However, this channel cannot 
explain the evidence for the subset of characteristics with returns that 
decay too slow. For the same reason, our evidence contributes to Kelo-

harju et al. (2021), who show that returns decay too fast for the average 
characteristic.

Our results regarding the long-term discount rate take the perspec-

tive that characteristic-based return predictability captures compensa-

tion for risk. However, our results also resonate with recent literature 
that takes the perspective that characteristics capture mispricing. For 
instance, Cho and Polk (2020) and van Binsbergen et al. (2023) use 
longer-horizon returns of characteristic-sorted portfolios to estimate the 
price wedge, that is, the difference between the market price of an as-

set and the rationally discounted present value of the asset’s future cash 
flows. van Binsbergen et al. (2023) focus on the dynamics of these price 
wedges at the portfolio and firm level and their potential for real capital 
misallocations. Consistent with variation in the relative compensation 
for persistent and transitory components, both of these papers find that 
the total mispricing implied by some characteristics, such as profitabil-

ity, is small, whereas it is large for others, such as book-to-market. 
In particular, Cho and Polk (2020) focus on the interaction between 
value and quality as the main determinant of price wedges in the cross-

section.

Daniel et al. (2020b) argue that factors can be traded more prof-

itably by combining a factor, like the high-minus-low book-to-market 
portfolio, with an offsetting position in a hedge portfolio that has a zero 
loading on the characteristic (book-to-market) and a maximum load-

ing on the factor (see, also, Daniel and Titman, 1997; Herskovic et al., 
2019). We argue that combinations of newer and older sorts are attrac-

tive investments and show that these combinations provide returns that 
are not captured by popular factors, including the optimally hedged 
factors of Daniel et al. (2020b). In fact, we reject the common assump-

tion that firms’ loadings on the SDF are a function of current values of 
characteristics, such as size, book-to-market, profitability, investment, 
and momentum. The reason is that our aggregate old-minus-new stock 
strategy is approximately neutral with respect to these characteristics, 
but has a non-zero average excess return. This return originates from 
the variation in the relative compensation for persistent and transitory 
components of these characteristics, a variation which has been largely 
overlooked in the literature.

2. Data

In this paper we study 56 characteristics that are similar to those 
in Freyberger et al. (2020) and described in detail in Table OA.1 of 
the Online Appendix. For all U.S. common stocks traded on the NYSE, 
AMEX or NASDAQ from July 1964 through December 2019, we collect 
monthly and daily stock market data from the Center for Research in 
Security Prices (CRSP) and annual balance-sheet data from Compustat. 
Following Green et al. (2017) and Gu et al. (2020), we delay monthly 
variables by one month and annual variables by six months. We con-

struct value-weighted decile portfolios for each characteristic, splitting 
each portfolio at NYSE breakpoints to reduce the influence of micro-

cap stocks. We track the buy-and-hold returns of these decile portfolios. 

When a stock delists, we reallocate the investment in this stock (net 
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Table 1

Old and new sorts on popular characteristics. This table reports summary statistics for old and new sorts on size, book-to-market, 
profitability, and investment. We track the returns of long-short decile portfolios (value-weighted and split at NYSE breakpoints) for each 
characteristic from one month to five years after portfolio formation. Panel A shows the average high-minus-low return. Panel B reports the 
alpha of old with respect to new sorts. The unconditional alpha, 𝛼𝑢 , is the intercept from a regression of the return of an old sort on the 
contemporaneous return of the newest sort: 𝑅𝑋,(𝑡−𝑠),𝑡+1 = 𝛼𝑢𝑠 + 𝛽

𝑢
𝑠
𝑅𝑋,(𝑡),𝑡+1 + 𝜖𝑋,(𝑡−𝑠),𝑡+1 (see Eq. (2)). The conditional alpha, 𝛼𝑐 , is calculated as 

the average return of a strategy that invests in 𝑅𝑋,(𝑡−𝑠),𝑡+1 and hedges in each month 𝑡 the conditional exposure to 𝑅𝑋,(𝑡),𝑡+1. Following Eq. (3), 
we estimate this exposure over a 36 month historical rolling window. The 𝑡-statistics are calculated using White (1980) heteroskedasticity-

consistent standard errors. Panel C reports the Sharpe ratio of the newest sort, Sharpe(𝑅𝑋,(𝑡),𝑡+1), and the maximum increase in Sharpe ratio 
achievable from combining the newest sort with the older sorts (based on either the unconditional or conditional alpha). The sample period 
runs from July 1972 through December 2019.

Horizon 𝑠 Size Book-to-market Profitability Investment

Panel A: Average return of new and old sorts (𝑅𝑋,(𝑡−𝑠),𝑡+1)

Avg. 𝑡-stat Avg. 𝑡-stat Avg. 𝑡-stat Avg. (𝑡-stat)

0 2.01 (0.86) 5.24 (1.61) 5.09 (3.32) 6.06 (3.62)

12 4.45 (1.91) 7.15 (3.14) 2.94 (2.05) 2.86 (1.99)

24 3.48 (1.50) 5.49 (2.62) 1.50 (1.05) 0.47 (0.31)

36 2.44 (1.13) 5.54 (2.75) -0.02 (-0.01) 0.83 (0.53)

48 3.08 (1.48) 5.97 (3.03) 0.16 (0.11) 1.02 (0.62)

60 2.54 (1.17) 4.44 (2.23) -0.35 (-0.23) -0.78 (-0.47)

Panel B: Alphas of old-versus-new sorts

𝛼𝑢
𝑠

𝛽𝑢
𝑠

𝛼𝑐
𝑠

𝛼𝑢
𝑠

𝛽𝑢
𝑠

𝛼𝑐
𝑠

𝛼𝑢
𝑠

𝛽𝑢
𝑠

𝛼𝑐
𝑠

𝛼𝑢
𝑠

𝛽𝑢
𝑠

𝛼𝑐
𝑠

12 2.63 0.90 3.27 4.66 0.48 4.78 -1.09 0.79 -1.02 0.49 0.39 0.65

(2.74) (20.78) (3.03) (2.95) (8.31) (2.79) (-1.42) (15.73) (-1.42) (0.38) (10.82) (0.49)

24 1.77 0.85 2.65 3.66 0.35 4.17 -1.84 0.66 -1.67 -1.15 0.27 -1.43

(1.53) (18.57) (2.14) (2.14) (7.07) (2.23) (-1.83) (10.67) (-1.75) (-0.79) (6.06) (-0.98)

36 0.83 0.80 1.71 4.15 0.26 4.40 -3.11 0.61 -3.25 -0.79 0.27 -1.59

(0.78) (21.11) (1.54) (2.35) (5.31) (2.28) (-2.72) (11.02) (-3.02) (-0.52) (6.70) (-1.04)

48 1.56 0.76 2.35 4.65 0.25 4.64 -2.81 0.58 -2.83 -1.30 0.38 -1.77

(1.43) (20.03) (2.10) (2.66) (5.43) (2.41) (-2.46) (10.95) (-2.69) (-0.85) (7.45) (-1.16)

60 1.03 0.75 1.84 3.18 0.24 2.71 -3.18 0.56 -3.16 -2.85 0.34 -3.53

(0.83) (15.84) (1.40) (1.78) (5.59) (1.37) (-2.64) (8.48) (-2.81) (-1.79) (5.65) (-2.30)

Panel C: Improvements in Sharpe ratio

Sharpe ratio of the newest sort (𝑅𝑋,(𝑡),𝑡+1)

0 0.12 0.23 0.48 0.52

Max. Sharpe(𝑅𝑋,(𝑡−𝑠),𝑡+1, 𝑅𝑋,(𝑡),𝑡+1) - Sharpe(𝑅𝑋,(𝑡),𝑡+1)

𝑢 𝑐 𝑢 𝑐 𝑢 𝑐 𝑢 𝑐

12 0.28 0.34 0.23 0.25 0.04 0.03 0.00 0.00

24 0.12 0.22 0.15 0.21 0.07 0.04 0.01 0.01

36 0.04 0.14 0.17 0.22 0.14 0.13 0.01 0.01

48 0.11 0.21 0.21 0.22 0.12 0.11 0.01 0.02

60 0.05 0.12 0.11 0.10 0.13 0.12 0.06 0.09
of the delisting return) to the non-missing stocks in the portfolio using 
value-weights.

The return to a characteristic-sorted portfolio is defined as the re-

turn of the zero-cost, long-short portfolio formed from buying the high 
portfolio and selling the low portfolio10:

𝑅𝑋,(𝑡−𝑠),𝑡+1 =𝑅
𝐻𝑖𝑔ℎ

𝑋,(𝑡−𝑠),𝑡+1 −𝑅
𝐿𝑜𝑤
𝑋,(𝑡−𝑠),𝑡+1.

In this definition, the first subscript refers to the characteristic, 𝑋 =
1, … , 56; the second subscript refers to the date of portfolio formation 
or sorting date, (𝑡 − 𝑠) where 𝑠 ≥ 0; and the third subscript refers to the 
return realization date, 𝑡 + 1. By varying the sorting date, we observe 
contemporaneous returns to the newest sort (𝑠 = 0), which is the focus 
in most of the literature, and older sorts (𝑠 > 0). Similar to Jegadeesh 
and Titman (1993), we combine three sorts for each horizon 𝑠 > 0 to 
reduce noise. For brevity and because some characteristics are updated 

10 For a characteristic 𝑋 that predicts returns with a negative sign, such as 
size, we sort on −1 ×𝑋. Signing the characteristics in this way makes our results 
more comparable to previous work (e.g., Freyberger et al. (2020) and Haddad 
et al. (2020)), but leaves our main conclusions unchanged. If some return 𝑅𝑋
4

expands the mean-variance frontier, 𝑅−𝑋 will do so as well.
only once per year, we initially focus on 𝑠 = 0, 12, 24, ..., 60.11 Dictated 
by data availability and a burn-in period for some of our estimates, the 
sample period for all our results is July 1972 through December 2019.

3. Motivating evidence

To motivate our study of the persistent and transitory components 
of characteristics and their impact on the relative performance of new 
and old sorts, we focus on the characteristics in the Fama and French 
(2015) model: size, book-to-market, profitability and, investment.

Panel A of Table 1 presents summary statistics for the characteristic-

sorted portfolios. We see that each portfolio obtains a positive average 
return one month after formation, ranging from 2.01% for size to 6.06% 
for investment. The persistence of return predictability varies consider-

ably across these popular characteristics, however. The book-to-market 
effect is large and at least marginally significant at all horizons up to 
five years after portfolio formation. In fact, the book-to-market effect 
is largest one year after portfolio formation at 7.15%, after which it 
slowly decreases to 4.44% at the five-year mark. Similarly, the size ef-

11 Only for a handful of characteristics do returns beyond the five-year horizon 
provide an abnormal return relative to both the newest sort (𝑠 = 0) and the older 

sorts with 𝑠 ≤ 60.
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Fig. 1. Returns and characteristic-matched returns We plot annualized average returns and characteristic-matched average returns of the high-minus-low decile 
portfolios sorted on size, book-to-market, profitability, and investment. We consider horizons from one month up to five years after portfolio formation. The sample 
period runs from July 1972 through December 2019.
fect is substantial at all horizons, but largest one year after portfolio 
formation at 4.45%. In contrast, the effects for profitability and invest-

ment are small and insignificant at horizons beyond two years after 
portfolio formation.

