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 A B S T R A C T

For variables with a term structure, the standard difference-in-differences (DiD) model is predisposed toward 
misspecification, even under random assignment, because of heterogeneity over the maturity spectrum and 
imperfect matching between treated and control units. Estimated treatment effects that are false, biased, or 
hard to interpret become a concern. Neither unit fixed effects nor standard term-structure controls resolve the 
problem. Solutions that overcome imperfect matching involve estimating the term structure of hypothesized 
treatment, which is also what is economically interesting (regardless of matching efficiency). These issues are 
not unique to DiD analysis, but are generic to group-assignment settings.

1. Introduction

Difference-in-differences (DiD) methodology is widely used in fi-
nance to analyze fixed-income pricing data. Often, a security’s price is 
expressed inversely in terms of its yield (or a spread) and DiD analysis 
is applied by running a classical DiD regression of the form 
𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝛽𝐷𝑖𝐷 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 × 1𝑃𝑜𝑠𝑡,𝑡 + Γ′𝐙𝑖𝑡 + 𝜀𝑖𝑡, (1)

where 𝑦𝑖𝑒𝑙𝑑𝑖𝑡 is security 𝑖’s yield-to-maturity at time 𝑡 and the right-
hand side of the equation represents the typical DiD structure: 𝛼𝑖 and 𝛿𝑡
correspond to security- and time-fixed effects and 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 and 1𝑃𝑜𝑠𝑡,𝑡
to treatment and post-event indicator variables, respectively, 𝐙𝑖𝑡 is a 
vector of control variables, Γ is a vector of coefficients, 𝛽𝐷𝑖𝐷 is the 
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treatment effect, and 𝜀𝑖𝑡 is an error term. DiD methodology is designed 
to deal with endogeneity, i.e., to measure the causal impact of a treat-
ment on an outcome variable (yield in this case) by comparing treated 
to non-treated control units (in this case fixed-income securities) over 
the treatment event. However, for variables, such as yield, that exhibit a 
term structure, Specification (1) has drawbacks for both economic and 
econometric reasons. First, it is not designed to capture term effects. 
But if a variable exhibits a term structure, there is little reason to 
believe that treatment effects should be homogeneous over the maturity 
spectrum, that is, have no term structure. Typically, in applications, we 
should be interested in estimating the term structure of the treatment 
effect. Second, because term structures move around from date to 
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date, if treated and control units are imperfectly matched on residual 
maturity, as is almost always the case in the literature (see below), 
the classical DiD specification is misspecified even if a term structure 
control is included in 𝐙𝑖𝑡. In this paper, we study the term-effect 
problem and propose methods for dealing with it. While our exposition 
is cast in terms of fixed-income securities and yields, the issues we 
discuss are relevant whenever the outcome variable exhibits a term 
structure, with some examples being interest rate spreads (e.g., credit 
spreads), loan rates, option-implied volatilities, futures prices, and risk 
premia.

Fixed-income securities, in practice and in theory, are priced against 
the term structure of interest rates, typically of the issuer (or a set 
of homogeneous issuers) and using its individual maturities. Because 
term structures move from day to day, the relative yields of bonds 
in different parts of the maturity spectrum also change irrespective 
of hypothesized treatment. This matters in a DiD analysis because 
treated and control bonds are rarely, if ever, matched on residual ma-
turity and coupon structure, typically resulting in nonzero correlation 
between duration and the treatment indicator variable. For variables 
that exhibit term structures, the classical DiD model is misspecified 
because it assumes that treatment unrelated effects for each unit are 
fixed, when they actually depend on residual maturity and underlying 
changes in the term structure. In short, under Specification (1), the 
zero correlation condition for consistent OLS estimators is likely to be 
violated (Roberts and Whited, 2013). Long event windows exacerbate 
the problem because the residual maturity of an individual unit de-
creases as time progresses, which gives rise to a curve roll effect that 
is heterogeneous over the maturity spectrum. Even in the unlikely case 
that treated and control units are perfectly matched, Specification (1) 
remains unsatisfactory because it only measures the average treatment 
effect of treated units in the sample rather than the term structure of 
the treatment effect, which should be the main object of interest for 
variables that exhibit term structures. Estimated treatment effects that 
are false, biased, or hard to interpret are a concern under the classical 
DiD specification.

How big are term effects in practice? To get a sense of this, 
Table  1 provides some summary statistics in the government-bond 
space on monthly term-spread changes for twelve countries (data from 
Bloomberg). The government-bond term structure is one of the most 
accepted pricing kernels in finance. Over the period January 3, 2000 
to December 14, 2022, the standard deviation of the monthly change 
in the ten-year minus three-month government-bond term spread varies 
from 10 basis points (bps) for Japan to 283 bps for Greece (Panel A).1 
The median standard deviation is 31 bps. The mean absolute monthly 
change varies from 7 bps (Japan) to 97 bps (Greece) and is 23 bps 
for the US. These numbers show that changes in the relative yields of 
bonds over the maturity spectrum depend on the term structure one is 
dealing with (e.g., Japanese or Greek government bonds) and can be 
substantial. Magnitudes can potentially dwarf true treatment effects, 
which one may reasonably expect to be in single digit basis points in 
many applications. For example, Swanson (2011) estimates that the 
effects of the Fed’s Operation Twist in 1961 were +11, +6, −3, −9, and 
−8 bps at maturities of three months, one year, and two, five, and ten 
years, respectively. Overcoming the term-effect problem by matching 
treated and control bonds on residual maturity is difficult in practice 
because issuers typically have only a few outstanding securities and 
the range of maturities can be large. For instance, on a selected date 
(January 1, 2023), for six of the countries in Table  1, there are less 
than 22 maturity dates that are shared by two or more bonds with 
good prices (Internet Appendix, Table A.1). Even if feasible, matching 
typically requires discarding much of the data. ‘‘Close matching’’ can be 
an alternative, but the term structure can exhibit significant variation 

1 We use the terminology government bond for central-government 
securities of any maturity, e.g., for the US, T-bills, T-notes, and T-bonds.

even within relatively short ranges. For example, breaking the maturity 
spectrum up into (mostly) 2–3 year ranges as in Panel B, we see that 
the standard deviation of the monthly range spread across the selected 
countries (Greece excluded) goes from 9 bps (7y-5y) to 33 bps (2y-3m). 
A third of the countries have standard deviations in double digit basis 
points for all ranges. Spot rates at different maturities can also move in 
opposite directions (Panel C).

The term-effect problem has received little attention in the lit-
erature. We have manually searched the top three finance journals 
for papers using DiD methodology on outcome variables with term 
structures (Table  2). The twenty-one papers we have found study a 
variety of securities and loans. All use versions of Eq.  (1). Modifications 
include an 𝑖 subscript on the post-event dummy for staggered DiDs; 
transposition into differences; and fixed effects at the firm or issuer 
level, especially when treatment is defined at those levels rather than 
at the individual security level. In the last case, the unit of analysis is 
typically new issues or loans, with different pre- and post-event units. 
Notably, none of the papers estimate the term structure of the hypothesized 
treatment effect. Only two papers attempt pairwise matching of treated 
and control units on residual maturity (and other pertinent character-
istics), but the descriptive statistics show significant differences (Panel 
A). In Pelizzon et al. (2024), the difference is two years; and in Choi 
et al. (2020) it is one year.2 Eight of the remaining papers contain 
information on residual maturities, with three of these reporting similar 
average residual maturities for treated and control units. But this does 
not imply pairwise matching, and statistics on higher moments that 
are needed to ascertain matching-closeness are hard to find. Ten of 
the papers try to control for term effects by working with spreads over 
maturity-matched government bonds or money market rates. But such 
spreads also exhibit term structures.3 Fifteen papers include a maturity 
control in 𝐙. But this does not resolve the misspecification problem of 
the classical DiD approach. In fact, as we show, it can make it worse
(Section 4.4). Common tactics that do not resolve the problem include 
(i) aggregating to higher levels (firm, country, bank-firm) (ii) using log 
transformations of residual maturity, or (iii) working with estimates of 
expected rates of return. Most of the papers use long event windows, 
multiple months or years, which exacerbate the problem. The impact of 
term effects is especially difficult to assess when the full sample period 
is simply divided into pre- and post-event periods (Panel D). Overall, 
the overview in Table  2 suggests that the term-effect problem is not 
well appreciated in the literature.

In this paper, we use simulation to study the term-effect problem. 
Focusing on the single event date case with treatment defined at the 
bond level, we estimate Specification (1) on simulated zero coupon 
bonds under two types of yield-curve effects, namely, treatment-unre-
lated idiosyncratic effects and true treatment-related systematic effects. 
Idiosyncratic yield-curve effects are unrelated to hypothesized treat-
ment; they move yields of all bonds, independent of assignment, but 
heterogeneously over the term structure. True treatment effects are 
also heterogeneous over the maturity spectrum. To study the effects 
of different degrees of congruence between the maturities of treated 
and control bonds, we draw residual maturities for treated and control 
bonds from different distributions ordered by first order stochastic 
dominance. In line with what we believe is most interesting in practice, 
in our simulations, the magnitude of the idiosyncratic effects (at their 
peaks) is larger than the true treatment effects. To isolate the term 

2 Matching approaches are sometimes also used in the non-DiD fixed-
income literature (Fleckenstein et al., 2014; Fleckenstein and Longstaff, 
2020).