Under the null of a standard characteristic-based model of expected 
returns, the persistence of return predictability matches the persistence 
of the characteristic. In Fig. 1, we analyze this implication using the 
approach of Keloharju et al. (2021, Section 7.2). In each month up to 
five years after portfolio formation, we plot the return of the long-short 
portfolio as well as the return of a characteristic-matched portfolio.12

First, we see that persistence – proxied by the matched portfolio return 
– varies importantly across characteristics, with book-to-market (invest-

ment) being the most (least) persistent. Second, we see that returns are 
too persistent (i.e., returns decay slowly relative to the matched return) 
for book-to-market and size. In contrast, returns are too transitory (i.e., 
returns decay relatively fast) for profitability. For investment, returns 
decay initially too slow, but later too fast.

What do these results imply for the relative performance of new and 
old sorts? To answer this question, we regress the returns of older sorts 
on the newest sort:

𝑅𝑋,(𝑡−𝑠),𝑡+1 = 𝛼𝑢𝑠 + 𝛽
𝑢
𝑠𝑅𝑋,(𝑡),𝑡+1 + 𝜀𝑋,(𝑡−𝑠),𝑡+1. (2)

The model presented in the next section formally motivates why the 
beta in this regression is a suitable control for characteristic-persistence. 
Our main interest is in the alpha, measuring the unconditional abnormal 

12 The matched portfolio return is calculated by tracking the portfolio rank of 
each stock that is assigned to the high and low decile at the sorting date. In 
each month after portfolio formation, we replace the stock’s actual return with 
the value-weighted return of the decile to which the stock belongs at that point 
in time. We finally take the value-weighted average within each decile of these 
5

surrogate returns.
performance of old sorts relative to the newest sort. Because persistence 
may vary over time, we also calculate a conditional alpha using expo-

sures estimated over a 36-month rolling window:

𝛼𝑐𝑠 =𝐸(𝑅𝑋,(𝑡−𝑠),𝑡+1 − 𝛽𝑐𝑠,𝑡𝑅𝑋,(𝑡),𝑡+1), with 𝛽𝑐𝑠,𝑡 from: (3)

𝑅𝑋,(𝜏−𝑠),𝜏+1 = 𝛼𝑠 + 𝛽𝑐𝑠,𝑡𝑅𝑋,(𝜏),𝜏+1 + 𝜀𝑋,(𝜏−𝑠),𝜏+1, 𝜏 = 𝑡− 36 ∶ 𝑡− 1. (4)

In Panel B of Table 1 we see that a large number of these alphas 
are economically and statistically significant. Let us focus on the con-

ditional alpha (𝛼𝑐𝑠 ) from Eq. (3). This alpha is large and positive at all 
horizons after portfolio formation for book-to-market and size, consis-

tent with the fact that returns decay too slow for these characteristics.13

For book-to-market, the alpha is significant up to four years out at about 
4.50%; for size, the alpha is significant at the one-, two-, and four-

year mark at about 2.75%. Consistent with the fact that returns decay 
too fast for profitability, we see negative alphas for this characteristic. 
These alphas are significant at about −3.00% from three to five years 
after portfolio formation.

A significant alpha implies that the maximum Sharpe ratio from 
investing in the optimal portfolio of the older and the newest sort is 
significantly larger than the Sharpe ratio of the newest sort. We present 
these improvements in Sharpe ratio in Panel C. For book-to-market, the 
Sharpe ratio from investing in the newest sort, 𝑅𝐵𝑀,(𝑡),𝑡+1, equals 0.23. 
The Sharpe ratio more than doubles to 0.48 (= 0.23 + 0.25) when an 
investment in the older sort, 𝑅𝐵𝑀,(𝑡−12),𝑡+1, is added.14 Similarly, for 

13 Although variation in past returns contributes to the alphas for size and 
book-to-market, we show below that past returns-related variables, such as mo-

mentum, cannot explain the alphas we find in the larger cross-section of 56 
characteristics.
14 The optimal portfolio invests 1.22 and −0.22 in 𝑅𝐵𝑀,(𝑡−12),𝑡+1 and 
𝑅𝐵𝑀,(𝑡),𝑡+1, respectively, in the unconditional specification (1.38 and −0.38 in 

the conditional specification). Although optimal weights are more extreme for 
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size, the optimal combination of 𝑅𝑆𝑖𝑧𝑒,(𝑡−12),𝑡+1 and 𝑅𝑆𝑖𝑧𝑒,(𝑡),𝑡+1 obtains 
a Sharpe ratio that is more than triple the Sharpe ratio of an investment 
in 𝑅𝑆𝑖𝑧𝑒,(𝑡),𝑡+1 alone: 0.46 versus 0.12. For both book-to-market and size, 
the increase in Sharpe ratio falls gradually as time passes after portfo-

lio formation, although it remains economically large at over 0.10 for 
all sorting dates in the conditional specification. For profitability and 
investment, the largest increases in Sharpe ratio are observed when the 
return three and five years after portfolio formation is combined with 
the return one month after portfolio formation, at 0.13 and 0.09, respec-

tively. These absolute increases translate to relative increases in Sharpe 
ratio of about 20%, which is non-negligible economically.

We conclude that there are significant alphas between new and old 
sorts and the sign and magnitude of these alphas vary substantially even 
among the most popular characteristics in the literature. To the best of 
our knowledge, we are the first to estimate these alphas and show that 
they vary in sign across characteristics. If these alphas represent a re-

jection of the null of a standard characteristic-based model of expected 
returns, what is a suitable alternative?

4. Model

We start with a simple model that outlines the main predictions 
for new and old sorts that we test in this paper. We discuss the key 
trade-offs between characteristic-persistence and the persistence of re-

turn predictability under alternative hypotheses motivated by previous 
literature. Towards the end of this section, we turn to a richer specifi-

cation that accounts for more properties of the data.

4.1. A simple data generating process

Following Keloharju et al. (2021), we assume that firm character-

istics consist of a persistent and a transitory component. For a generic 
characteristic 𝑋, with an unconditional mean equal to zero and vari-

ance equal to one, we assume:

𝑋𝑖,𝑡 =𝑋𝑃
𝑖,𝑡 +𝑋

𝑇
𝑖,𝑡, (5)

𝑋𝑃
𝑖,𝑡 = 𝜌𝑋

𝑃
𝑖,𝑡−1 + 𝜖

𝑃
𝑖,𝑡, and (6)

𝑋𝑇
𝑖,𝑡 = 𝜖

𝑇
𝑖,𝑡, (7)

such that 𝑋𝑃
𝑖,𝑡

follows an AR(1)-process with persistence 𝜌. We initially 
draw the random normal shocks 𝜖𝑃

𝑖,𝑡
and 𝜖𝑇

𝑖,𝑡
at the annual frequency. 

In Section 4.5, we map our model to the monthly frequency usually 
studied in the literature.

We define a stock’s expected return to be a function of its market 
beta and the components of 𝑋:

𝐸𝑡(𝑅𝑖,𝑡+1) = 𝜆𝑀𝛽𝑖,𝑀 + 𝜆𝑃𝑋𝑃
𝑖,𝑡 + 𝜆𝑇𝑋

𝑇
𝑖,𝑡 . (8)

We allow the relative compensation for the two components to differ. 
Differential compensation is key to understanding the relative perfor-

mance of old and new sorts in the data. Although our main focus is 
on a two-factor model, our arguments extend to a model with multi-

ple characteristics (see Online Appendix A, for instance). Moreover, we 
control for a large set of benchmark factor models when we analyze the 
implications of our results for asset pricing models in Section 6.

Realized returns are defined as follows:

𝑅𝑖,𝑡+1 =𝐸𝑡(𝑅𝑖,𝑡+1) + 𝛽𝑖,𝑀 (𝑅𝑀,𝑡+1 −𝐸𝑡(𝑅𝑀,𝑡+1))

+ 𝛽𝑖,𝐹𝑋 ,𝑡(𝐹𝑋,𝑡+1 −𝐸𝑡(𝐹𝑋,𝑡+1)) + 𝜖𝑖,𝑡+1, (9)

where the exposure to the second factor 𝐹𝑋,𝑡+1 – referred to as the “𝑋-

factor” – is a function of the characteristic:

a few of the 56 characteristics studied below, we find in those cases that the im-

provement in Sharpe ratio is only slightly smaller when we restrict the weights 
6

to be in the interval [−2, +2].
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𝛽𝑖,𝐹𝑋 = 𝑐𝐹𝑋𝑋𝑖,𝑡 + 𝜖𝑖,𝐹𝑋 . (10)

We set the loading 𝑐𝐹𝑋 such that the long-short portfolio resulting from 
a sort on the characteristic 𝑋 has a unit 𝑋-factor beta. We start out as-

suming that 𝜖𝑖,𝑡+1 is a random normal idiosyncratic return shock. Then, 
as the number of stocks 𝑖 = 1, … , 𝑁 grows larger, the return of the long-

short decile portfolio converges to 𝐹𝑋,𝑡+1. This setup is consistent with 
numerous studies that construct factors as long-short characteristic-

sorted portfolios. Indeed, existing factors do not distinguish between 
the persistent and transitory components of firm characteristics.

Our model allows us to study the relative compensation for these 
components through the returns of old versus new sorts. We prefer 
to analyze these returns rather than decomposing firm characteristics 
empirically, as for instance Keloharju et al. (2021) do, for two rea-

sons. First, portfolios sorted on not-decomposed characteristics feature 
widely in academic and practitioner literature. Second, we would need 
to make additional assumptions about the dynamics of firm character-

istics to perform the decomposition empirically. That said, we discuss 
below a robustness check using a simple empirical decomposition of 
characteristics.

Furthermore, our model yields interesting and testable implications 
without having to take a stand on how much risk and mispricing con-

tribute to the components of 𝑋. Previous literature provides suggestive 
evidence for this issue, however. For instance, Kothari et al. (1995) and 
Cohen et al. (2009) find that the size and book-to-market effects align 
better with risk measured over horizons considerably longer than a sin-

gle month. In the context of our model, this would imply that risk lines 
up better with the persistent component of characteristics. In contrast, 
the evidence in Liu et al. (2021) suggests that the mispricing captured 
by performance-related characteristics (such as profitability) is more in 
line with the transitory component of these characteristics.

4.2. Hypotheses

Our null hypothesis is that 𝜆𝑃 = 𝜆𝑇 in Eq. (8), consistent with the 
standard characteristic-based model of expected returns studied in the 
literature. Under this null, a unit increase in either 𝑋𝑃 or 𝑋𝑇 yields 
the same increase in expected return, just as it yields the same increase 
in exposure to the 𝑋-factor. Moreover, expected returns of a long-short 
portfolio sorted on 𝑋 decay at exactly the same speed as the character-

istic 𝑋 itself.

Our first alternative hypothesis, 𝜆𝑃 = 0 and 𝜆𝑇 > 0, follows Kelo-

harju et al. (2021) who argue that return predictability is driven by the 
transitory components of characteristics. Under this alternative, a unit 
increase in 𝑋𝑇 yields a larger increase in expected return than a unit 
increase in 𝑋𝑃 , even though they yield the same increase in exposure 
to the 𝑋-factor. Thus, the return compensation for 𝑋𝑇 is relatively too 
high when compared to its risk. This assumption also implies that ex-

pected returns decay faster than the characteristic 𝑋, because returns 
decay at the speed of the transitory component. A good example of such 
a characteristic is profitability in Fig. 1.

Our second alternative hypothesis is that 𝜆𝑃 > 0 and 𝜆𝑇 = 0. Un-

der this alternative, the return compensation for 𝑋𝑇 is relatively too 
low when compared to its risk. Moreover, in this case the decay in ex-

pected returns is slower than the characteristic 𝑋, because now returns 
decay at the speed of the persistent component. A good example of 
such a characteristic is book-to-market in Fig. 1. Indeed, existing work 
shows that some characteristics, including book-to-market, predict re-

turns very persistently (see Cho and Polk, 2020; van Binsbergen et al., 
2023). We will argue that a relatively large compensation for the per-

sistent component is necessary to fit the data for such characteristics.

4.3. Calibration

Through the lens of our model, the fact that book-to-market returns 
decay relatively slowly (see Fig. 1) indicates the presence of a com-
ponent that is more persistent than the book-to-market ratio itself. To 
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calibrate the model, we rely on the book-to-market ratio and set the per-

sistence of the component 𝑋𝑃 to 𝜌 = 0.85. This number is only slightly 
above the persistence of the book-to-market ratio in the data (= 0.75) 
and our results are qualitatively insensitive to this choice.

Following Keloharju et al. (2021) and to be conservative, we cal-

ibrate 𝜆𝑃 and 𝜆𝑇 such that the cross-sectional standard deviation of 
𝐸𝑡(𝑅𝑖,𝑡+1) is equal to 4.8% per year. Given a cross-sectional standard 
deviation of realized annual returns of about 50%, this number would 
imply an 𝑅2 of less than 1% in a cross-sectional regression of real-

ized returns on expected returns. We draw market betas randomly from 
 (1, 0.62), consistent with Welch (2022). Similarly, and consistent with 
stocks’ exposures to a long-short book-to-market factor in the data, we 
set the cross-sectional standard deviation of 𝑋-factor betas equal to 0.6. 
For the high-minus-low decile portfolio from a sort on 𝑋 to have a unit 
beta with respect to the 𝑋-factor, we set 𝑐𝐹𝑋 = 0.285.15 This number 
follows from the fact that the high-minus-low spread in 𝑋 is equal to 
2 × 1.755 based on the properties of a truncated normal distribution 
and the uncorrelatedness of the two components of 𝑋. We set the mar-

ket risk premium 𝜆𝑀 = 6%. Thus, in the standard characteristic-based 
model of expected returns we have 𝜆𝑃 = 𝜆𝑇 = 3.17%. Under the two 
alternatives, the compensation for the two components of the charac-

teristic depends on 𝑉 𝑎𝑟 
(
𝑋𝑃
𝑖,𝑡

)
. For instance, for 𝑉 𝑎𝑟 

(
𝑋𝑃
𝑖,𝑡

)
= 0.5, we 

have 𝜆𝑇 = 4.49% (and 𝜆𝑃 = 0) under the first alternative inspired by 
Keloharju et al. (2021) and 𝜆𝑃 = 4.49% (and 𝜆𝑇 = 0) under the second 
alternative.16 With these parameter values, about 45% of expected re-

turn variation is coming from variation in the characteristic and the rest 
from variation in market beta.

4.4. Predictions

With the above setup, we can calculate the alpha of old to new 
sorts (as well as other characteristic-based strategies; see Section 4.6) 
in closed form. It turns out that this alpha clearly distinguishes the al-

ternative hypotheses.

As mentioned above, the spread in 𝑋 between the top and bottom 
decile for the newest sort on 𝑋 equals 2 × 1.755. Since the persistent 
and transitory components are uncorrelated, this spread derives for a 
proportion 𝑉 𝑎𝑟(𝑋𝑃

𝑖
) from the persistent component and (1-𝑉 𝑎𝑟(𝑋𝑃

𝑖
)) 

from the transitory component. Thus, the expected return of the newest 
sort equals:

𝐸(𝑅𝑋,(𝑡),𝑡+1) = 2 × 1.755 × (𝑉 𝑎𝑟(𝑋𝑃
𝑖,𝑡)𝜆𝑃 + (1 − 𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡))𝜆𝑇 ). (11)

Since the persistence of the characteristic 𝐶𝑜𝑟𝑟(𝑋𝑖,𝑡, 𝑋𝑖,𝑡−𝑠), and thus 
also the persistence of 𝑋-factor betas, equals 𝑉 𝑎𝑟 

(
𝑋𝑃
𝑖,𝑡

)
𝜌𝑠, the ex-

pected return of older sorts equals17:

𝐸(𝑅𝑋,(𝑡−𝑠),𝑡+1) = 2 × 1.755 × 𝑉 𝑎𝑟(𝑋𝑃
𝑖,𝑡) × 𝜌

𝑠 × 𝜆𝑃 . (12)

Given that the long-short portfolio does not load on the market, the 
realized returns on the newest and old sorts equal:

𝑅𝑋,(𝑡),𝑡+1 =𝐸(𝑅𝑋,(𝑡),𝑡+1) + 𝐹𝑋,𝑡+1 + 𝜖𝑋,(𝑡),𝑡+1 and (13)

𝑅𝑋,(𝑡−𝑠),𝑡+1 =𝐸(𝑅𝑋,(𝑡−𝑠),𝑡+1) + 𝑉 𝑎𝑟(𝑋𝑃
𝑖,𝑡) × 𝜌

𝑠 × 𝐹𝑋,𝑡+1 + 𝜖𝑋,(𝑡−𝑠),𝑡+1.
(14)

15 This choice of 𝑐𝐹𝑋 pins down the 𝑅2 in the regression of Eq. (10): 
0.2852∕0.62 = 0.23.
16 These numbers follow from solving 0.048 =√
𝜆2
𝑀

× 𝑉 𝑎𝑟(𝛽𝑖,𝑀 ) + 𝜆2
𝑃
× 𝑉 𝑎𝑟

(
𝑋𝑃
𝑖,𝑡

)
+ 𝜆2

𝑇
× 𝑉 𝑎𝑟

(
𝑋𝑇
𝑖,𝑡

)
.

17 Time-variation in risk premia should not change our results because we are 
comparing the return of old and new sorts at the same point in time. As it is 
standard in the literature, we assume that the compensation for a unit loading 
on a characteristic (or one of its components) is independent of the time of 
7

portfolio formation.
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Since 𝜖𝑋,(𝑡),𝑡+1 converges to zero as the number of stocks grows large, 
we find that the newest sort is the 𝑋-factor. In this case, the beta in 
a regression of the older sorts on the newest sort (see Eq. (2)) equals 
the characteristic spread that remains 𝑠 years after portfolio forma-

tion as a fraction of the characteristic spread at portfolio formation: 
2×1.755×𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡
)×𝜌𝑠

2×1.755 = 𝑉 𝑎𝑟(𝑋𝑃
𝑖,𝑡
)𝜌𝑠. The alpha in this regression equals:

𝛼𝑢𝑠 =𝐸(𝑅𝑋,(𝑡−𝑠),𝑡+1) − 𝛽𝑢𝑠𝐸(𝑅𝑋,(𝑡),𝑡+1)

= 2 × 1.755 ×
(
𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡) − 𝑉 𝑎𝑟(𝑋
𝑃
𝑖,𝑡)

2
)
× 𝜌𝑠 × (𝜆𝑃 − 𝜆𝑇 ). (15)

This alpha is zero under the null of the standard characteristic-based 
model of expected returns (𝜆𝑃 = 𝜆𝑇 = 0).18 Old sorts are not priced by 
the newest sort under the two alternatives. Under the first alternative 
(𝜆𝑃 = 0, 𝜆𝑇 > 0), we find that 𝛼𝑢𝑠 < 0, because old sorts contain rel-

atively more unpriced exposure to the 𝑋-factor than the newest sort. 
This follows from the fact that exposure decays from time 𝑡 − 𝑠 to 𝑡 by 
an amount 𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡
)𝜌𝑠, whereas expected returns decay immediately 

with the transitory component. This implication is consistent with Liu 
et al. (2021), who argue that mispricing is more transitory than risk 
exposure. Under the second alternative (𝜆𝑃 > 0, 𝜆𝑇 = 0), we find that 
𝛼𝑢𝑠 > 0, because old sorts contain relatively less unpriced exposure to the 
𝑋-factor than the newest sort. In this case, exposure still decays by an 
amount 𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡
)𝜌𝑠, but expected returns decay more slowly with the 

persistent component, that is, from 𝑡 − 𝑠 to 𝑡 by an amount 𝜌𝑠. Quantita-

tively, assuming 𝑉 𝑎𝑟(𝑋𝑃
𝑖,𝑡
) = 0.5 and focusing on the three-year horizon, 

we show that the model generates alphas that are economically mean-

ingful at −2.42% (first alternative) and 2.42% (second alternative).

Finally, our model implies a simple test of the idea that all character-

istics are created equal except for their persistence. In particular, given 
a choice for 𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡
), the correlation between alpha and characteristic-

persistence 𝜌 is 1 if 𝜆𝑃 > 𝜆𝑇 and −1 if 𝜆𝑃 < 𝜆𝑇 . In other words, a low 
(in absolute value) correlation between alpha and persistence in the 
data is evidence against the idea that the relative compensation for the 
persistent and transitory component is the same for all characteristics.

4.5. Richer specification

We now turn to a richer specification that accounts for important 
properties of empirical data, closely following Keloharju et al. (2021). 
We simulate 𝐵 = 10,000 samples of 570 months. In each month 𝑡, the 
size of the simulated cross-section is equal to the data. We continue 
to generate 𝑋𝑇 and 𝑋𝑃 annually, but we repeat the annual observa-

tions for 12 continuous months, similar to the approach of Fama and 
French (1992). We draw the relative contribution of 𝑋𝑇 and 𝑋𝑃 to 
the variance of 𝑋 from a uniform distribution (𝑈 [0.25, 75]). We do 
so because this relative contribution is likely to vary across character-

istics in the data. To capture the conditional covariance structure of 
the market (𝑅𝑀,𝑡) and the characteristic-based factor (𝐹𝑋,𝑡) returns, we 
estimate their empirical covariance matrix Σ𝐹𝑡 (= 𝑉 𝑎𝑟([𝑅𝑀,𝑡, 𝐹𝑋,𝑡])) us-

ing a rolling window centered at month 𝑡 (from three years before to 
three years after). We then draw the two de-meaned factor returns in 
each month 𝑡 from the multivariate normal distribution  (02, Σ𝐹𝑡 ).

We specify the idiosyncratic component of realized returns, 𝜖𝑖,𝑡 in 
Eq. (9), to have the same factor structure as idiosyncratic returns in 
the data (see Section 4.2 in Keloharju et al., 2021). In each month 
𝑡, we use a rolling window centered at 𝑡 to run a time-series regres-

sion for all 𝑁𝑡 stocks on the market and a long-short book-to-market 
portfolio. We standardize the month 𝑡 residuals cross-sectionally and 
denote this 𝑁𝑡-vector 𝜀𝑡. Over the same rolling window, we estimate 
the 𝑁𝑡 × 𝑁𝑡 conditional covariance matrix of stock returns, Σ𝑁𝑡

. We 
follow Higham (2002) and replace Σ𝑁𝑡

with its nearest positive definite 

18 We show in Online Appendix B that popular structural explanations of 
characteristics-based return predictability, such as Gomes et al. (2003) and 

Zhang (2005), are consistent with this null.
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Table 2

Old-versus-new sorts and stocks in model simulations. This table reports re-

sults from 10,000 simulations of the model presented in Section 4. In Panel A, 
we present the 5th, 50th, and 95th percentiles of the simulated distribution of 
the alpha from a regression of a three-year old sort on the newest sort (see Eq. 
(15)). In Panel B, we present the same distribution for the average return of old-

minus-new stocks (as defined in Section 4.6). We also report in each panel (i) the 
analytical estimate, derived from a setting with IID idiosyncratic return shocks, 
and (ii) the distribution of the estimate in the data, derived from the large set 
of 56 characteristics. For the model simulations, we consider three cases. Un-

der the null of a standard characteristic-based model of expected returns, the 
compensation for the transitory and persistent component of the characteristic 
is equal: 𝜆𝑃 = 𝜆𝑇 = 3.17%. Under the first alternative, only the transitory com-

ponent is compensated in expected returns: 𝜆𝑃 = 0, 𝜆𝑇 = −4.49%. Under the 
second alternative, only the persistent component is compensated in expected 
returns: 𝜆𝑃 = 4.49%, 𝜆𝑇 = 0.