3 A large literature shows that there is a term structure in yield spreads, 
typically calculated relative to Treasuries or reference rates such as Libor. 
See, e.g., Sarig and Warga (1989), Helwege and Turner (1999), Elton et al. 
(2001), Huang and Huang (2012), Bao and Hou (2017). Maturity matching is 
by itself typically imprecise because exact matches are rare and because of the 
complexities associated with coupon bonds.
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Table 1
Time-variation in the term spread in practice (monthly).
Panel A provides the standard deviation and summary statistics on the absolute value of the monthly change in the term spread (10y−3m) for 
a selected group of countries over the period from January 3, 2000 to December 14, 2022 using zero-coupon yields. For the same countries, 
Panel B shows the standard deviation of the monthly term-spread change for other term-spread definitions (as indicated in the table). For each 
of the maturity ranges in Panels A and B, Panel C shows the percentage of months the longest and shortest rates moves in opposite directions 
(twists). Euro area countries are marked with a star.
Data source: Bloomberg.
 Panel A: Monthly changes in 10y-3m term spread (in bps)
 Country St. dev. Absolute value N

 Mean Median Min Max

 Japan 10 7 5 0 49 274
 Germany∗ 22 16 12 0 149 274
 France∗ 23 16 11 0 118 239
 Netherlands∗ 24 17 12 0 151 261
 United Kingdom 27 19 15 0 143 274
 United States 30 22 18 0 103 274
 Spain∗ 31 20 13 0 153 271
 Italy∗ 32 21 15 0 219 274
 Ireland ∗ 34 21 14 0 208 274
 China 35 25 18 0 166 220
 Portugal∗ 46 27 14 0 285 274
 Greece∗ 274 94 17 0 1,810 274

 All countries 85 26 13 0 1,810 3,183
 Without Greece 30 19 13 0 285 2,909

 Panel B: St. dev. in monthly term spread changes for different maturities (in bps)
 Country 2y-3m 5y-2y 7y-5y 10y-7y 15y-10y N

 Japan 6 5 3 4 4 274
 Germany∗ 17 9 5 5 6 274
 France∗ 16 9 5 4 5 239
 Netherlands∗ 18 10 5 4 5 261
 United Kingdom 22 10 6 6 6 274
 United States 21 12 6 5 6 274
 Spain∗ 30 14 7 7 7 271
 Italy∗ 26 12 7 10 9 274
 Ireland ∗ 56 28 13 11 13 274
 China 22 13 10 11 15 220
 Portugal∗ 68 32 21 24 15 274
 Greece∗ 263 107 54 58 51 274

 All countries 83 35 18 20 17 3,183
 Without Greece 33 16 9 10 9 2,909

 Panel C: Percentage of long- and short-rate moves in opposite direction (twists) across months
 Country 2y-3m 5y-2y 7y-5y 10y-7y 15y-10y 10y-3m N

 Japan 38.7 17.5 11.7 7.7 10.2 47.8 274
 Germany∗ 31.4 9.5 5.5 5.1 8.8 35.4 274
 France∗ 26.8 11.3 5.0 5.0 4.2 33.9 239
 Netherlands∗ 31.0 13.8 5.0 4.6 6.9 38.3 261
 United Kingdom 34.7 14.2 5.1 7.7 9.5 41.6 274
 United States 38.7 12.0 5.5 6.2 7.7 49.3 274
 Spain∗ 31.4 15.9 7.4 7.0 7.7 37.3 271
 Italy∗ 29.6 11.7 7.7 4.7 9.9 35.4 274
 Ireland ∗ 31.8 12.0 5.8 6.6 9.1 37.2 274
 China 27.7 24.5 10.9 13.2 19.1 44.5 220
 Portugal∗ 31.8 12.0 8.4 9.5 9.5 40.9 274
 Greece∗ 11.7 8.8 6.2 5.8 12.0 22.3 274

 All countries 30.5 13.4 7.0 6.8 9.5 38.6 3,183
 Without Greece 32.3 13.9 7.0 6.9 9.2 40.2 2,909

effect, yields on individual bonds are simulated without error and all 
effects apply without error.

We first show that in the absence of a true treatment effect, the 
classical DiD specification measures a false treatment effect—‘‘false’’ 
because, in fact, there is no treatment effect. Unless treated and control 
bond residual maturities have the same unconditional distribution, DiD 
estimates are biased and the incidence of Type I errors is excessive 
relative to a well specified model (see below). False positives can go 
in either direction. They can be economically large even when uncon-
ditional maturity distributions are the same (treatment assignment is 
random), which is not the case under a well specified model.

In the unrealistic scenario that there are only true treatment effects, 
Specification (1) is still problematic because it returns an average effect 
across treated-bond maturities. That this is problematic is especially 

apparent if the true effect twists the treated curve up at one end and 
down at the other end. In the more realistic scenario that there are 
both idiosyncratic and true treatment effects, we show that the classical 
DiD specification produces the sum of the results under the two corner 
scenarios. The upshot is garbled results and inference, which can be 
severe. Even under random assignment, it is possible to measure a 
significant negative treatment effect when the average true treatment 
effect on treated sample bonds is positive, or vice versa. This is the 
case even though, in our simulations, yields on individual bonds are 
measured without error and all effects apply without error. The term-
effect problem becomes worse the bigger is the difference between the 
distributions of treated and control bonds over residual maturity.

These results imply that the standard DiD approach is unreliable 
when the variable of interest exhibits a term structure. False positives 
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Table 2
Maturity control in the literature.
This table shows a collection of recent top finance publications that apply DiD methodology to variables with term structures. All papers use a version of Specification (1). 
Modifications include an 𝑖 subscript on the post-event dummy for staggered DiDs; transposition into differences; and fixed effects at the firm or issuer level, especially when 
treatment is defined at those levels. In the last case, the unit of analysis is typically new issues or loans, with different pre- and post-event units. No paper estimates the term 
structure of the treatment effect. The list is created by manually searching the Journal of Finance (JF), the Journal of Financial Economics (JFE), and the Review of Financial 
Studies (RFS) using relevant combinations of key words. N.a. means that the respective information is not available. 𝐙 refers to the vector of controls in Specification (1) (see 
text). D, M, Q, and Y refer to daily, monthly, quarterly, and yearly, respectively.
 Pairwise maturity matching attempted
 Publication Unit of Maturity Maturity Dependent Event window
 treatment analysis congruence control in 𝐙 variable Pre Post Time unit 
 Panel A: Staggered treatments (one unit at a time).
 Choi et al. Bond Same as for No(1) No Yield less maturity [−4,−1] [0,1] Q  
 (2020, JFE) (corporate) treatment matched Treasury  
 (in changes)  
 (1) Treated bond maturities are one year longer on average. Matching on issuer, credit rating, seniority, option features, and residual time to maturity.
 Pelizzon et al. Bond Same as for No(2) No Yield less maturity mat- [−30,−1] [0,30] D  
 (2024, JFE) (corporate) treatment ched German bund curve  
 (2) Treated bond maturities are two years longer on average. Matching on credit rating, issue size, and residual time to maturity.
 No pairwise maturity matching
 Maturity
 statistics  
 Panel B: One treatment event for all units.
 Ayotte et al. Corporate New ABS Mean treated ‘‘Average life’’ ABS yield less [−6,0) [0,6] M  
 (2011, RFS) securitizer (AAA rated) maturities half and ‘‘average maturity matched  
 of control units life squared’’ swap rate  
 Hasan et al. Firm New N.a. Log Loan yield less LIBOR [−3,−1] [1,3] Y  
 (2014, JFE) loan residual (in logs; not maturity  
 maturity matched)  
 Cornaggia et al. Bond Same as for N.a. Duration Yield or yield less dur- [𝑡1-30, 𝑡1] [𝑡2, 𝑡2+30] D(4)  
 (2018, RFS) (municipal) treatment ation matched Treasury(3)  
 (3) Either using each bond’s maturity or, for callable bonds, the call dates.
 (4) Exact treatment timing is unit dependent. All treatments take place between 𝑡1 and 𝑡2 . The interim period between 𝑡1 and 𝑡2 has a length of between 31 and 52 calendar days.
 Dannhauser Bond Same as for Available only No Yield less [−6,0) [0,6] M  
 (2017, JFE) (corporate) treatment for different maturity matched  
 sample period swap rate  
 Painter County New bond Mean treated mat- Log Annualized [−6,0) [0,6] M(6)  
 (2020, JFE) (municipal) urities 1 year longer maturity issuance cost(5)  
 than controls  
 (5) Sum of the initial bond yield and the annualized gross spread. (6) Or longer windows: Either -/+ 12 months or full sample (-35/+124 months).
 Benetton et al. Bank New loan (agg. to N.a. No Loan rate [−2,−1] [0,3] Q(7)

 (2021, JFE) bank-firm level)  
 (7) The specification includes one treated × post interaction separately for each quarter in the post-treatment period.
 Allen et al. Firm New N.a. Maturity Loan yield less mat- [−18,−1] [1,18] M  
 (2023, JFE) loan urity matched Treasury  
 Panel C: Multiple treatment events (multiple units per event)
 Santos et al. Firm New Mean treated mat- Loan Loan yield less LIBOR [1987:1, 𝑡1) (𝑡2,2002:4] Q(8)  
 (2008, JF) loan urities 1 year shorter maturity (not maturity matched)  
 than controls  
 (8) The treatment periods [𝑡1 , 𝑡2] are the three periods [1989:2,1989:3], [1990:3,1991:2], and [2000:4,2002:1], which are in the specification at the same time.
 Rodano et al. Firm New N.a. Loan Loan interest [−3,−1] [0,10] Q(10)  
 (2016, JFE) loan maturity(9) rate  
 (9) Loan maturity is measured with indicator variables for <1, 1-5, and > 5 years. (10) In specification, post-period split into subperiods [0,1], [2,3], and [4,10].
 Todorov Bond Same as for Mean (median) treated No Yield [−10,0) [0,12] W(12)  
 (2020, JFE) (corporate) treatment maturities 1 year (shorter)  
 longer than controls(11)  
 (11) Additionally: matching on two maturity buckets (above and below median maturity) but no further information on maturity congruence.
 (12) In specification, post-period split into subperiods [0,5] and [6,12].
 Panel D: Staggered treatment (one unit at a time).
 Chava et al. Firm New N.a. No Loan yield less LIBOR [1990,0) [0,2004] Y(13)  
 (2009, RFS) loan (in changes and logs;  
 not maturity matched)  
 (13) Most recent loan at least 30 days before event announcement and all loans between 30 days after announcement and completion.
 Qiu et al. Firm Bond N.a. Duration Yield less [1976,0) [0,1995] Y  
 (2009, JFE) (via state (agg. to and maturity matched  
 of incorp.) firm level) convexity Treasury  
 Titman et al. Mortgage New N.a. Mortgage Mortgage rate [1/1996,0) [0,12/2002] M(14)  
 (2010, RFS) originator mortgage residual less maturity  
 maturity matched Treasury  
 (14) Mortgage issue classified as treated in month 𝑚 when originator is treated in previous 6 (or 3) months.
 Chan et al. Firm New Mean is similar. Higher Loan Loan yield less LIBOR [2000,0) [0,2009] Y  
 (2013, JFE) loan order moments n.a.(15) maturity (not maturity matched)  
 (15) Propensity-score matching of treated and control firms only on firm (not loan) characteristics.
 (continued on next page)