5𝑡ℎ 50𝑡ℎ 95𝑡ℎ Analytical

Panel A: Alpha of old-versus-new sort

Null: 𝜆𝑃 = 𝜆𝑇 > 0 -2.46% 0.02% 2.53% 0.00%

Only transitory: 𝜆𝑇 > 𝜆𝑃 = 0 -4.73% -2.25% 0.31% -2.42%

Only persistent: 𝜆𝑃 > 𝜆𝑇 = 0 -0.27% 2.24% 4.79% 2.42%

Empirical -4.67% -0.76% 3.02%

Panel B: Average return of old-minus-new stocks

Null: 𝜆𝑃 = 𝜆𝑇 > 0 -1.58% 0.52% 2.57% 0.54%

Only transitory: 𝜆𝑇 > 𝜆𝑃 = 0 -3.89% -1.79% 0.34% -1.89%

Only persistent: 𝜆𝑃 > 𝜆𝑇 = 0 0.42% 2.50% 4.57% 2.65%

Empirical -4.86% -0.22% 5.90%

matrix, Σ̂𝑁𝑡
. Finally, we generate the vector of month-𝑡 idiosyncratic 

returns, 𝜖𝑡, by randomizing the elements of 𝜀𝑡 and post-multiplying it 
with the Cholesky factor of Σ̂𝑁𝑡

.

In Panel A of Table 2, we report the 5th, 50th, and 95th percentiles 
of the simulated distribution of old-versus-new alphas at the three-year 
horizon (see Eq. (2)). Under the null and the two alternatives, the center 
of the alpha-distribution is close to the analytical value from our simple 
model, which is reported in the last column. The width of the alpha-

distribution also contains important information. For instance, under 
the null that the persistent and transitory components capture the same 
expected return compensation, one is unlikely to find alphas larger than 
about 2.5% per year in absolute magnitude (the 5th and 95th percentile 
equal −2.46% and 2.53%, respectively). In contrast, under the alter-

native that only the transitory component is compensated in expected 
returns, one is unlikely to find large positive alphas (the 95th percentile 
equals 0.31%). In turn, under the alternative that only the persistent 
component is compensated, one is unlikely to find large negative alphas 
(the 5th percentile equals −0.27%). In Section 5, we analyze how each 
of these distributions compares to the empirical distribution of alphas, 
which we obtain by estimating alphas for a large set of characteristics.

Note that using our approach the attrition rate of the simulated port-

folios after formation equals the rate at which stocks exit the CRSP file 
in the data. As a result, approximately one-third of the stocks have been 
dropped from the simulated high and low portfolios five years after 
portfolio formation. We show in Table OA.2 that the simulated distri-

bution (of old-versus-new alphas as well as other metrics introduced 
below) is robust to imposing a higher attrition rate of 50% for the high 
portfolio. This attrition rate is consistent with the stocks in the highest 
book-to-market decile in the data.19 Furthermore, even though charac-

teristics predict returns quite persistently in our simulations, we show 
in Online Appendix C that our rich specification does not generate coun-

terfactually strong cross-sectional return predictability.

19 Attrition is imposed randomly in our simulation. While outside the scope 
of our model, it is an interesting question what drives attrition in the data 
(bankruptcy, M&A, going private or some other reason for delisting) and how 
each of these drivers impacts characteristic-based return predictability. We 
8
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4.6. Old-minus-new stocks

Before turning to the data, we note that an advantage of our model 
setup is that we can easily analyze alternative characteristic-based trad-

ing strategies. One strategy of particular interest decomposes the return 
of the newest sort into the return coming from new and old stocks. This 
decomposition is of interest because real-world characteristic-based in-

vestment strategies have drawn inspiration from evidence based on the 
newest sorts but, as we will see below, it is more profitable to trade only 
one of these two subsets of stocks if one of our alternative hypotheses 
holds. We define old stocks as those stocks in the high (low) portfolio at 
time 𝑡 that already had a relatively high (low) value of the characteris-

tic three years ago. New stocks in the high (low) portfolio, instead, have 
seen a large increase (decrease) in the value of the characteristic. For-

mally, our approach entails a dependent double sort into deciles sorted 
on 𝑋𝑡, and within the high and low decile, into two portfolios split at 
the (within-portfolio) median of 𝑋𝑡−36.

We see in Panel B of Table 2 that the old-minus-new stock difference 
in expected returns behaves similarly to the alpha of old-versus-new 
stocks. The median old-minus-new difference is small at 0.52% under 
the null, is large and negative at -1.79% assuming only the transi-

tory component is priced, and is large and positive at 2.50% assuming 
only the persistent component is priced. These medians are close to the 
analytical estimates (reported in the last column) that follow from com-

bining the relative loadings of old and new stocks on 𝑋𝑃 and 𝑋𝑇 with 
the compensation for the two components. Assuming 𝑉 𝑎𝑟(𝑋𝑃

𝑖,𝑡
) = 0.5, 

these loadings equal 0.59 and −0.42, respectively. Given that old (new) 
stocks load relatively more strongly on 𝑋𝑃 (𝑋𝑇 ), it follows naturally 
that the old-minus-new stock difference changes sign between the two 
alternative hypotheses. Note also that these relative loadings imply that 
the old-minus-new stock strategy does not load strongly on the total 
characteristic 𝑋, which sums 𝑋𝑃 and 𝑋𝑇 . Thus, under the null that ex-

pected return variation is driven solely by 𝑋, it would be surprising if 
such strategies obtain a large and significant return in the data.

5. Testing the model

In this section, we generalize the results from Section 3 to the full 
set of 56 characteristics and interpret these results through the lens of 
our model.

5.1. Alphas of old-versus-new sorts

To start, we present both unconditional and conditional alphas (see 
Eqs. (2) and (3)) in Fig. 2. To facilitate interpretation, we sort the char-

acteristics from left to right on the conditional alphas and, to see the big 
picture, we focus on a strategy that averages the returns from one to five 
years after portfolio formation, denoted 𝑅𝑋,(𝑡−60∶𝑡−12),𝑡+1 . We present 
conditional alphas for each individual horizon 𝑠 = 12, 24, 36, 48, 60 in 
Figure OA.1 of the Online Appendix.20

In Panel A of Fig. 2, we see that the empirical distribution of alphas 
is wide, with conditional (unconditional) alphas ranging from −6.69%
to 4.14% (−5.94% to 4.06%). For at least half of the characteristics, these 
alphas are significant at the 10%-level. In the conditional specification, 
for instance, the alpha is negative and significant at the 10%-level for 23 
characteristics. Among the largest negative alphas, we find a number of 
characteristics related to (idiosyncratic) return volatility, momentum, 
and profitability. The alpha in this specification is positive and signif-

icant for eight characteristics, such as share issuance, value (broadly 
defined), and illiquidity. In Figure OA.1, we see that there is some 

20 Focusing on the average is conservative: we find even larger increases in 
Sharpe ratio when we optimally choose one of the five older sorts to be included 
in a portfolio with the newest sort. The horizon 𝑠 for which this maximum 

Sharpe ratio is obtained varies across characteristics.
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Fig. 2. Alphas of old-versus-new sorts This figure presents the unconditional and conditional alphas (𝛼𝑢 and 𝛼𝑐 in Panel A and associated White (1980)

heteroskedasticity-consistent 𝑡-statistics in Panel B) of the old sorts with respect to the newest sort for 56 characteristics. We report this alpha for a single combina-

tion of five old sorts: 𝑅𝑋,(𝑡−60∶𝑡−12),𝑡+1 = 1∕5(𝑅𝑋,(𝑡−12),𝑡+1 +𝑅𝑋,(𝑡−24),𝑡+1 + ... +𝑅𝑋,(𝑡−60),𝑡+1), such that it represents the abnormal average return from one to five years 
after portfolio formation. To facilitate interpretation, we sort the characteristics from low to high 𝛼𝑐 . The sample period runs from July 1972 through December 

2019.

within-characteristic variation across horizons, but alphas are roughly 
increasing from left to right at all horizons.

In short, we find both negative and positive old-versus-new alphas 
that are large and significant. This finding is robust along various di-

mensions. First, we show in Figure OA.2 that alphas are largely unaf-

fected when we additionally control for exposure to the market. We 
study a broader set of benchmark factors in the next section. Figure 
OA.3 shows similar alphas when we split our sample into two halves. 
Figure OA.4 and OA.5, respectively, show that alphas are not driven 
by a small set of extreme returns in NBER recessions nor exclusively 
by periods of high sentiment. Figure OA.6 shows virtually identical al-

phas when we correct for survivorship bias. While the return of the 
old sort, 𝑅𝑋,(𝑡−𝑠),𝑡+1, conditions on firm survival from 𝑡 − 𝑠 to 𝑡, the 
return of the newest sort, 𝑅𝑋,(𝑡),𝑡+1, does not. For these survivorship 
bias-corrected alphas, we calculate the return of the newest sort using 
only those stocks that were already in the CRSP file at 𝑡 − 𝑠.

Further, we see in Fig. 3 that these alphas translate to large 
9

increases in Sharpe ratio from optimally combining the older sort 
(𝑅𝑋,(𝑡−60∶𝑡−12),𝑡+1) with the newest sort (𝑅𝑋,(𝑡),𝑡+1). The V-shaped pat-

tern indicates that for characteristics where the alpha is large in abso-

lute magnitude, the increase in Sharpe ratio also tends to be large. For 
32 (15) out of 56 characteristics, the absolute increase in Sharpe ratio 
is over 0.10 (0.20) in the conditional specification. For 18 (13) of these 
characteristics, this number translates to a relative increase in Sharpe 
ratio of over 100%. Thus, combining new and old sorts considerably im-

proves investment opportunities. This insight is useful for investors, like 
mutual funds, that for various reasons (e.g., clientele and menu effects 
or specialization) may target only one (or a few) characteristic themes, 
such as value. Since these themes are usually defined broadly, how best 
to construct the characteristic has remained an open question.

5.2. Alphas in the data versus the model

Benchmarking these results to our model (cf., Panel A of Ta-

ble 2), the following stands out. First, under the null of a standard 

characteristic-based model of expected returns (𝜆𝑃 = 𝜆𝑇 ), one is un-
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Fig. 3. Increases in Sharpe ratio. This figure presents the maximum improvement in Sharpe ratio from combining the newest sort, 𝑅𝑋,𝑡,𝑡+1, with a single combination 
of five old sorts, 𝑅𝑋,(𝑡−60∶𝑡−12),𝑡+1. The improvement Δ Sharpe = Max. Sharpe(𝑅𝑋,(𝑡−60∶𝑡−12),𝑡+1, 𝑅𝑋,(𝑡),𝑡+1) - Sharpe(𝑅𝑋,(𝑡),𝑡+1). We color code these improvements to 
highlight the relative increase in Sharpe ratio: Δ Sharpe / Sharpe(𝑅𝑋,(𝑡),𝑡+1)-1. To calculate the maximum Sharpe ratio, we optimally combine the newest sort with 
either the old sort (Panel A) or the conditionally hedged return of the old sort (Panel B, see Eq. (3)). The sample period runs from July 1972 through December 

2019.

likely to find negative alphas as large and as plentiful as what we find in 
the data. For instance, the 5th percentile of alphas in the data (−4.67%) 
is well below the 5th percentile under the null (−2.46%), but close to 
the 5th percentile under the first alternative (−4.73%, when 𝜆𝑃 = 0
and 𝜆𝑇 > 0). This evidence is consistent with Keloharju et al. (2021)

and the idea that the transitory component drives return predictabil-

ity for the average characteristic. However, under this alternative, one 
is unlikely to find positive alphas as large and as plentiful as what we 
find in the data. For instance, the 95th percentile of alphas in the data 
(3.02%) is well above the 95th percentile (0.31%) under the alterna-

tive that only the transitory component is priced. Our evidence thus 
suggests that there is an important subset of characteristics for which 
the persistent component must be priced. In fact, given that the 95th 
percentile under the null (2.53%) is smaller than what we find in the 
data, we conclude that it is most likely that the right tail of alphas in 
the data is generated by characteristics where the compensation for the 
persistent component is larger than the compensation for the transitory 
component. We conclude that the compensation for the persistent and 
10

transitory components must vary significantly across characteristics.
Consistent with this conclusion, Figure OA.7 shows that the correla-

tion across characteristics between alphas and persistence (measured as 
the beta in the regression of the old sort on the newest sort) is small. As 
discussed in Section 4.4, if the relative compensation of persistent and 
transitory components were fixed across characteristics, the model (cf., 
Eq. (15)) would predict a large correlation between persistence and al-

phas. Finally, in Panel A of Figure OA.8 we show that, consistent with 
the model, there is a large correlation of 0.89 between the characteristic 
spread that remains three years after portfolio formation (𝑋𝐻−𝐿,(𝑡−36),𝑡

𝑋𝐻−𝐿,(𝑡),𝑡
) 

and the beta obtained from regressing 𝑅𝑋,(𝑡−36),𝑡+1 on 𝑅𝑋,(𝑡),𝑡+1. As a re-

sult, Panel B of this figure shows that alphas at the three-year horizon 
are largely unchanged when we use this characteristic spread to define 
an alternative old-versus-new strategy.

5.3. Old-minus-new stocks

Last, we study the decomposition in old and new stocks introduced 

in Section 4.6:
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Fig. 4. Old-versus-new sorts, old-minus-new stocks, and PC1 loadings. Panel A of the figure presents a scatter plot showing the correlation across characteristics 
between the conditional alpha of old-versus-new sorts (see also Fig. 2) and the average return of the old-minus-new stock strategy (defined in Section 5.3). Panel 
B presents a scatter plot showing the correlation across characteristics between the conditional alpha of old-versus-new sorts and the loadings of the first principal 
component of the newest sorts (PC1, see Section 6.1). The sample period runs from July 1972 through December 2019.
𝑅𝑁𝑒𝑤
𝑋,(𝑡),𝑡+1 =𝑅

𝐻𝑖𝑔ℎ,𝑁𝑒𝑤

𝑋,(𝑡),𝑡+1 −𝑅𝐿𝑜𝑤,𝑁𝑒𝑤

𝑋,(𝑡),𝑡+1 and (16)

𝑅𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1 =𝑅

𝐻𝑖𝑔ℎ,𝑂𝑙𝑑

𝑋,(𝑡),𝑡+1 −𝑅𝐿𝑜𝑤,𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1 . (17)

In particular, 𝑅𝐻𝑖𝑔ℎ,𝑂𝑙𝑑

𝑋,(𝑡),𝑡+1 is the return of a strategy that is long a value-

weighted portfolio of the subset of stocks in the high decile portfolio 
at time 𝑡 with lagged characteristic 𝑋𝑡−36 above the within-portfolio 
median of 𝑋𝑡−36. 𝑅𝐿𝑜𝑤,𝑂𝑙𝑑

𝑋,(𝑡),𝑡+1 is defined analogously. The return for new 
stocks, 𝑅𝑁𝑒𝑤

𝑋,(𝑡),𝑡+1, uses all remaining stocks in the high and low portfolios 
at time 𝑡. This decomposition ensures that the new and old portfolios 
contain (roughly) the same number of stocks for all characteristics.

Note that Keloharju et al. (2021) decompose a firm characteristic 
into its historical average (the permanent component) and a residual 
(the transitory component). The key difference is that we sort the stocks 
within the high and low decile portfolio into a new and old group, 
whereas Keloharju et al. (2021) sort the whole cross-section of stocks 
using their two components. Thus, our decomposition of stocks within 
the high and low decile portfolio has the potential to uncover new infor-

mation about how changes in characteristics predict returns. To see this 
by example, consider book-to-market. This characteristic generates a 
positive old-minus-new stock return difference, 𝑅𝑂𝑙𝑑

𝐵𝑀,(𝑡),𝑡+1−𝑅
𝑁𝑒𝑤
𝐵𝑀,(𝑡),𝑡+1, 

of 7.37% (𝑡-stat = 2.48). This difference is large even over the last 15 
years of our sample at 8.52%, which is a period when the newest sort 
11

on book-to-market generates a negative return of −7.80%. This find-
ing indicates that past changes in book-to-market predict returns with 
a negative sign among stocks that are in the extreme book-to-market 
portfolios today.21

We plot the average return of the old-minus-new stock strategy 
against the old-versus-new alpha in Panel A of Fig. 4. We see that the 
two are highly correlated across characteristics at 0.76, as our model 
predicts. In Panel B of Table 2, we see that both the left and right tail of 
the empirical distribution of old-minus-new stock returns is much wider 
than what is expected under the null (𝜆𝑃 = 𝜆𝑇 ). The left tail of these av-

erage returns is generated by characteristics like idiosyncratic volatility 
and momentum, whereas the right tail is generated by a large variety 
of value characteristics. Looking at the distribution of the average re-

turns under the two alternatives, we conclude that the characteristics in 
the left tail are most consistent with the assumption that 𝜆𝑃 = 0, 𝜆𝑇 > 0, 
whereas the right tail is most consistent with the opposite assumption 

21 In contrast, Gerakos and Linnainmaa (2018) find that changes in book-to-

market predict returns with a positive sign in the full cross-section of stocks, a 
result that we replicate in our data. Our finding is consistent with the idea that 
new stocks in the high (low) book-to-market portfolio have experienced rela-

tively low (high) returns, a trend that continues in the next month. Thus, one 
can think of a book-to-market strategy using old stocks as a simple, alternative 
way to profitably combine book-to-market and momentum signals (see, also, 

Asness et al., 2013).
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Table 3

Principal components of new and old sorts. Panel A of this table reports the intercept (𝛼) and 
associated 𝑡-statistic (based on White (1980) heteroskedasticity-consistent standard errors) from re-

gressing the first three principal components of old sorts (𝛾 ′(𝑡−𝑠),𝑧𝑅𝑋,(𝑡−𝑠),𝑡+1, 𝑧 = 1, 2, 3 and 𝑠 > 0) on 
a statistical factor model containing the first three principal components of new sorts (𝑅𝑃𝐶3,(𝑡),𝑡+1 =
[𝛾(𝑡),1, 𝛾(𝑡),2, 𝛾(𝑡),3]′𝑅𝑋,(𝑡),𝑡+1). The last column of this panel reports the associated 𝐹 -statistics and 𝑝-values 
from a (conditional heteroskedasticity-consistent) GRS test. Panel B is identical to Panel A except that 
we now apply the loadings of the principal components of the newest sorts to each of the old sorts. 
Hence, the test asset returns are defined as: 𝛾 ′(𝑡),𝑧𝑅𝑋,(𝑡−𝑠),𝑡+1. Panel C reports summary statistics for the 
first principal component of new and old sorts reported in Panel A. The sample period runs from July 
1972 through December 2019.

PC1 (𝑧 = 1) PC2 (𝑧 = 2) PC3 (𝑧 = 3) GRS test

Horizon 𝑠 𝛼 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat 𝐹 -stat 𝑝-val

Panel A: PCs of old sorts on statistical factor model

(𝛾 ′(𝑡−𝑠),𝑧𝑅𝑋,(𝑡−𝑠),𝑡+1 on 𝑅𝑃𝐶3,(𝑡),𝑡+1)

12 3.11 (3.61) 0.22 (0.31) 1.29 (0.95) 4.42 0.00

24 5.03 (4.89) 0.44 (0.40) 0.36 (0.27) 8.41 0.00

36 5.27 (5.08) -0.58 (-0.46) 0.62 (0.45) 8.92 0.00

48 5.72 (5.12) -1.31 (-1.02) 0.95 (0.71) 9.87 0.00

60 5.45 (4.84) -1.08 (-0.79) 0.14 (0.11) 8.92 0.00

Panel B: PCs of old sorts with loadings fixed

(𝛾 ′(𝑡),𝑧𝑅𝑋,(𝑡−𝑠),𝑡+1 on 𝑅𝑃𝐶3,(𝑡),𝑡+1)

12 2.89 (3.49) 0.17 (0.25) -2.43 (-2.00) 5.50 0.00

24 4.45 (4.41) 1.51 (1.54) -1.35 (-1.10) 8.05 0.00

36 4.84 (4.41) 1.57 (1.30) 0.18 (0.16) 8.12 0.00

48 5.75 (5.18) 0.79 (0.65) -1.19 (-1.10) 10.22 0.00

60 5.36 (4.72) 1.31 (1.02) -1.93 (-1.64) 9.41 0.00

Panel C: Summary statistics for first principal components

(𝛾 ′(𝑡−𝑠),𝑧𝑅𝑋,(𝑡−𝑠),𝑡+1)

Avg. Ret. Correlations

0 12 24 36 48

0 -3.76

12 0.11 0.91

24 1.90 0.86 0.98

36 1.94 0.81 0.95 0.98

48 2.10 0.78 0.92 0.95 0.98

60 1.70 0.75 0.90 0.93 0.96 0.98
that 𝜆𝑃 > 0, 𝜆𝑇 = 0. Once more, we conclude that the relative com-

pensation for persistent and transitory components must vary in both 
magnitude and sign across characteristics.

6. Benchmark factor models and old-versus-new strategies

Our results so far are surprising from the point of view that persis-

tent and transitory components of characteristics contribute equally to 
expected returns. Whether our results are surprising from the standpoint 
of benchmark factor models is a question we answer in this section. In 
particular, are old and new sorts or stocks exposed differently to the fac-

tors in benchmark models (beyond the single characteristic-based factor 
featured in the model of Section 4.1)? Can this exposure explain the av-

erage return of the old-versus-new strategies?