Journal of Financial Economics 170 (2025) 104081 

4 



K.G. Nyborg and J. Woschitz

Table 2 (continued).
 Publication Unit of Maturity Maturity Dependent Event window
 treatment analysis statistics control in 𝐙 variable Pre Post Time unit  
 Adelino et al. Bank (via New N.a. No Loan yield less LIBOR [1989,0) [0,2012] Y(16)  
 (2016, RFS) sovereign) loan (not maturity matched)  
 (16) Loan issue classified as treated if bank-sovereign treated in previous 6 months.
 Amiram et al. Firm New Mean and standard dev- Loan Loan yield less LIBOR [1993,0) [0,2014] Y(18)  
 (2017, JFE) loan iation are similar. Higher maturity (in logs; not maturity  
 order moments n.a.(17) matched)  
 (17) Robustness using propensity-score matching: Match treated and control firms on firm (not loan) characteristics. No further information on maturity-matching congruence.
 (18) Loan issue classified as treated if firm treated in previous 6 months.
 Almeida et al. Firm (via Bond N.a.(19)(20) Bond Yield [−3,−1] [0, 𝑡] M(21)  
 (2017, JF) sovereign) maturity (in changes)  
 (19) Matching of treated and control firms only on firm (not bond) characteristics.
 (20) Provide distributions of ratio of long-term leverage separately for treated and control firms but no information on bond maturities. (21) 𝑡 is 1, 3, 4, 5, or 6 months.
 Gao et al. County Bond Mean is similar. Higher Maturity Yield less maturity [1999,0) (0,2015] Y(22)  
 (2020, JFE) (municipal) order moments n.a. and its matched, coupon-  
 inverse equivalent Treasury  
 (22) Bond classified as treated three years after treatment event in respective county.
 Favara et al. Firm New loan N.a. Loan (or 1) Loan yield less [1992,0) [0,2010] Y  
 (2021, JFE) (via state (or bond) bond) LIBOR (not maturity  
 of incorp.) maturity matched) 2) Issue  
 yield less maturity  
 matched Treasury  

will typically be robust to different control vectors, 𝐙, and imple-
mentation methods because the result is driven by a combination of 
underlying changes in the term structure and nonzero correlation be-
tween residual maturity and treatment assignment. Including a control 
for residual maturity in 𝐙 can even make things worse.

While it is important to control for term effects when using DiD 
analysis on variables that exhibit term structures, a simple adjustment 
to Specification (1) that replaces the bond fixed effects (the misspeci-
fication element) with maturity or functions of it, does not solve the 
problem. As an example, we analyze a specification that substitutes 
the bond fixed effects with a model of the yield curve consistent with 
that used to simulate the true underlying curves. We show that the 
resulting DiD estimator is practically the same as when using Specifica-
tion (1). The problem with the specifications is that they impose, either 
explicitly through the parametric term structure or implicitly through 
the bond fixed effects, parallel yield-curve shifts between control and 
treated bonds, pre- and post-treatment. In contrast, in the simulated 
data, as in reality, the underlying treatment and idiosyncratic effects 
are heterogeneous over the term structure.

The challenge is to find procedures that allow for heterogeneous 
true treatment effects over the maturity spectrum while controlling for 
ubiquitous treatment-unrelated shifts in the yield curve. We discuss 
two solutions. The first is tailored to zero coupon bonds and originates 
with Nyborg and Woschitz (2021). With zeros, we can replace the bond 
and time fixed effects in Specification (1) with separate parameterized 
curves for control and treated bonds both pre- and post-treatment. 
The treatment effect is estimated as a ‘‘Delta curve’’, namely, the 
incremental spot-curve difference between treated and control bonds 
over the event. Conveniently, the DiD Delta curve can be estimated 
by running a single regression using standard software. In this fully 
flexible yield-curve DiD approach, true maturity-dependent treatment 
effects are identified and separated from idiosyncratic yield-curve ef-
fects. Thus, the misspecification is resolved through the estimation 
of the term structure of the treatment effect, which is also what is 
economically interesting. Imperfect matching on residual maturity is 
not an issue. Since the specification uses the full panel structure of 
the data, it permits clustering standard errors at the bond level, as 
recommended by Bertrand et al. (2004) and Petersen (2009). It is also 
more parsimonious than the classical DiD specification since there are 
no bond fixed effects.

The second procedure, ‘‘semi-synthetic matching’’, works for coupon 
bonds as well as zeros. This involves matching each treated bond 
with a synthetic control having the same coupons and residual matu-
rity. Matching can also be done on a potentially wide range of other 

attributes. Synthetic control curves have been used in the literature pre-
viously in non-DiD settings (Ang et al., 2010). In a first stage, individual 
DiDs are calculated for treated bonds relative to their synthetic controls. 
In a second stage, these can be averaged, or what is more interesting, 
examined over the maturity spectrum. If the sample consists of zeros 
only, curve fitting in the second stage results in the same DiD Delta 
curve as under the one-step, fully flexible approach (when functional 
forms are consistent).

The term-effect problem is also relevant with respect to trend plots, 
which are typically used as a diagnostic tool to assess the exclusion 
restriction (Roberts and Whited, 2013). Unless treated and control units 
are perfectly matched on residual maturity (and coupon structure), 
standard trend plots based on averages are problematic. A simple 
solution would be to average yields of bonds within selected maturity 
buckets and then average across maturity buckets within selected time 
increments. How useful this is depends on the closeness of maturity 
matching within buckets. We discuss trend plots further below.

Finally, we show that the issues above are not generic to DiD 
analysis, but can arise in group-assignment settings more generally. 
Using a straight cross-sectional setup, we show that failure to properly 
take heterogeneous term effects into account leads to the same kind of 
false and garbled effects as in the DiD setup.

Remaining structure: Section 2 reviews additional related literature. 
Section 3 describes the data simulation. Sections 4 and 6 study false and 
garbled treatment effects, respectively, while Section 7 combines these 
problems. Sections 5 and 9 discuss two solutions. Section 8 considers 
alternative curve specifications and provides an example using real 
data. Section 10 covers analogous issues in non-DiD settings. Section 11 
concludes.

2. Other literature

As outlined above, the term-effect problem relates to both hetero-
geneous idiosyncratic movements in the variable of interest over the 
maturity spectrum as well as heterogeneous treatment effects. In the 
literature, the latter is often dealt with by estimating the heterogeneous 
treatment effects over the distribution of the dependent variable or 
by using fixed effects on the discrete right-hand side units present 
in the data.4 However, with variables that have term structures, the 

4 See, e.g., Heckman et al. (1997), Bitler et al. (2006), Callaway et al. 
(2018), Callaway and Li (2019), de Chaisemartin and D’Haultfoeuille (2020).
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first approach is uninformative because the shape of the term struc-
ture fluctuates over time. The second approach is also problematic 
because residual maturity is a continuous habitat variable. An intuitive 
workaround is to divide the data into maturity buckets (Bao et al., 
2018; Todorov, 2020). However, we show that this simply pushes the 
problem to the maturity-bucket level. Moreover, the paucity of bonds 
in practice limits the fineness of the feasible grid over which maturity 
buckets can be formed.

Our paper relates to a substantial literature that focuses on estimat-
ing unobserved yield-curve parameters (Fama and Bliss, 1987; Nelson 
and Siegel, 1987; Svensson, 1994; Diebold and Li, 2006; Gürkaynak 
et al., 2007; Liu and Wu, 2021; Filipovic et al., 2023a,b). Since these 
parameters can be interpreted as unobserved factors and DiD analysis 
is a special fixed-effects case, our paper could be viewed from the 
perspective of the literature on confounding factor structures in fixed-
effects settings (Bai, 2009). Specifically, Gobillon and Magnac (2016) 
and Xu (2017) show that nonzero correlations between factors and 
treatment can give rise to biased DiD estimators (see also Huang and 
Östberg, 2023). Nyborg and Woschitz (2021) raise these issues in a 
term structure setting in the context of measuring the effects of central 
bank collateral policy. In this paper, we show how the fundamental 
problems of false and garbled treatment effects arise naturally in fixed-
income settings. The DiD Delta curve approach resolves these problems 
by modeling the term structure as part of the DiD estimator, while the 
semi-synthetic matching approach removes the term structure before 
applying DiD. The latter has parallels to the synthetic control litera-
ture (Abadie and Gardeazabal, 2003; Abadie et al., 2010; Abadie, 2021) 
and is a natural approach in a staggered setup, as in Ben-Michael et al. 
(2022), but our focus is on treatment effects over the maturity spectrum 
rather than on the average treatment effect across treated units.

There is a growing literature on how DiD methodology can lead to 
incorrect inference (see, e.g., Callaway, 2023; Roth et al., 2023). In 
work that has some parallels to ours, Callaway and Li (2023) show, 
in the context of epidemiology, that standard DiD analysis produces 
false treatment effects when treated and control regions are at different 
stages of a pandemic (e.g., COVID-19). While their’s is essentially a 
longitudinal problem and ours is cross-sectional, we share a common 
prescription, namely, that it is necessary to condition the treatment ef-
fect on the confounding element (stage of pandemic, residual maturity). 
We show how this can be done in fixed-income settings using tools from 
the curve-fitting literature. Imprecise and hard to interpret treatment 
effect estimates have been shown for staggered DiD analysis with 
heterogeneous treatment effects in the time dimension (Baker et al., 
2022; Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021; Sun and 
Abraham, 2021; Athey and Imbens, 2022). We examine heterogeneous 
treatment effects in the cross-section, which we address by modeling 
curves.

3. Term structure modeling and data simulation

This section describes how we generate the data used to examine the 
performance of Specification (1) and its alternatives. For simplicity, and 
to focus squarely on maturity effects, we simulate zero-coupon bonds. 
The generated data captures the two key features of real fixed-income 
data discussed above, namely, (i) idiosyncratic, treatment unrelated 
and systematic, true treatment effects that are heterogeneous over 
the maturity spectrum, and (ii) non-matched residual maturities for 
treated and control bonds. The first key ingredient in our data gen-
eration process is a model for pre-event spot rates to which we can 
add post-event idiosyncratic (treatment unrelated) and systematic (true 
treatment) effects. The second ingredient is a procedure for generating 
samples of residual maturities for treated and control bonds that allows 
for different degrees of heterogeneity in these. This permits us to study 
the implications of an increasing divergence in residual maturities 
between treated and control bonds. The realized maturities are then 
used to generate pre- and post-event yields. Data is simulated with 
either one or both types of post-event term effect. In the simulation, 
we use parameter values that generate effects with magnitudes that are 
commensurate with what we see in real data (e.g., Table  1).

3.1. Term structure and different effects

To generate yields, we use Diebold and Li’s (2006) factorization of 
the Nelson and Siegel (1987) curve.5 The spot rate, or zero-coupon 
𝑦𝑖𝑒𝑙𝑑, with maturity 𝑥 at time 𝑡 is 

𝑦𝑖𝑒𝑙𝑑𝑡(𝑥; 𝜆𝑡) = 𝛾0,𝑡 + 𝛾1,𝑡

(

1 − 𝑒−𝜆𝑡𝑥

𝜆𝑡𝑥

)

+ 𝛾2,𝑡

(

1 − 𝑒−𝜆𝑡𝑥

𝜆𝑡𝑥
− 𝑒−𝜆𝑡𝑥

)

, (2)

where 𝛾0,𝑡 is a long-term or level factor, 𝛾1,𝑡 is a short-term or slope 
factor, 𝛾2,𝑡 is a medium-term or curvature factor, and 𝜆𝑡 is a decay 
parameter. Over a hypothesized event, we consider two types of effects. 
First, idiosyncratic (treatment-unrelated) effects move the yields of 
‘‘treated’’ and control bonds alike over the event independent of actual 
treatment. Second, systematic (true treatment) effects affect only the 
treated bonds. Both types of effects are heterogeneous over the maturity 
spectrum and are simulated by manipulating the level, slope, and 
curvature parameters in the Diebold–Li curve, as described in more 
detail in subsequent sections.6

As a brief overview, in Section 4 we focus on idiosyncratic effects 
and consider two scenarios. In each case, the effects are generated by 
curves that follow the Diebold–Li specification. In the first scenario, 
the effect is stronger for short-term rates; it leads to a yield change 
of −50 bps at a residual maturity of one year, rising to close to zero 
(+1 bps) at fifteen years. In the second scenario, the effect is stronger 
for long-term rates; it is close to zero at the short end (+4 bps at one 
year), falling to −50 bps at fifteen years. We show that the classical 
DiD specification leads to a high incidence of large and false treatment 
effects under either scenario.

In Section 6, we focus on true treatment effects. These also have the 
functional form of the Diebold–Li curve, but are smaller in magnitude 
than the idiosyncratic effects. They can be either (i) a twist that pushes 
yields up by 6 bps at the one-year maturity, declining to −6 bps at ten 
years; or (ii) a short-end effect that pushes yields down by 6 bps at 
the one-year maturity, fading to zero at around seven years.7 We show 
that this leads to uninformative estimated DiD coefficients under the 
classical DiD specification. Section 7 combines the idiosyncratic and 
true treatment effects for a total of four scenarios. This just compounds 
the problems from when the effects are considered separately. To 
simulate data, we combine these effects and the underlying baseline 
spot curve with randomly drawn residual maturities for treated bonds 
and controls as described next.

5 As explained by Diebold and Li (2006) their specification suffers less from 
multicollinearity between the parameters as compared to the original Nelson 
and Siegel (1987) specification.

6 For simplicity, we keep the decay parameter fixed at 𝜆𝑡 = 𝜆 = 0.7308
across scenarios. As explained by Diebold and Li (2006), 𝜆𝑡 determines the 
point where the loading on the curvature factor, 𝛾2,𝑡, obtains its maximum. 
Based on practice, they pick this to be at a maturity of 30 months and set 
𝜆𝑡 = 𝜆 = 0.0609. This translates to 𝜆 = 0.7308 when maturity is measured in 
years as here. The value of the decay parameter is not critical for our purposes.

7 Treatment effects in fixed-income settings are typically relatively small 
and may vary over the maturity spectrum (see, e.g., Swanson, 2011). The 
twist treatment scenario is to some extent motivated by the Fed’s ‘‘Operation 
Twist’’ in 1961 and ‘‘QE2’’ initiated in 2010 which involved selling short 
maturity Treasuries and buying longer ones. Although the intention of these 
programs was to lower longer-term yields without moving shorter ones (Alon 
and Swanson, 2011), more generally, if investors shift habitats, this can 
cause yields to move in opposite directions in different parts of the maturity 
spectrum (Vayanos and Vila, 2021). In practice, short and long rates often 
move in opposite directions (Table  1, Panel C). Events that change the relative 
attractiveness of long and short bonds can give rise to twists in treatment 
effects.
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Table 3
The maturity structure of outstanding securities in practice.
For the same selection of countries as in Table  1, this table provides an overview of the distribution of the outstanding securities per country at the beginning of 2023. The first 
column shows the total number of securities with market prices in Bloomberg. The columns to the right provide the number of securities by maturity bucket (as indicated) as a 
percentage of that country’s total number of securities.
Data source: Bloomberg.
 Country Number [0–2] (2–5] (5–10] (10–15] (15–20] (20–30] >30y
 of securities
 Ireland 18 11 17 39 17 6 11 0
 Portugal 22 27 18 27 14 5 9 0
 Greece 47 45 23 11 15 4 2 0
 Netherlands 50 52 10 18 8 6 4 2
 France 76 42 16 17 4 7 8 7
 Germany 147 31 18 22 12 8 8 1
 U.K. 225 23 12 15 10 15 17 8
 Spain 240 16 16 23 11 9 12 13
 Italy 285 32 15 18 10 6 9 10
 China 610 37 21 15 3 5 10 9
 U.S. 674 34 21 13 4 10 18 0
 Japan 1137 16 14 18 12 12 19 7

3.2. Simulation of residual maturities

In practice, the distributions of same-issuer bonds are often tilted 
toward particular segments of the maturity spectrum. As an illustration, 
for the same countries as in Table  1, Table  3 provides the number 
of government bonds with market prices in Bloomberg and their dis-
tributions across maturity buckets at the beginning of 2023. We see 
that Dutch issues, for example, are tilted toward the short end; more 
than fifty percent have maturities of less than two years, with the 
remaining bonds being spread out at a declining rate after the five to 
ten year segment. The distribution for Spain, in contrast, is tilted to-
ward the mid range of the maturity spectrum. Within rating categories, 
corporate bonds are also unevenly distributed across maturities (S&P 
Global, 2023).

In analyzing the performance of the classical DiD specification in Eq. 
(1), we wish to use reasonably realistic maturity distributions. To 
this end, we draw residual maturities for treated bonds and controls 
from triangular probability density functions (pdf’s), 𝑝(𝑥;𝑚), where 
𝑥 ∈ [0, 20] is time to maturity measured in years and 𝑚 is the mode. 
Specifically, 

𝑝(𝑥;𝑚) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑥 < 0 or 𝑥 > 20,
𝑥

10𝑚 , if 0 ≤ 𝑥 ≤ 𝑚,
20−𝑥

10(20−𝑚) , if 𝑚 < 𝑥 ≤ 20.
(3)

Relative to what we see in Table  3 for government bonds, the up-
per limit on residual maturity of twenty years is conservative, but is 
sufficiently large to generate meaningful term effects. The mode, 𝑚, 
parameterizes a feature of real data that we want to capture, namely, 
the main location of bonds in terms of residual maturity. Changing 
𝑚 allows us to create heterogeneity in the distributions of residual 
maturities between treated bonds and controls in a straightforward 
way. For controls, we use 𝑚 = 0.25 years and for treated bonds 𝑚 =
0.25, 1, 3 or 10 years.8 The distributions are illustrated for different 𝑚’s 
in Fig.  1.

Because there are no coupons, bonds are defined by their resid-
ual maturities. The data is simulated by independently repeating the 
following 1000 times:

1. Control bonds: Draw fifty maturities independently from 𝑝(𝑥;𝑚 =
0.25).

2. Treated bonds: Draw fifty maturities independently from 𝑝(𝑥;𝑚), 
𝑚 = 0.25, 1, 3, 10.

8 Keeping 𝑚 for controls fixed reduces the number of cases without affecting 
the thrust of our results.

Fig. 1. Triangular probability density functions (pdfs) with different modes 𝒎.
This figure shows the triangular pdf’s used to simulate residual maturity of the one 
control bond sample with mode 𝑚 = 0.25 years and the four samples of treated bonds 
with modes 𝑚 = 0.25, 1, 3, and 10 years while residual maturity 𝑥 ranges from zero to 
twenty years (𝑥 ∈ [0, 20]) for either sample. The vertical lines mark the cutoff points 
in the process of building maturity buckets, namely 2, 5, and 10 years (discussed in 
later sections of the paper).

This yields 1000 families of simulated bonds. Each family is comprised 
of fifty controls and four times fifty treated bonds. For each family, or 
sample draw, we create four sample couplets by combining the fifty 
control bonds, where 𝑚 = 0.25, with fifty treated bonds, for each of 
𝑚 = 0.25, 1, 3, or 10. Thus, we generate 4000 individual samples, each 
comprised of fifty treated bonds and fifty controls. Because we hold 
the control bonds constant within each of the 1000 families, this setup 

Journal of Financial Economics 170 (2025) 104081 

7 



K.G. Nyborg and J. Woschitz

Table 4
Overview of simulated residual maturity data.
This table provides an overview of the simulated residual maturity data. We draw 1000 families of samples. Each family is comprised of one control-bond sample and four 
treated-bond samples. Each sample contains fifty bonds. The residual maturities of the fifty control bonds are drawn from a triangular pdf that ranges from zero to twenty years 
and has mode 𝑚 = 0.25 years. The residual maturities of the four times fifty treated bonds are drawn from triangular pdfs covering the same range but with modes 𝑚 = 0.25, 1, 3, 10. 
First, we calculate the average residual maturity for each sample. Panel A shows the distributions of these sample averages separately by treatment group and triangular pdf mode 
𝑚 across the 1000 sample draws. Second, within each family, we build four sample couplets by pairing each sample of treated bonds (𝑚 = 0.25, 1, 3, 10) with the sample of control 
bonds (𝑚 = 0.25). Each sample couplet contains one hundred bonds, namely fifty treated and fifty control bonds. We calculate the average residual maturity of the fifty treated 
bonds and divide it by the average residual maturity of the fifty control bonds. Panel B shows the distributions of these maturity ratios across the 1000 sample draws, or families, 
separately for each mode 𝑚 = 0.25, 1, 3, 10 of the treated bonds (𝑚 = 0.25 for control bonds always). Panel C shows the distributions of the correlation between residual maturity 
and the treatment assignment across the same 1000 sample draws and modes 𝑚 of the treated bonds.
 Panel A: Distributions of average residual maturity by treatment group and triangular pdf mode
 Distributions of sample averages
 Number of
 unconditional bonds
 Group 𝑚 mean samples per sample Mean SD Med Min Max