6.1. Principal components of old and new sorts

To answer these questions, we start by extracting three principal 
components (PC) at each horizon 𝑠 = 0, 12, ..., 60 after portfolio forma-

tion. In this way, we focus on the dominant sources of variation in our 
panel of characteristic-sorted portfolio returns and increase the power 
of our tests.22 At each horizon, the three PCs explain about 60% of the 

22 The SDF can be suitably approximated using only a few PC factors when test 
assets do not each represent an independent source of priced risk (e.g., Kozak 
et al., 2020; Kelly et al., 2019; Haddad et al., 2020; Lettau and Pelger, 2020). 
The main conclusions of this section are unchanged when we use the Lettau and 
12

Pelger (2020) risk premium PCA approach (see Table OA.7).
total variation in returns. We rescale each PC so that the sum of ab-

solute weights equals two. In the spirit of previous literature, we treat 
the PCs extracted from the newest sorts (with returns 𝑅𝑋,(𝑡),𝑡+1) as a 
statistical factor model.

In Table 3 we ask whether this statistical factor model can price the 
PCs extracted from older sorts using regressions of the form:

𝛾 ′(𝑡−𝑠),𝑧𝑅𝑋,(𝑡−𝑠),𝑡+1 = 𝛼𝑠,𝑧 + 𝛽′𝑠,𝑧𝑅𝑃𝐶3,(𝑡),𝑡+1 + 𝜖(𝑡−𝑠),𝑧,𝑡+1, (18)

where 𝑧 = 1, 2, 3 and 𝑅𝑃𝐶3,(𝑡),𝑡+1 = [𝛾(𝑡),1, 𝛾(𝑡),2, 𝛾(𝑡),3]′𝑅𝑋,(𝑡),𝑡+1. The Gib-

bons et al. (1989, GRS) tests presented in the last column of Panel A 
strongly reject the statistical factor model with 𝑝-values below 0.0012 
at all horizons. Looking at the alphas of the individual PCs, we see that 
the rejection is driven by the first PC (PC1). This portfolio provides a 
large and significant alpha ranging from 3.11 (𝑡-stat=3.61) at the one-

year horizon to 5.72% (𝑡-stat=5.12) at the four-year horizon. Neither 
PC2 nor PC3 generates a significant alpha at any of the horizons we 
consider.

These conclusions do not result from the loadings of PC1 changing 
across horizons 𝑠. Indeed, in Panel B we show similarly large alphas 
when we apply the loadings of PC1 extracted from the newest sorts, 
𝛾(𝑡),1, to the older sorts at each horizon 𝑠 (instead of 𝛾(𝑡−𝑠),1). This re-

sult suggests that returns are highly correlated in the time-series for 
the average characteristic. The summary statistics presented in Panel 
C confirm this intuition. For instance, the correlation between PC1 of 
the newest sorts and PC1 of the three-year-old sorts is high at 0.81. At 
the same time, the average returns of these two strategies are wildly
different at −3.76% versus 1.94%.
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Table 4

Old and new sorts in benchmark factor models. This table presents average returns as well as the intercept (𝛼), the associated 𝑡-statistic 
(based on White (1980) heteroskedasticity-consistent standard errors), and the factor contribution (𝛽′

𝑠,1𝜇𝐹 ) from regressing the first principal 
component (PC1) of new and old sorts on benchmark factor models. In Panel A, we consider each horizon in isolation and define the return 
of the test asset as 𝛾 ′(𝑡),1𝑅𝑋,(𝑡−𝑠),𝑡+1 for 𝑠 ≥ 0. In Panel B, we look at old-minus-new strategies where we define the return of the test asset as 
𝛾 ′(𝑡),1(𝑅𝑋,(𝑡−𝑠),𝑡+1 −𝑅𝑋,(𝑡),𝑡+1) for 𝑠 > 0. The sample period runs from July 1972 through December 2019.

CAPM FF3M FF5M FF5M+MOM

Horizon 𝑠 Avg. ret. 𝑡-stat 𝛼 𝑡-stat 𝛽′
𝑠,1𝜇𝐹 𝛼 𝑡-stat 𝛽′

𝑠,1𝜇𝐹 𝛼 𝑡-stat 𝛽′
𝑠,1𝜇𝐹 𝛼 𝑡-stat 𝛽′

𝑠,1𝜇𝐹

Panel A: PC1 of new and old sorts

(𝛾 ′(𝑡),1𝑅𝑋,(𝑡−𝑠),𝑡+1)

0 -3.76 (-1.06) -10.15 (-3.55) 6.39 -9.43 (-4.82) 5.67 -2.72 (-1.68) -1.03 0.20 (0.13) -3.96

12 1.03 (0.33) -4.32 (-1.67) 5.35 -3.33 (-2.05) 4.36 1.78 (1.33) -0.75 2.14 (1.59) -1.11

24 2.84 (0.96) -1.95 (-0.78) 4.79 -0.55 (-0.35) 3.39 3.90 (2.81) -1.06 3.86 (2.72) -1.01

36 2.98 (1.07) -1.54 (-0.64) 4.53 0.14 (0.09) 2.85 4.64 (3.45) -1.65 4.54 (3.27) -1.55

48 3.87 (1.44) -0.54 (-0.23) 4.41 1.16 (0.80) 2.70 5.59 (4.33) -1.72 5.58 (4.22) -1.71

60 3.46 (1.34) -0.80 (-0.36) 4.26 0.66 (0.46) 2.80 4.83 (3.75) -1.36 4.93 (3.65) -1.47

Panel B: PC1 of old-minus-new sorts

(𝛾 ′(𝑡),1(𝑅𝑋,(𝑡−𝑠),𝑡+1 −𝑅𝑋,(𝑡),𝑡+1))

12 4.79 (4.11) 5.83 (5.20) -1.05 6.10 (5.67) -1.31 4.50 (3.83) 0.28 1.93 (1.85) 2.85

24 6.60 (4.51) 8.20 (6.15) -1.60 8.88 (6.91) -2.28 6.62 (4.67) -0.02 3.65 (2.92) 2.95

36 6.74 (4.11) 8.60 (5.74) -1.86 9.57 (6.60) -2.83 7.36 (4.80) -0.62 4.33 (3.13) 2.41

48 7.62 (4.50) 9.61 (6.28) -1.99 10.59 (7.35) -2.97 8.31 (5.45) -0.69 5.38 (3.73) 2.25

60 7.22 (4.10) 9.35 (5.96) -2.13 10.09 (6.85) -2.87 7.55 (5.04) -0.33 4.73 (3.24) 2.49
These results nicely summarize the challenge that any asset pricing 
model will face, which is to price two highly correlated returns that 
are separated by a large difference in average return. This challenge 
is particularly hard when we aggregate characteristics using the load-

ings of PC1, because these loadings are highly correlated with the alpha 
between old and new sorts (𝑐𝑜𝑟𝑟 = 0.79; see Panel B of Fig. 4). Interest-

ingly, this is the case even though the loadings are determined only by 
the (co-)variances of sorts at a single horizon.

6.2. Do benchmark factor models price old-versus-new sorts?

To answer this question, we consider the single-factor CAPM (Sharpe 
(1964), Lintner (1965), Mossin (1966)); the three-factor model of Fama 
and French (1993, FF3M); the five-factor model of Fama and French 
(2015, FF5M); and, a six-factor model including the factors in the 
FF5M and momentum (FF5M+MOM).23 We substitute the factors in 
each benchmark model on the right-hand side of Eq. (18). For consis-

tency, we henceforth apply the same loadings (of PC1 extracted from 
the newest sorts, 𝛾(𝑡),1) at each horizon after portfolio formation.24

In Panel A of Table 4, we see that the benchmark models unan-

imously struggle to jointly price PC1 of new and old sorts. There is 
a clear trade-off between small and big models, however. The larger 
benchmark models do not price the return of PC1 at longer horizons 
after portfolio formation. For instance, the annualized alpha in the 
FF5M+MOM is larger than 3.86% at all horizons 𝑠 ≥ 24 (with 𝑡-stat 
≥ 2.7). These larger models perform better on the PC1 of the newest 
sorts (𝑠 = 0). For instance, the FF5M+MOM alpha for this test asset is 
small and insignificant at 0.20 (𝑡-stat = 0.13). In contrast, the smaller 
benchmark models price PC1 of old sorts at most horizons after port-

folio formation 𝑠 ≥ 24, but fail completely for the newest sorts. For 
instance, the alpha at 𝑠 = 0 is statistically and economically large at 
about −10.00% in the CAPM and FF3M.

In Panel A, we also report the factor contributions (𝛽′
𝑠,1𝜇𝐹 ) and 

show that all models imply that returns decrease as time passes af-

23 We present similar results for the models of Hou et al. (2015), Frazzini and 
Pedersen (2014), Daniel et al. (2020b), Stambaugh and Yuan (2016), and Daniel 
et al. (2020a) in Table OA.8. In short, none of these models prices both old and 
new sorts.
24 In Figure OA.9, we show that these loadings are robust over time. The corre-

lation, across characteristics, between PC1 loadings extracted from returns over 
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the first and second half of our sample period equals 0.70.
ter portfolio formation.25 In contrast, realized average returns increase 
as time passes after portfolio formation. Thus, differential exposure to 
benchmark factors cannot explain the difference in average returns 
between new and old sorts. This conclusion is easily confirmed in 
Panel B, where we present the alpha of an old-versus-new PC1 strat-

egy (𝛾 ′(𝑡),1(𝑅𝑋,(𝑡−𝑠),𝑡+1 −𝑅𝑋,(𝑡),𝑡+1)). For all models and at all horizons 𝑠, 
this strategy provides a large and significant alpha (with 𝑡-statistic well 
above 3 in all but two cases).

In Panel A of Table 5, we show similarly large and significant 
alphas when we apply the PC1 loadings to the old-versus-new strate-

gies that control for persistence at the characteristic level. Focusing on 
the three-year horizon, we thus define the return of the test asset as 
𝛾 ′(𝑡),1(𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1). Under the null of our model, returns 
decay at the appropriate speed and alphas will be zero relative to a 
factor model that accurately prices the newest sorts (like FF5M and 
FF5M+MOM do empirically). Given that we do find large alphas in all 
benchmark models, it is useful to analyze the contribution of character-

istics with returns that decay too fast versus too slow.

For this analysis, we split the PC1 loadings, 𝛾(𝑡),1, into those that are 
positive versus negative and define the following two returns:

𝑅𝑆𝑙𝑜𝑤
(𝑡−36),𝑡+1 = 𝛾

>0,′
(𝑡),1 (𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1) and (19)

𝑅𝐹𝑎𝑠𝑡
(𝑡−36),𝑡+1 = 𝛾

≤0,′
(𝑡),1 (𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1). (20)

Because the PC1 loadings line up quite well with alphas between old 
and new sorts (see Panel B of Fig. 4), 𝑅𝑆𝑙𝑜𝑤

(𝑡−36),𝑡+1 and 𝑅𝐹𝑎𝑠𝑡
(𝑡−36),𝑡+1 are 

driven mostly by characteristics where returns decay too slow and too 
fast, respectively. These aggregated returns are particularly suited to 
test the null that returns decay at the same speed as characteristics and 
are captured by factor models that accurately price the newest sorts.