 Control 0.25 6.75 1,000 50 6.764 0.668 6.765 4.327 8.807
 Treated 0.25 6.75 1,000 50 6.734 0.674 6.707 4.322 9.168
 1 7.00 1,000 50 7.034 0.611 7.029 5.361 9.008
 3 7.67 1,000 50 7.648 0.604 7.631 5.819 9.558
 10 10.00 1,000 50 9.979 0.587 10.015 8.043 11.981

 Panel B: Distributions of maturity ratios by triangular pdf mode of the treated bonds
 Distributions of ratios of sample averages
 Number of
 unconditional sample bonds per

𝑚 treated bonds means couplets sample couplet Mean SD Med Min Max

0.25 1.00 1,000 100 1.005 0.138 0.994 0.592 1.524
1 1.04 1,000 100 1.050 0.141 1.039 0.710 1.598
3 1.14 1,000 100 1.142 0.146 1.135 0.691 1.805
10 1.48 1,000 100 1.490 0.177 1.481 1.095 2.231

 Panel C: Distributions of correlation between residual maturity and the treatment assignment
 Distributions of correlations
 Number of
 unconditional sample bonds per

𝑚 treated bonds means couplets sample couplet Mean SD Med Min Max

0.25 1,000 100 −0.004 0.097 −0.004 −0.349 0.318
1 1,000 100 0.029 0.098 0.028 −0.268 0.322
3 1,000 100 0.097 0.098 0.100 −0.301 0.371
10 1,000 100 0.344 0.091 0.349 0.077 0.627

allows us to study the impact of diverging distributions of residual 
maturities between treated bonds and controls.

The simulated data have the realistic feature that residual maturities 
are not the same for treated and control bonds. Even if treated bonds 
are drawn from the same distribution as the controls (𝑚 = 0.25), their 
realized maturities differ almost surely. We are interested in examining 
the performance of the classical and other DiD specifications when 
underlying distributions diverge. We do this by varying the parameter, 
𝑚, for treated bonds.

Table  4 presents an overview of the simulated data. Panel A pro-
vides summary statistics on average residual maturities across the 1000 
control-bond samples and, for each 𝑚, the 1000 treated-bond samples. 
Not surprisingly, in each case, the average and median of the 1000 
averages are close to the unconditional mean. However, because each 
sample comprises only fifty bonds, there is substantial variation across 
them. For example, while the unconditional mean for the control bonds 
(𝑚 = 0.25) is 6.75 years, the distribution of sample averages ranges from 
4.327 to 8.807 years.

Panel B provides statistics on the ratios of average maturities across 
the 4000 sample couplets broken down by the parameter 𝑚 for treated 
bonds. For an individual sample couplet, the maturity ratio is the 
average maturity of treated bonds divided by the average maturity 
of controls. The unconditional mean of these maturity ratios ranges 
from 1.00 (when 𝑚 for treated bonds is 0.25) to 1.48 (when 𝑚 for 
treated bonds is 10). For each treated-bond 𝑚, mean and median sample 
maturity ratios are close to the unconditional means. However, there 

is substantial variation across samples. For example, for 𝑚 = 0.25, 
the maturity ratio ranges from 0.59 to 1.52 across the 1000 sample 
couplets. Thus, even when the underlying distributions of residual 
maturities are identical for treated and control bonds, the differences 
in residual maturities can be very large in individual samples. This 
leads to a critical property of fixed-income data from a DiD perspective, 
namely, nonzero correlation between residual maturity and treatment 
assignment.

Panel C reports on the distributions of these maturity-treatment 
correlations. The magnitude of the correlation can be large even in the 
case that 𝑚 = 0.25 for treated bonds, where the correlation ranges from 
−0.349 to 0.318, albeit with an average of approximately zero. This 
illustrates that drawing relatively small samples from wide maturity 
ranges can induce spurious correlation between residual maturity and 
the treatment assignment. The situation is worse when the under-
lying distributions of residual maturities diverge. As 𝑚 for treated 
bonds increases, the average maturity-treatment correlation becomes 
positive across samples and reaches 0.627 in one sample. In short, 
spurious correlation is compounded by a bias. In the rest of the paper, 
we examine how heterogeneous term effects and nonzero maturity-
treatment correlation give rise to false and garbled treatment effects 
in the classical DiD specification and what to do about it.

4. False treatment effects

In this section, we run the classical DiD specification in Eq.  (1) on 
simulated data with idiosyncratic, treatment-unrelated effects only and 
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Fig. 2. Modeling idiosyncratic effects in the term structure of interest rates.
To model the term structure we employ Diebold and Li’s (2006) yield-curve specification. The mini table underneath each plot shows the parameter values to create the true 
underlying term structures as well as the resulting yield levels and yield differences at selected maturities. Figs.  2a and 2b provide graphical illustrations of the resulting yield and 
differences curves when there is an idiosyncratic short-end or a long-end effect, respectively, from pre- to post-treatment.

show that this gives rise to a problem of false treatment effects. Initially, 
we do not include controls for maturity (𝐙 is empty). For simplicity, 
there are only two time periods, labeled pre-treatment (𝑡 = 0) and post-
treatment (𝑡 = 1). Treatment is to be understood as hypothesized by 
a researcher. Prior to ‘‘treatment’’, ‘‘treated’’ bonds and controls share 
the same yield curve. Since there is no treatment effect, they also share 
the same curve after treatment, but the idiosyncratic effect changes the 
shape and location of the curve.

For each sample couplet of control and treated bonds (residual ma-
turities), yields are generated by the Diebold and Li (2006) curve in Eq. 
(2). We consider two scenarios, as shown in Fig.  2. The pre-event curve 
is the same in both scenarios, but the idiosyncratic effects that move 
the post-event curve either depresses the short end (Panel A) or the 
long end (Panel B). The parameter values for the curves are provided 
in the two panels. As shown in the figure, effects are heterogeneous 
over the maturity spectrum. The short-end idiosyncratic effect pushes 
yields down by 50 bps at the one-year maturity, fading to a 1 bps drop 
at fifteen years. The long-end effect reverses this (approximately).9

4.1. Estimation with the classical DiD specification

We estimate Specification (1) without controls using ordinary least 
squares (OLS) for each of our 8000 simulated datasets (sample couplets) 
of treated and control bonds (4000 for each type of idiosyncratic effect, 
see Section 3). Standard errors are formally clustered at the bond 
level.10 Fig.  3 plots the 8000 DiD estimates against their 𝑡-statistics. 
Panel A of the table within the figure provides summary statistics. The 
8000 DiD estimates range from −24.06 to + 22.99 bps and 3067 of 

9 The curves in Fig.  2 slope upwards, but our arguments do not depend on 
this. False treatment effects can also be shown for downward sloping or flat 
curves.
10 Bertrand et al. (2004) show that the persistence of the treatment indicator 
in DiD settings induces serial correlation in the error term and that clustering 
at the level of the treated unit helps to diminish this issue (see also Petersen, 
2009). Although there are no such correlated errors in our simulated setting, 
we nevertheless ask the software to cluster at the bond level. Being able to 
cluster standard errors is an attractive feature of Specification (1).

them are statistically different from zero at the 10%-level. In short, the 
state of the art classical DiD specification produces potentially large 
treatment effects that are statistically significant at conventional levels
even though there is no true treatment effect. In fact, in these simulations, 
there are such false treatment effects in 38.33% of all cases.

Panel B in the table within Fig.  3 provides summary statistics of the 
DiD estimates separately for each type of idiosyncratic effect, broken 
down by the mode parameter, 𝑚, of the treated bonds (𝑚 = 0.25 for 
controls, see Section 3). The incidence of false treatment effects is 
similar for the two idiosyncratic effects and increasing as the underly-
ing distribution of residual maturities for treated bonds diverges from 
that of the control bonds (𝑚 for treated bonds increases). When the 
underlying distributions are the same (𝑚 = 0.25), the incidence of false 
treatment effects is approximately 10%, and the average DiD estimate 
is close to zero. However, in individual samples, the DiD estimate 
can reach economically large values, ranging from −11.59 to 12.01 bps
across all samples and the two types of idiosyncratic effects.

As the underlying distributions of treated- and control-bond residual 
maturities diverge (𝑚 for treated bonds increases), the basic problem of 
imprecision due to sampling disparity is compounded by a bias. This 
can be seen by the fact that the average DiD estimate differs from 
zero, being positive when the idiosyncratic effect predominantly hits 
the short end and negative when it predominantly hits the long end. As 
a result, the incidence of false treatment effects increases. For instance, 
if 𝑚 = 10 for treated bonds and in case of an idiosyncratic short-end 
(long-end) effect, all 1000 DiD estimates are positive (negative) and 
more than 99% of them are statistically significant at the 10%-level. 
Thus, different underlying distributions of treated- and control-bond 
residual maturities can seriously garble inference from the classical DiD 
specification when yield curves move around for reasons unrelated to 
hypothesized treatment.

4.2. The false treatment effect mechanism

False treatment effects result from a combination of idiosyncratic 
yield-curve effects that are heterogeneous over the maturity spectrum 
and nonzero correlation between residual maturity and the treatment 
assignment (see Section 3). Thus, as control and treated bond maturity 
distributions diverge and idiosyncratic effects increase, for example due 
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Fig. 3. False treatment effects graphically.
This figure shows estimated treatment effects when the modeled term structure exhibits heterogeneous idiosyncratic effects along the maturity dimension but there is no true 
treatment effect present in the data. The specification is 𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + 𝛽𝐷𝑖𝐷 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 ×1𝑃𝑜𝑠𝑡,𝑡 + 𝜀𝑖𝑡 , where 𝑦𝑖𝑒𝑙𝑑𝑖𝑡 is the yield-to-maturity of bond 𝑖 at time 𝑡, the 𝛼𝑖 ’s (𝛿𝑡 ’s) are bond 
(time) fixed effects, 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 (1𝑃𝑜𝑠𝑡,𝑡) is a treatment (event and post-event dates) indicator variable, 𝛽𝐷𝑖𝐷 the treatment effect, and 𝜀𝑖𝑡 the error term. The specification is estimated 
with OLS. The (black) crosses show the 8000 estimated DiD coefficients plotted against their 𝑡-statistics across the two idiosyncratic effects, the four modes 𝑚 of treated bonds, and 
the 1000 families of sample couplets. The vertical dashed (red) lines mark the values of ±1.653 (two-sided confidence bands using 10%-significance level). The distributions of the 
corresponding numbers are in Panel A in the table underneath. Panel B (C) shows the DiD coefficient distributions for the idiosyncratic short-end (long-end) effect by mode 𝑚. The 
𝑡-statistics are based on standard errors clustered at the bond level. Panel D shows the distributions of the correlation between residual maturity and the treatment assignment. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to long estimation windows, large false treatment effects arise naturally 
under the classical DiD specification. The sign of the estimated effect is 
a function of the treatment-maturity correlation and the idiosyncratic 
effect. When the correlation is positive (negative), an idiosyncratic 
effect that depresses the short end of the term structure results in 
a positive (negative) DiD coefficient. Signs are reversed under an 
idiosyncratic effect that depresses the long-end. As seen in Panel B in 
the table within Fig.  3, when 𝑚 = 10 for treated bonds, all DiD estimates 
are positive (negative) under the short-end (long-end) effect. This is 
because the treatment-maturity correlation is positive in all samples. 
Internet Appendix A.2 provides further details.

The analysis illustrates that the classical DiD specification in Eq. 
(1) applied to variables that exhibit time-varying term structures is 
prone to producing false treatment effects. Even in the absence of a true 
treatment effect, the specification generates statistically significant, 
but false, treatment effects that can be economically large and go in 

either direction. The fundamental problem is that the classical DiD 
specification is misspecified.

4.3. Estimation separately by individual maturity buckets

To deal with heterogeneous treatment effects, the literature typ-
ically uses fixed effects on the discrete units present in the data. 
For example, in Specification (1), the individual unit is each bond. 
However, as we have started to show, this is a misspecification when 
there are heterogeneous term effects which can lead to a potentially 
high incidence of false positives. A workaround that is sometimes em-
ployed is to run the classical DiD specification separately on individual 
maturity buckets (Bao et al., 2018; Todorov, 2020). In this subsection, 
we address this approach using the same simulated data as above.

Table  5 shows the results. Bonds are broken down into four maturity 
buckets, namely, (0, 2], (2, 5], (5, 10], and (10, 20] years. Panels A and 
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Table 5
False treatment effects measured individually by maturity buckets.
This table provides the distributions of estimated treatment effects using OLS on the same data, the same modeled idiosyncratic yield-curve effects, and using the classical DiD 
specification as in Fig.  3 but separately by four individual buckets with residual maturity in the ranges (0, 2], (2, 5], (5, 10], and (10, 20] years. Panel A (B) covers the case when 
residual maturity of the treated bonds is drawn from a triangular pdf with mode 𝑚 = 0.25 (𝑚 = 10) years. Each panel shows mean, median, and minimum as well as maximum 
of the distributions of the estimated treatment effects by the idiosyncratic effects (short- or long-end) and the maturity buckets as well as separately for the cases when 𝑡 < −𝑡𝑐𝑣, 
−𝑡𝑐𝑣 ≤ 𝑡 ≤ 𝑡𝑐𝑣, and 𝑡𝑐𝑣 < 𝑡, where 𝑡𝑐𝑣 is the critical value of a two-sided 𝑡-test at the significance level of 10% (which is 1.645 in case of a 𝑧-test) with standard errors clustered at 
the bond level.
 Idiosyn- Maturity Number 𝑡 < −𝑡𝑐𝑣 −𝑡𝑐𝑣 ≤ 𝑡 ≤ 𝑡𝑐𝑣 𝑡𝑐𝑣 < 𝑡

 cratic bucket of measured Mean Med N Min Max N Min Max N Min Max

 effect (in years) effects, N (in bps) (in bps) (in bps) (in bps)
 Panel A: m = 0.25 years
 Short- (0–2] 1,000 0.01 0.02 60 −4.24 −1.49 883 −2.77 2.51 57 1.54 4.17
 end (2–5] 1,000 −0.01 0.03 53 −7.49 −3.31 900 −4.69 4.73 47 3.55 8.47
 (5–10] 1,000 −0.09 −0.09 63 −6.14 −2.36 889 −3.43 3.46 48 2.39 5.54
 (10–20] 1,000 −0.01 −0.02 46 −3.44 −1.15 900 −2.18 2.11 54 1.31 3.10

 Long- (0–2] 1,000 −0.01 −0.01 61 −2.85 −0.75 868 −1.97 1.92 71 0.74 3.17
 end (2–5] 1,000 0.01 −0.03 47 −8.94 −3.74 900 −5.03 4.97 53 3.50 7.90
 (5–10] 1,000 0.10 0.10 48 −6.24 −2.70 888 −3.87 3.66 64 2.65 6.90
 (10–20] 1,000 0.01 0.02 54 −3.53 −1.49 900 −2.39 2.48 46 1.30 3.92

 Panel B: m = 10 years
 Short- (0–2] 640 1.13 1.03 94 −5.12 −1.14 308 −2.45 3.90 238 0.58 8.01
 end (2–5] 998 1.77 1.77 25 −10.51 −3.32 762 −6.29 6.15 211 3.26 11.89
 (5–10] 1,000 1.37 1.45 11 −4.14 −2.08 787 −2.61 3.11 202 2.03 6.70
 (10–20] 1,000 0.00 −0.01 49 −2.98 −1.18 888 −1.81 1.64 63 1.28 3.15

 Long- (0–2] 640 −0.48 −0.22 204 −4.82 −0.43 288 −2.24 1.58 148 0.46 2.88
 end (2–5] 998 −1.87 −1.84 210 −12.70 −3.35 762 −6.60 6.60 26 3.58 11.01
 (5–10] 1,000 −1.54 −1.63 202 −7.56 −2.28 787 −3.50 2.94 11 2.35 4.67
 (10–20] 1,000 −0.00 0.01 62 −3.58 −1.46 889 −1.87 2.06 49 1.34 3.39

B cover the cases when 𝑚 for treated-bond maturities equals 0.25 
and 10 years, respectively. Each panel provides mean and median 
estimated DiD coefficients across the 1000 samples by maturity bucket 
for each of the two types of idiosyncratic effects used above (see 
Fig.  2). They also show the ranges and number of DiD coefficients 
that are statistically significantly negative, positive, or not statistically 
significant (10%-level).

The results show that the maturity-bucket approach does not elim-
inate false treatment effects. For example, in the (2, 5] year bucket in 
Panel A (𝑚 = 0.25) under the short-end idiosyncratic effect, there are 
53 negative and 47 positive statistically significant DiD coefficients that 
range from −7.49 to −3.31 and from +3.55 to +8.47 bps, respectively. 
The remaining 900 coefficients are also different from zero but not 
statistically significant. The incidence of false positives increases when 
the underlying distributions diverge. For example, in Panel B (𝑚 =
10), the number of statistically significant DiD coefficients increases 
to 236 for the (2, 5] year bucket. DiD coefficient point estimates are 
also more extreme than in Panel A. The mechanism is the same as 
before, namely, nonzero correlations between treatment assignment 
and residual maturity. As seen in the table and as discussed above, the 
sign of the estimation error depends on the nature of the idiosyncratic 
effect.

For research that uses the maturity bucket approach to study poten-
tial treatment effects across the maturity spectrum, these results point 
to a concern. If the sample results in false treatment effects for some 
maturity buckets, but not others, the maturity-bucket approach leads to 
false conclusions about variation in treatment effects over the maturity 
spectrum. Different researchers working with different samples may 
find false treatment effects in different parts of the term structure, 
leading to ambiguous conclusions overall.

Another problem with the maturity-bucket approach is that it can be 
difficult to implement due to a paucity of bonds and large differences 
in the underlying, unconditional distributions of residual maturities 
between treated and control bonds. This issue arises in Panel B (𝑚 =
10), where, for example, only 640 of the 1000 samples have suf-
ficient treated and control bonds in the (0, 2] year bucket to run 
Specification (1).

In conclusion, the maturity-bucket approach pushes the misspecifi-
cation problem in the classical DiD specification to the maturity-bucket 

level. In turn, this gives rise to a new potential problem, namely falsely 
measured term effects, with false variation across the maturity spec-
trum. Using a fine maturity-bucket mesh to deal with this is typically 
impractical due to a paucity of bonds.

4.4. The failure of maturity control

Researchers sometimes use maturity controls in Specification (1). It 
is interesting to ask whether this helps performance. To address this, we 
first consider an alternative specification where the bond fixed effect is 
replaced by an explicit parametric control for the term structure. To 
give this approach as good a chance as possible to succeed, we use the 
same functional form for the yield curve as used to generate the data. 
The question is whether such explicit term-structure control enables a 
DiD specification to elicit the true underlying effects or, at least, reduce 
the incidence of false treatment effects. Specifically, we estimate the 
following using nonlinear least squares (NLS): 

𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝐁′𝐋𝑖𝑡 + 𝛼 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 + 𝛿 1𝑃𝑜𝑠𝑡,𝑡 + 𝛽𝐷𝑖𝐷 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 × 1𝑃𝑜𝑠𝑡,𝑡 + 𝜀𝑖𝑡, (4)

where 𝛼 and 𝛿 are coefficients on the indicator variables for treated 
bonds and the post-event period, respectively, and 𝐁′𝐋𝑖𝑡 is a yield 
curve as in Eq.  (2). Specifically, 𝐋𝑖𝑡 is a three-dimensional vector,
(1, 𝑙1(𝑥𝑖𝑡; 𝜆), 𝑙2(𝑥𝑖𝑡; 𝜆)), where 

𝑙1(𝑥; 𝜆) =
1 − 𝑒−𝜆𝑥

𝜆𝑥
and 𝑙2(𝑥; 𝜆) =

1 − 𝑒−𝜆𝑥

𝜆𝑥
− 𝑒−𝜆𝑥, (5)

𝐁 is the corresponding vector of coefficients with individual elements 
𝛽𝑘, 𝑘 = 0,… , 2, and the decay parameter, 𝜆, is assumed to be time 
invariant. As a starting value, we take 𝜆𝑆𝑒𝑒𝑑 = 1. Standard errors are 
clustered at the bond level.