Panels B and C of Table 5 present alphas from regressing these test 
asset returns on the benchmark factor models. In short, we see that all 
models struggle to price both subsets of characteristics. For instance, 
for the characteristics with returns that decay too slow, the alpha (in 

25 We also note that the total factor contribution is relatively large for the 
CAPM. Specifically, for the newest sort, the correlation across characteristics 
between the unconditional market beta and the loading of PC1 is large at 0.96 
(see Figure OA.10). We show in Online Appendix A how a large market loading 
can be generated in the model making minimal assumptions inspired by the low 

beta anomaly.
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Table 5

Old-versus-new sorts when returns decay fast versus slow. This table presents average returns and the intercept 
(𝛼) with associated 𝑡-statistic (based on White (1980) heteroskedasticity-consistent standard errors) from standard 
factor regressions. In Panel A, the test asset is based on the return of the old-versus-new sort strategy that is the focus 
in our model and aggregates across characteristics using the PC1 loadings: 𝛾 ′(𝑡),1(𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1). We focus 
on the three-year horizon and present results for both an unconditional and conditional specification of 𝛽36 (𝛽𝑢36 from 
Eq. (2) and 𝛽𝑐36,𝑡 from Eq. (3)). In Panel B and C, we decompose the test asset returns into the part coming from the 
characteristics with returns that decay too fast versus too slow, which are those characteristics on which PC1 loads 
with a negative versus positive sign (see Eqs. (19) and (20)). Because the absolute sum of negative loadings is about 
twice as large as of positive loadings, we rescale the latter such that the two test asset returns have the same volatility. 
The sample period runs from July 1972 through December 2019.

CAPM FF3M FF5M FF5M+MOM

Avg.Ret. 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat

Panel A: PC1 of old-versus-new strategies

(𝛾 ′(𝑡),1(𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1))

Unconditional 𝛽𝑢36 4.54 (4.00) 4.02 (3.57) 4.73 (4.64) 5.13 (4.70) 4.04 (3.62)

Conditional 𝛽𝑐36,𝑡 4.92 (4.50) 4.46 (4.05) 4.85 (4.57) 4.63 (4.09) 3.76 (3.30)

Panel B: Characteristics with returns that decay too fast

(𝑅𝐹𝑎𝑠𝑡
(𝑡−36),𝑡+1 = 𝛾

≤0,′
(𝑡),1 (𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1))

Unconditional 𝛽𝑢36 -3.69 (-3.79) -3.30 (-3.40) -4.06 (-4.55) -4.37 (-4.57) -3.55 (-3.57)

Conditional 𝛽𝑐36,𝑡 -3.99 (-4.19) -3.67 (-3.82) -4.07 (-4.32) -3.86 (-3.83) -3.29 (-3.15)

Panel C: Characteristics with returns that decay too slow

(𝑅𝑆𝑙𝑜𝑤
(𝑡−36),𝑡+1 = 𝛾

>0,′
(𝑡),1 (𝑅𝑋,(𝑡−36),𝑡+1 − 𝛽36𝑅𝑋,(𝑡),𝑡+1))

Unconditional 𝛽𝑢36 3.18 (3.27) 2.71 (2.77) 2.52 (2.74) 2.84 (2.96) 1.86 (1.96)

Conditional 𝛽𝑐36,𝑡 3.47 (3.64) 2.93 (3.08) 2.90 (3.14) 2.91 (2.90) 1.75 (1.84)
the specification with conditional betas) is large and significant ranging 
from 1.75% (𝑡 = 1.84) in the FF5M+MOM to 2.93% (𝑡 = 3.08) in the 
CAPM. These alphas are even larger (in absolute magnitude) for the 
characteristics with returns that decay too fast, ranging from −4.07%
(𝑡 = 4.32) in the FF3M to −3.29% (𝑡 = 3.15) in the FF5M+MOM.

From the point of view of our model, it is perhaps unsurprising that 
benchmark factors fail to price these two subsets of characteristics. In-

deed, these factors have been added to the CAPM to help explain the 
cross-section of returns to new sorts. These new sorts capture the to-

tal compensation derived from loading on a characteristic. However, 
to price old-versus-new sorts, factor models must capture the variation 
in the relative compensation of persistent and transitory components. 
Benchmark factor models fail to do so. We show in Online Appendix 
D that this same conclusion follows from studying a simple empirical 
decomposition of firm characteristics into persistent and transitory com-

ponents. We leave for future work the task of formally optimizing factor 
models to explain new and old sorts in more general settings. This is an 
important agenda because any model that prices returns at all horizons 
will get price levels right (Cho and Polk, 2020; van Binsbergen et al., 
2023).

6.3. Do benchmark factor models price old-minus-new stocks?

We finally turn to the old and new stock decomposition. Continuing 
to weight the returns of the old-minus-new stock strategies using the 
PC1 loadings, we have the following test asset returns for the case of 
old stocks:

𝑅𝑂𝑙𝑑
(𝑡),𝑡+1 = 𝛾

′
(𝑡),1𝑅

𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1, (21)

𝑅𝑂𝑙𝑑,𝑆𝑙𝑜𝑤

(𝑡),𝑡+1 = 𝛾>0,′(𝑡),1𝑅
𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1, and (22)

𝑅𝑂𝑙𝑑,𝐹𝑎𝑠𝑡
(𝑡),𝑡+1 = 𝛾≤0,′(𝑡),1𝑅

𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1. (23)

We analogously define the test asset returns for new stocks.

We present average returns and alphas with respect to the bench-

mark factor models in Table 6. In Panel A, we see that the aggregated 
difference in average returns between old and new stocks is large and 
significant at 4.33% (𝑡-stat = 2.74). These old-minus-new differences 
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are similarly large and significant when we control for exposure to the 
benchmark factors, as alphas range from 3.18% (𝑡-stat = 2.04) in the 
CAPM to 4.91 (𝑡-stat = 3.54) in the FF5M. These results are consistent 
with the relative performance of old-versus-new sorts (see Table 4), 
both qualitatively and quantitatively, and provide additional evidence 
against the null that 𝜆𝑃 = 𝜆𝑇 .

In Panels B and C, we study the subsets of characteristics with re-

turns that decay too slow versus too fast (Eqs. (22) and (23)). We see 
that the models struggle for both subsets. For the characteristics with 
returns that decay too fast, the alpha is negative in all models and sig-

nificant in the FF3M, FF5M and FF5M+MOM (at values below −2.44%, 
𝑡 < −2.07). The alphas are similarly large (in absolute magnitude) and 
significant in all models for the characteristics with returns that decay 
too slow. In this case, the alpha ranges from 1.92% (𝑡 = 2.35) in the 
FF5M+MOM to 2.96% (𝑡 = 4.08) in the FF3M. In all, the relative per-

formance of old and new stocks varies in sign across characteristics and 
this variation is not explained by benchmark factor models, just like we 
saw for the relative performance of old and new sorts.

It is interesting to note that these large old-minus-new stock dif-

ferences occur even though the aggregated strategies are roughly 
characteristic-neutral. In Figure OA.11, we show the difference between 
old and new stocks in the loading on each of the 56 characteristics for 
the three PC1-weighted strategies. These loadings are presented as a 
fraction of the loading on each characteristic from a single sort.26 Over-

all, we see that the old-minus-new differences in the loadings are small, 
both when aggregating by using all PC1 loadings and when aggregating 
by using the positive and negative subsets of these loadings.

26 Taking book-to-market as an example, these fractions are calculated as fol-

lows. For each of the 56 characteristics denoted 𝑋, we calculate the time-series 
average of the median book-to-market ratio in the high and low portfolio among 
new and old stocks, denoted, for instance, 𝐵𝑀𝑁𝑒𝑤

𝑋,𝐻
. We then take the difference 

between the high and low portfolio, denoted 𝐵𝑀𝑁𝑒𝑤
𝑋,𝐻−𝐿 and 𝐵𝑀𝑂𝑙𝑑

𝑋,𝐻−𝐿. Finally, 
we weight the difference between new and old stocks using the PC1 loadings: 
𝛾 ′(𝑡),1(𝐵𝑀

𝑂𝑙𝑑
𝑋,𝐻−𝐿 − 𝐵𝑀𝑁𝑒𝑤

𝑋,𝐻−𝐿). This result tells us how much the PC1 strategy 
loads on book-to-market, and we compare this loading to the high-minus-low 
book-to-market spread from a single sort on book-to-market. We analogously 

calculate the loading on all other characteristics.
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Table 6

Old and new stocks in benchmark factor models. This table presents average returns for old and new stock 
strategies as well as the intercept (with corresponding 𝑡-statistic in parentheses) from regressing these returns 
on benchmark factor models. As discussed in Section 5.3, the returns of new, 𝑅𝑁𝑒𝑤

𝑋,(𝑡),𝑡+1, and old, 𝑅𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1, stocks 

together make up the return of the newest sort, 𝑅𝑋,(𝑡),𝑡+1. As in the previous tables, we aggregate the new and old 
stock returns across the 56 characteristics using the PC1 loadings. For instance, the aggregated return of old stocks 
presented in the first row of Panel A is defined as 𝛾 ′(𝑡),1𝑅𝑂𝑙𝑑

𝑋,(𝑡),𝑡+1. In Panel B and C, we decompose these test asset 
returns into the part coming from the characteristics with returns that decay too fast versus too slow, which are 
those characteristics on which PC1 loads with a negative versus positive sign (see Eqs. (22) and (23)). Because the 
absolute sum of negative loadings is about twice as large as positive loadings, we rescale the latter such that the 
old-minus-new stock return in Panel C has the same volatility as the old-minus-new stock return in Panel B. The 
sample period runs from July 1972 through December 2019.

CAPM FF3M FF5M FF5M+MOM

Avg. ret. 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat 𝛼 𝑡-stat

Panel A: PC1 of old and new stock strategies

(e.g., 𝛾 ′(𝑡),1𝑅
𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1)

Old -1.41 (-0.35) -8.22 (-2.49) -6.85 (-3.27) -0.04 (-0.02) 2.59 (1.54)

New -5.74 (-1.78) -11.40 (-4.33) -11.09 (-5.66) -4.95 (-2.97) -1.87 (-1.14)

Old-minus-new 4.33 (2.74) 3.18 (2.04) 4.25 (3.15) 4.91 (3.54) 4.46 (3.05)

Panel B: Characteristics with returns that decay too fast

(e.g., 𝑅𝑂𝑙𝑑,𝐹𝑎𝑠𝑡

(𝑡),𝑡+1 = 𝛾≤0,′(𝑡),1𝑅
𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1)

Old 3.67 (1.17) 9.15 (3.57) 7.76 (4.40) 2.22 (1.58) -0.09 (-0.06)

New 6.36 (2.61) 10.79 (5.49) 10.20 (6.47) 5.37 (3.95) 3.20 (2.29)

Old-minus-new -2.69 (-1.96) -1.64 (-1.22) -2.44 (-2.07) -3.15 (-2.62) -3.29 (-2.68)

Panel C: Characteristics with returns that decay too slow

(e.g., 𝑅𝑂𝑙𝑑,𝑆𝑙𝑜𝑤

(𝑡),𝑡+1 = 𝛾>0,′(𝑡),1𝑅
𝑂𝑙𝑑
𝑋,(𝑡),𝑡+1)

Old 3.69 (2.37) 1.53 (1.11) 1.50 (2.05) 3.57 (5.01) 4.11 (5.51)

New 1.01 (0.68) -0.99 (-0.77) -1.46 (-1.75) 0.69 (0.90) 2.19 (3.29)

Old-minus-new 2.69 (3.60) 2.53 (3.35) 2.96 (4.08) 2.88 (3.84) 1.92 (2.35)
Thus, our evidence indicates that return spreads from stocks that 
have been in the extreme portfolios for a longer period are not the 
same as return spreads from stocks that are new to the extreme portfo-

lios, even when these old and new stocks have the same current level of 
the characteristic. This fact represents a firm rejection of the standard 
characteristic-based model of expected returns, but it is consistent with 
variation in the compensation for persistent and transitory components 
of characteristics under our alternative hypotheses. This finding extends 
the work of Daniel and Titman (1997), who show that returns can vary 
with a characteristic, even holding risk exposure fixed. We show that re-

turns can vary even holding the characteristic itself fixed. Furthermore, 
investors trading these characteristics should carefully consider the dis-

tinction between new and old stocks. Our new and old stock portfolios 
are tradable and require a position in fewer stocks than the original 
strategies. In addition, old stock portfolios will require less rebalancing.