The results turn out to be practically identical to those under the 
classical DiD specification. Table  6 provides summary statistics on the 
differences in DiD coefficients and their 𝑝-values between the two 
specifications (classical minus yield-curve control) for the same sample 
couplets and idiosyncratic effects. The 8000 DiD-coefficient differences 
all equal 0.000 bps and the corresponding 𝑝-value differences range 
from −0.005 to −0.000. In short, the yield-curve control approach is 
just as misspecified as the classical DiD approach.
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Table 6
Performance of specification with straight yield-curve control.
This table shows summary statistics on the differences in DiD coefficients and their 𝑝-values between the classical DiD specification (see Fig. 
3) and the specification with straight yield-curve control, namely 𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝐁′𝐋𝑖𝑡 + 𝛼 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 + 𝛿 1𝑃𝑜𝑠𝑡,𝑡 + 𝛽𝐷𝑖𝐷 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 × 1𝑃𝑜𝑠𝑡,𝑡 + 𝜀𝑖𝑡. 𝛼 and 𝛿
are coefficients on the indicator variables for treated bonds and the post-event period, respectively. 𝐁′𝐋𝑖𝑡 is the yield curve. Specifically, 𝐋𝑖𝑡

is a three-dimensional vector, (1, 𝑙1(𝑥𝑖𝑡; 𝜆), 𝑙2(𝑥𝑖𝑡; 𝜆)), where 𝑙1,𝑡(𝑥; 𝜆) =
(

1−𝑒−𝜆𝑥

𝜆𝑥

)

 and 𝑙2,𝑡(𝑥; 𝜆) =
(

1−𝑒−𝜆𝑥

𝜆𝑥
− 𝑒−𝜆𝑥

)

. 𝐁 is the corresponding vector of 
coefficients with individual elements 𝛽𝑘, 𝑘 = 0,… , 2, and the decay parameter, 𝜆, is assumed to be time invariant. The classical DiD specification 
is estimated with OLS. The specification with straight yield-curve control is estimated with NLS with starting value 𝜆𝑆𝑒𝑒𝑑 = 1. In either case, 
standard errors are clustered at the bond level. The differences are calculated as statistic of the classical DiD specification minus the same 
statistic of the specification with straight yield-curve control. The underlying data are the 8000 sample couplets comprised of 1000 sample 
draws, four modes 𝑚 of the treated bonds, and the two idiosyncratic yield-curve effects at short- and long-end, respectively. 
 Mean SD Med Min Max N

 Differences in DiD coefficients (in bps) 0.000 0.000 0.000 −0.000 0.000 8,000 
 Differences in DiD 𝑝-values −0.002 0.002 −0.003 −0.005 −0.000 8,000 

Table 7
Different maturity controls in the control vector 𝐙.
This table shows estimated treatment effects using a simulated dataset with a heterogeneous idiosyncratic yield-curve 
short-end effect and 𝑚 equals one. There is no true treatment effect. The time difference between the pre and post 
periods is set as equivalent to one month. For different maturity controls in the vector 𝐙, as indicated, the table 
shows DiD effects estimated with Specification (1) and OLS and, underneath in parentheses, the 𝑝-value based on 
standard errors clustered at the bond level. 𝑎, 𝑏, and 𝑐 denote significance (two-sided) at the levels of 1%, 5%, and 
10%, respectively. DiD effects statistically significant at the 10%-level or stronger are marked in bold. 
 Specification (1):
 Maturity control in 𝐙
 None Maturity 𝑥 Diebold–Li Logarithm of
 yield curve maturity 𝑥
 𝑇 𝑟𝑒𝑎𝑡𝑒𝑑 × 𝑃𝑜𝑠𝑡 −3.34 −3.34 0.49𝒄 −5.61𝒄
 (0.40) (0.40) (0.05) (0.08)
 𝑥 omitted  
  
 𝑙1 −4516.86𝑎  
 (0.00)  
 𝑙2 −2721.68𝑎  
 (0.00)  
 ln(𝑥) 157.26𝑎
 (0.01)

 N 200 200 200 200  
 R-squared adjusted 0.5908 0.5908 0.9983 0.7184  

Since we use the same yield-curve specification in the estimation 
that is used to generate the data, it is clear that the problem is not 
with the yield-curve specification itself, but with how it is incorporated 
into the regression equation. Since 𝐁′𝐋𝑖𝑡 just removes the average 
term structure in the pooled data (treated, controls, pre- and post-
treatment), Specification (4) restricts yield-curve movements between 
the groups to parallel shifts. While this feature is explicit in Eq.  (4), 
the classical DiD specification imposes the same restrictions implicitly 
through the fixed bond effects. Thus, when idiosyncratic yield-curve 
effects are not homogeneous over maturity, false treatment effects arise 
equally under Specifications (1) and (4) through the mechanism of 
spurious and potentially systematic correlation between residual ma-
turity and the treatment assignment.11 The classical DiD specification 
and simple yield-curve control specifications are misspecified unless 
the parallel-shift assumption holds in the data. Because yield curves 
in practice change shape as time progresses, however, this is rarely, if 
ever, satisfied.

Adding residual maturity to Specification (1) does not do anything. 
Because residual maturity is linear in time, it is a linear combination 
of the bond- and time-fixed effects and, therefore, redundant. For this 
reason, the papers in Table  2 that use bond fixed effects and have matu-
rity control in 𝐙 employ nonlinear transformations of residual maturity. 
However, as illustrated in the example in Table  7, this can make matters 
worse. The example runs Specification (1) without controls and with 
residual maturity, its log, or the Diebold–Li curve with the correct value 

11 With longer pre- and post-event periods, the classical DiD specification is 
worse because the bond fixed effect does not take into account that bonds’ 
maturities change over the event window.

for the decay parameter (𝜆 = 0.7308) as controls on a simulated dataset 
with idiosyncratic effects only. The time difference between the pre 
and post periods is set as equivalent to one month. The results show 
that using a nonlinear transformation of residual maturity can increase 
the statistical significance of the DiD estimator even though, in fact, 
there is no true treatment effect. Remarkably, ‘‘controlling for residual 
maturity’’ can contribute to 𝑝-hacking. What is the solution? Logically, 
to deal with heterogeneous effects over the maturity spectrum, we need 
a DiD approach that specifically allows for such effects.

5. A solution: Flexible yield-curve DiD specification

A problem with the classical DiD specification and extensions of it 
that include yield curve control variables is that they are prone to pro-
ducing false treatment effects because they do not adequately address 
idiosyncratic, treatment-unrelated effects that vary over the maturity 
spectrum. In this section, we provide a solution to this problem that 
works well in samples with zero coupon bonds. We also discuss a more 
general approach in Section 9.

The solution considered here is the fully flexible DiD specifica-
tion introduced by Nyborg and Woschitz (2021) which estimates the 
treatment effect as a curve. The specification also estimates a baseline 
curve and incremental curves for treated bonds and the post-event time 
period. In this paper, we use the Diebold–Li curve, but other functional 
forms can also be used. In our case, the specification is given by 

𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝐁′
1𝐋𝑖𝑡+𝐁′

2𝐋𝑖𝑡 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖+𝐁′
3𝐋𝑖𝑡 1𝑃𝑜𝑠𝑡,𝑡+𝐁′

4𝐋𝑖𝑡 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖×1𝑃𝑜𝑠𝑡,𝑡 + 𝜀𝑖𝑡, (6)

where notation is as above except that each of the four indicators 
(constant, 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖, 1𝑃𝑜𝑠𝑡,𝑡, and 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖×1𝑃𝑜𝑠𝑡,𝑡) has its own Diebold–Li 

Journal of Financial Economics 170 (2025) 104081 

12 



K.G. Nyborg and J. Woschitz

curve, 𝐁′
𝑗𝐋𝑖𝑡, with 𝑗 = 1,… , 4 and three individual coefficients each, 

𝛽𝑘,𝑗 , 𝑘 = 0,… , 2. The decay parameter, 𝜆, is assumed to be time-
invariant and the same for treated and control bonds, which can easily 
be relaxed. Because it has no bond fixed effects, Specification (6) is 
substantially more parsimonious than the classical DiD specification.

The first curve, 𝑗 = 1, represents the pre-treatment spot curve of 
control bonds and is given by 

𝑠(𝑥; 𝜆) = 𝛽0,1 + 𝛽1,1 𝑙1(𝑥; 𝜆) + 𝛽2,1 𝑙2(𝑥; 𝜆), (7)

where {𝛽𝑘,1}2𝑘=0 are the estimated regression coefficients, 𝑥 is residual 
maturity, and 𝑙1 and 𝑙2 are as in Eq.  (5) with 𝜆 replaced by 𝜆. The 
second and third curves, 𝑗 = 2, 3, are defined similarly and represent 
incremental, or Delta, curves for treated bonds and the post-event 
period, respectively. The fourth curve, 𝑗 = 4, is the object of interest, 
that is, the DiD Delta curve: 
𝛥4(𝑥; 𝜆) = 𝛽0,4 + 𝛽1,4 𝑙1(𝑥; 𝜆) + 𝛽2,4 𝑙2(𝑥; 𝜆), (8)

where {𝛽𝑘,4}2𝑘=0 are the estimated regression coefficients. The DiD Delta 
curve, 𝛥4(𝑥; 𝜆), is a function of residual maturity, 𝑥, and thus returns 
the treatment effect at specific maturities. Treatment-unrelated idiosyn-
cratic yield-curve effects over the event are captured by the post-event 
Delta curve, 𝛥3(𝑥; 𝜆). Thus, unlike the classical DiD specification, such 
effects do not contaminate the DiD estimator. By including a separate 
curve for treated bonds, the specification allows a researcher to capture 
the incremental effect over the treatment event across the maturity 
spectrum.

We estimate the fully flexible yield-curve DiD specification in Eq.  (6) 
with NLS using the same 8000 samples of treated bonds and controls as 
above. In this data, there is no true treatment effect, only idiosyncratic 
effects that either affect predominantly the short-end of the maturity 
spectrum or the long end. The decay parameter, 𝜆, is estimated in-
sample together with the other parameters using the starting value 
𝜆𝑆𝑒𝑒𝑑 = 1.12 Standard errors are clustered at the bond level. For each 
regression, the estimation gives twelve coefficients and one estimate 
for lambda. We use these coefficients to calculate treatment effects 
at selected maturities and compute standard errors using the delta 
method.13

The results are in Table  8. The left side of the table shows the true 
idiosyncratic effect at the test maturities. For each maturity and each 
treated-bond 𝑚, the right side provides the minimum and maximum 
estimated treatment effects across all samples. Panel A uses all 8000 
datasets while Panel B filters out 2532 samples without treated and 
control bonds with maturities less than one year. We do this because 
curve fitting can be problematic without short-term bonds to anchor 
the curve.