7. Long-term discount rates

Keloharju et al. (2021) argue that characteristic-based return pre-

dictability has little impact on the long-term discount rates of firms, 
because it is transitory. However, our results so far suggest that there 
are characteristics for which returns decay quite slowly. If a firm loads 
strongly on these characteristics, we expect its long-term discount rate 
to be affected in a meaningful way.

We calculate long-term discount rates using a discounted cash flow 
approach as in Keloharju et al. (2021, Section 6.3). The implied dis-

count rate 𝑟 of an asset solves the Gordon growth equation: 𝑃 = 𝐷

𝑟−𝑔 , 
where 𝑃 follows from discounting the cash flow stream implied by 
𝐷 = 1$ and some annual growth rate 𝑔 at a hypothetical term struc-

ture of per-period discount rates. This term structure is derived from 
average annual returns up to 10 years after formation of the high- or 
low-decile portfolio sorted on some characteristic. We center these real-

ized returns at the 8% expected return of the market (2% risk-free rate 
+ 6% market risk premium). After year 10, we assume the per-period 
discount rate has converged back to the expected market return. We 
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simulate these long-term discount rates from our model (using the rich 
specification from Section 4) and compare them to a variety of portfo-

lios in the data.

In Panel A of Table 7, we present the distribution of long-term dis-

count rates from the model for the high and low decile portfolio sorted 
on the characteristic 𝑋 using 𝑔 = 1%. Consistent with Keloharju et al. 
(2021), the high-minus-low difference in discount rate is small under 
the alternative that 𝜆𝑃 = 0 and 𝜆𝑇 > 0. The median difference equals 
0.26% and the 95th percentile difference is 1.2%. There is consider-

ably more discount rate variation when the persistent component of 
the characteristic is priced. Under the null (𝜆𝑃 = 𝜆𝑇 > 0), the median 
high-low difference equals 1.57%. Under the alternative that 𝜆𝑃 > 0
and 𝜆𝑇 = 0, the median difference equals 1.97%. If, as we have argued 
above, there are characteristics with horizon dynamics that are more 
consistent with the latter alternative (or even just the null), we would 
expect that discount rates of firms loading strongly on these character-

istics will be affected more than what is suggested in Keloharju et al. 
(2021).

To see whether this is the case, we present in Panel B the discount 
rate for the high and low portfolios sorted on two composite characteris-

tics. These two characteristics average at the firm level over the subset 
of characteristics on which PC1 loads with a negative versus positive 
sign.27 Thus, we compare firms that load strongly on characteristics 
with returns that decay fast versus slow relative to the characteristic 
itself. Because we are not comparing characteristics with returns that 
decay fast or slow in an absolute sense, these results likely represent a 
lower bound on the discount rate implications of characteristic-based 
return predictability. We report results for both value- and equal-

weighted portfolio returns. While all of our results so far are based 
on value-weighting, equal-weighting is arguably more representative 

27 We rank-normalize the characteristics and average them for all firms with 
at least half of the respective subset of characteristics available. Our results 
are similar if we weight the characteristics using the relative magnitude of the 
loadings, but this approach is more sensitive to missing characteristics at the 

firm level.
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Table 7

Long-term discount rates in the model and data. In this table, we compare implied discount rates 
𝑟 from our model to the data (see Section 7 for more detail). The 𝑟 is found solving: 𝑃 = 𝐷

𝑟−𝑔
, where 

we set 𝐷 = 1, 𝑔 = 1%, and the fundamental price 𝑃 is calculated by discounting the implied cash 
flow stream using a hypothetical term structure of per-period discount rates derived from realized 
annual returns of a characteristic-sorted portfolio. We track realized annual returns up to 10 years 
after portfolio formation and assume that the per-period discount rate has converged back to the 
expected market return of 8% after year 10. In Panel A, we report the simulated distribution of 
implied discount rates for the high- and low-decile portfolio as well as the high-minus-low difference 
for the three cases in the model of Section 4. Under the null of a standard characteristic-based 
model of expected returns, the compensation for the transitory and persistent component of the 
characteristic is equal: 𝜆𝑃 = 𝜆𝑇 = 3.17%. Under the first alternative, only the transitory component 
is compensated in expected returns: 𝜆𝑃 = 0, 𝜆𝑇 = 4.49%. Under the second alternative, only the 
persistent component is compensated in expected returns: 𝜆𝑃 = 4.49%, 𝜆𝑇 = 0. In Panel B, we report 
the implied discount rate from the data when we sort stocks on two composite characteristics that 
average at the firm level over the subset of characteristics on which PC1 loads with a positive 
versus negative sign (and the decay in returns is fast versus slow). In Panel C, we report the implied 
discount rate from the data when we sort stocks on a single characteristic (size, book-to-market, 
profitability, and investment). The sample period runs from July 1972 to December 2019. In Panels 
B and C, we report results for both value- and equal-weighted portfolios.

High Low High-minus-low

Panel A: Model simulations

5𝑡ℎ 50𝑡ℎ 95𝑡ℎ 5𝑡ℎ 50𝑡ℎ 95𝑡ℎ 5𝑡ℎ 50𝑡ℎ 95𝑡ℎ

Null: 𝜆𝑃 = 𝜆𝑇 > 0 6.85% 8.86% 11.30% 5.65% 7.21% 9.08% 0.65% 1.57% 2.99%

Only transitory: 𝜆𝑇 > 𝜆𝑃 = 0 6.28% 8.12% 10.38% 6.20% 7.85% 9.89% -0.63% 0.26% 1.20%

Only persistent: 𝜆𝑃 > 𝜆𝑇 = 0 7.02% 9.08% 11.56% 5.52% 7.03% 8.87% 1.05% 1.97% 3.35%

Panel B: Composite characteristics (Data)

Value-weighted

Fast 7.86% 8.13% -0.27%

Slow 9.33% 6.83% 2.51%

Equal-weighted

Fast 7.88% 8.11% -0.23%

Slow 9.93% 6.39% 3.53%

Panel C: Individual characteristics (Data)

Value-weighted

Size 8.79% 7.27% 1.52%

Book-to-market 9.04% 7.06% 1.97%

Profitability 8.17% 7.82% 0.35%

Investment 8.08% 7.92% 0.15%

Equal-weighted

Size 9.11% 7.00% 2.11%

Book-to-market 9.60% 6.63% 2.98%

Profitability 8.33% 7.68% 0.65%

Investment 8.90% 7.17% 1.73%
of the typical firm in the cross-section. Moreover, there is no notion of 
firm size in our model.

We observe that the discount rate is meaningfully different for firms 
that load strongly on characteristics with returns that decay too slow. 
Firms that load positively on these characteristics have an implied dis-

count rate of about 9.5%, which is relative to about 6.5% for the 
firms that load negatively. The difference of 2.51% (value-weighted) 
and 3.53% (equal-weighted) is economically large and about 2.5 to 3.5 
times larger than what Keloharju et al. (2021) report for the average 
characteristic (1.04%, see their Table 5). If we assume a higher growth 
rate 𝑔 = 5%, the relative difference with Keloharju et al. (2021) is even 
larger. As reported in Table OA.9, we estimate a discount rate differ-

ence of 1.25% (value-weighted) and 1.73% (equal-weighted) for this 
high-duration case. This estimate is five to seven times larger than what 
Keloharju et al. (2021) report for the average characteristic (0.24%).

Comparing these high-minus-low differences to the percentiles of 
the simulated distribution, we see that such large estimates are unlikely 
to be generated in a world where there is no compensation for the per-

sistent component. Instead, because the value-weighted estimates fall 
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just short of the 95th percentile under the null and the equal-weighted 
estimates fall above the 95th percentile under the alternative (𝜆𝑃 > 0
and 𝜆𝑇 = 0), we conclude that the compensation for the persistent com-

ponent is likely to be relatively large (meaning 𝜆𝑃 > 𝜆𝑇 ) among the 
subset of characteristics with returns that decay too slow. In stark con-

trast, we see in Panel B of Table 7 that the difference in implied discount 
rates is small for firms that load strongly on characteristics with returns 
that decay too fast. The fact that this difference is negative in the data 
is potentially consistent with long-term reversal and not something that 
can be generated from our model.

In Panel C of Table 7, we show that there is meaningful discount 
rate variation even in single sorts on popular characteristics. Consistent 
with the slow decay of their returns in Fig. 1, we find in the value-

weighted case that firms in the high book-to-market and size decile have 
an implied discount rate that is 2% and 1.5% larger, respectively, than 
firms in the low deciles. For the equal-weighted case, these differences 
are again larger at 3% and 2.1%. Thus, book to market and size are 
characteristics for which it is highly unlikely that only the transitory 
component is priced. In contrast, and consistent with the fast decay of 
their returns in Fig. 1, discount rate differences are smaller for firms 

that load strongly on profitability and investment.
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We conclude that there are subsets of firms for which characteristic-

based return predictability impacts their discount rate by substantially 
more than what is suggested in Keloharju et al. (2021). That said, we 
agree with these authors that returns at short horizons after portfo-

lio formation are typically larger than returns at longer horizons and, 
consequently, not representative of the discount rate implications of 
characteristic-based return predictability.

8. Conclusion

In this paper, we study the long-term returns to characteristic-based 
strategies to shed light on the relative compensation for persistent and 
transitory components of characteristics. We uncover large abnormal re-

turns between old and new sorts as well as for a closely related strategy 
that builds on a novel decomposition into old and new stocks. These ab-

normal returns translate to large improvements in Sharpe ratio. What is 
most surprising is that these abnormal returns vary in sign across char-

acteristics.

To assess the economic importance of this result, we develop a sim-

ple model of characteristics containing a persistent and a transitory 
component. We simulate from this model using a rich specification that 
accounts for important features of empirical (return and characteris-

tics) data. We show that sign-variation in abnormal returns between old 
and new sorts (and stocks) provides strong evidence against the null of 
the standard characteristic-based model of expected returns. Under this 
null, the compensation for the persistent and transitory component of 
the characteristic is equal. The sign-variation is even harder to explain 
from the perspective that only the transitory component of character-

istics is priced, a perspective that has been endorsed in recent work. 
Rather, we conclude that all characteristics are not created equal: the 
relative compensation for persistent and transitory components varies 
strongly across characteristics.

If the persistent components of some characteristics are priced, the 
return predictability generated by these characteristics should mean-

ingfully affect the long-term discount rates of firms. We confirm this 
insight and argue that there are subsets of firms for which the long-

term discount rate impact of characteristic-based return predictability 
is substantially larger than what recent work suggests.

In all, our evidence has implications for investors trading character-

istics, managers estimating discount rates, and academics testing asset 
pricing models. We leave for future work the examination of the risk 
and mispricing drivers of the relative compensation for persistent and 
transitory components of characteristics.
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