Consider first the case that sample couplets are affected only by spu-
rious correlation between residual maturity and treatment assignment 
(𝑚 for treated bonds equals 0.25). Across the seven selected maturities 
and the 2000 (1954) datasets in Panel A (B), which is a total of 14,000 
(13,678) different cases, Specification (6) estimates treatment effects 
that are maximally ±0.01 bps away from the true effect of zero. With 
such precision, the approximately ten percent of coefficients that are 
statistically significant are economically insignificant. This is a large 
improvement compared to the large false treatment effects produced 
by the classical DiD specification that range from −11.59 to 12.01 bps 
(Fig.  3).

As the 𝑚 for treated bonds increases, residual maturities of treated 
bonds shift out. As discussed, this generates systematic correlation 
between residual maturity and treatment assignment. It also increases 

12 It is straightforward to extend this to having different 𝜆’s for treated and 
control bonds, pre- and post-treatment. One can also use NLS to estimate 𝜆’s 
first and then run OLS in a second step.
13 See, for example, Casella and Berger (2001).

the incidence of samples without short-term bonds because the uncon-
ditional distribution of treated-bond maturities becomes tilted to the 
right relative to the distribution of control-bond maturities. Therefore, 
we first discuss Panel B, where samples without short-term bonds 
are excluded. The key result is that the incidence of false treatment 
effects is eliminated (the maximum treatment effect in absolute value 
is 0.01 bps). In short, as long as the data is sufficiently complete that 
curves can be fit with reasonable precision, the fully flexible DiD 
specification resolves the problem of false treatment effects we saw 
with the classical DiD specification, the maturity-bucket approach, and 
the straight yield-curve control approach.

Moreover, the results in Panel A show that even if the bond data is 
incomplete at the short-end, the fully flexible model can perform very 
well. For example, the case of 𝑚 = 10 involves a heavy tilt of treated 
bonds toward the right relative to controls, which could induce curve 
mismeasurement. Yet, the falsely measured effects between −0.14 and 
+0.08 bps at the one-year maturity when 𝑚 = 10 are tiny compared to 
the corresponding effects from the classical DiD specification that lie 
between −24.06 and +22.99 bps (see Fig.  3).

6. Garbled estimates of true treatment effects

In this section, we examine the performance of the classical DiD 
specification in Eq.  (1) when there are true, maturity-dependent treat-
ment effects. To isolate the estimation impact of heterogeneous treat-
ment effects, we focus on the case without idiosyncratic effects. Thus, 
while the yield curve of treated bonds changes location and shape upon 
treatment, the control-bond curve does not move. We show that the 
classical DiD specification leads to estimates that can be uninformative 
and misleading.

We use the same sample couplets as above and yields continue to be 
generated by the Diebold and Li (2006) curve in Eq.  (2). As illustrated 
graphically in Fig.  4, we consider two scenarios for the treatment 
effects. In the first scenario, the treatment twists the rates of short-term 
(long-term) bonds up (down). For example, the one-year rate moves up 
by 6 bps, and the ten-year rate moves down by the same amount. In the 
second scenario, the treatment predominantly affects short-term bonds, 
pushing rates down. The magnitude is 6 bps at the one-year maturity, 
fading to zero at 6.96 years. Parameter values for the pre-treatment 
curve (which also applies to controls and is the same as in Section 4) 
and the true treatment effects are provided in the within-figure table.

6.1. Estimation using the classical DiD specification

We run the classical DiD specification in Eq.  (1) without maturity 
control using OLS. Standard errors are clustered at the bond level as 
before. The results are summarized in Figs.  5a and 5b for the twist and 
short-end scenarios, respectively. From left to right, the figure shows (i) 
the true maturity-dependent treatment effect, (ii) the distributions of 
the DiD estimates across samples when 𝑚 for treated bonds equals 0.25 
(in purple) and 10 years (in green; recall that 𝑚 = 0.25 for controls), 
and (iii) the DiD estimates plotted against their 𝑡-statistics for the same 
𝑚’s (and using the same color scheme).

In the twist scenario, the figure shows that for the vast major-
ity of samples, the classical DiD specification produces a statistically 
significantly negative DiD estimate. For 𝑚 = 0.25, 879 out of 1000 
DiD estimates are significantly negative (10% level). The other 121 
estimates are insignificant. As a result, a researcher is likely to conclude 
that the treatment effect is negative even though the true treatment 
effect is actually positive out to 3.82 years, as seen in the figure. If the 
underlying distribution of treated-bond maturities shifts to the right, 
the results are even stronger. As seen in the figure, the DiD estimate 
is now significantly negative for all 1000 samples. This occurs because 
the DiD coefficient captures an average of the positive treatment effect 
on short-maturity bonds and the negative effect on longer bonds. As
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Fig. 4. Modeling term-structure treatment effects.
To model the term structure we employ Diebold and Li’s (2006) specification. The mini table underneath each plot shows the parameter values to create the true underlying term 
structures as well as the resulting yield levels and yield differences at selected maturities. Figs.  4a and 4b provide graphical illustrations of the resulting yield and differences 
curves when there is a yield-curve treatment twist and a yield-curve treatment short-end effect, respectively, from pre- to post-treatment.

Fig. 5. Garbled treatment effects graphically.
Figs.  5a and 5b show true and measured treatment effects on the 1000 families of sample couplets for yield-curve treatment twist and treatment short-end effect, respectively, 
using OLS to estimate the same specification as in Fig.  3. From left to right, the graphs plot the true treatment effect over maturity, the distributions (box plots) if maturity of the 
treated bonds is drawn from triangular pdfs with 𝑚 = 0.25 years (purple diamonds) or 𝑚 = 10 years (green squares), and the estimated treatment effects against the 𝑡-statistics. The 
vertical dashed (red) lines in the plots to the far right mark the values of ±1.653 (two-sided confidence bands using 10%-significance level). The 𝑡-statistics are based on standard 
errors clustered at the bond-level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the residual-maturity distribution shifts out, more weight is put on 
long bonds because their frequency in the sample increases. Unaware 
of the misspecification problem in Eq.  (1) and the treatment twist, 
a researcher relying on the classical DiD specification would falsely 
believe that bond effects are adequately controlled for and erroneously 

conclude that treatment causes yields to fall regardless of residual 
maturity.

In the short-end scenario, treatment can go undetected if the distri-
bution of residual maturities for treated bonds is tilted sufficiently away 
from the region where there is an effect. If 𝑚 = 10 for treated bonds, 
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Table 8
The fully flexible yield-curve DiD specification to eliminate false treatment effects.
This table shows treatment effects estimated with the fully flexible yield-curve DiD specification 𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝐁′

1 𝐋𝑖𝑡 + 𝐁′
2 𝐋𝑖𝑡 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 + 𝐁′

3 𝐋𝑖𝑡 1𝑃𝑜𝑠𝑡,𝑡 + 𝐁′
4 𝐋𝑖𝑡 1𝑇 𝑟𝑒𝑎𝑡𝑒𝑑,𝑖 × 1𝑃𝑜𝑠𝑡,𝑡 + 𝜀𝑖𝑡

with notation as in Fig.  3, 𝐋𝑖𝑡 a three-dimensional vector of regressors with elements 1, 𝑙1(𝑥𝑖𝑡; 𝜆), and 𝑙2(𝑥𝑖𝑡; 𝜆), the latter two terms defined as in (5), and 𝐁𝑗 the corresponding 
three-dimensional vectors of coefficients with individual elements 𝛽𝑘,𝑗 , 𝑘 = 0,… , 2. The latter measure level, slope, and curvature of the baseline curve for control bonds pre 
treatment (𝑗 = 1) and the incremental differences of (i) treated bonds pre treatment (𝑗 = 2), (ii) control bonds post treatment (𝑗 = 3), and (iii) treated bonds post treatment (𝑗 = 4). 
𝐁4 captures level, slope, and curvature of the DiD Delta curve, 𝛥4(𝑥), which provides the treatment effects at maturity 𝑥. The specification is estimated with NLS, 𝜆𝑆𝑒𝑒𝑑 = 1, and 𝜆
is assumed to be time-invariant and the same for treated and control bonds. There are treatment-unrelated idiosyncratic yield-curve effects either at the short- or the long-end but 
the true, unconditional treatment effect is zero. At selected maturities, the table shows these true underlying effects and, to the right, the minimum and maximum of the estimated 
treatment effects across the two types of idiosyncratic yield-curve effects (at short- and long-end) and the 1000 families separately by 𝑚 using the DiD Delta curve, 𝛥4(𝑥). Standard 
errors are clustered at the bond level and calculated using the delta method.
 Residual Idiosyncratic yield- True treat- Distribution of estimated treatment effects (in bps)
 maturity curve effects (in bps) ment effect 𝑚 = 0.25 𝑚 = 1 𝑚 = 3 𝑚 = 10

 (in years) Short-end Long-end (in bps) Min Max Min Max Min Max Min Max

 Panel A: All sample couplets
1 −50.35 3.91 0 −0.01 0.01 −0.01 0.01 −0.02 0.02 −0.14 0.08 
2 −43.65 −1.47 0 −0.00 0.01 −0.01 0.01 −0.01 0.01 −0.06 0.03 
3 −35.82 −9.31 0 −0.01 0.00 −0.01 0.00 −0.00 0.00 −0.03 0.01 
5 −22.58 −23.60 0 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.01 0.01 
7 −13.69 −33.54 0 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00 
10 −5.77 −42.50 0 −0.00 0.00 −0.00 0.00 −0.00 0.01 −0.00 0.00 
15 0.77 −49.95 0 −0.00 0.00 −0.00 0.01 −0.00 0.01 −0.01 0.00 

 Number of sample couplets 2,000 2,000 2,000 2,000

 Panel B: Good sample couplets*
1 −50.35 3.91 0 −0.01 0.01 −0.01 0.01 −0.01 0.01 −0.01 0.01 
2 −43.65 −1.47 0 −0.00 0.01 −0.01 0.01 −0.01 0.00 −0.01 0.01 
3 −35.82 −9.31 0 −0.01 0.00 −0.01 0.00 −0.00 0.00 −0.01 0.01 
5 −22.58 −23.60 0 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00 
7 −13.69 −33.54 0 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00 
10 −5.77 −42.50 0 −0.00 0.00 −0.00 0.00 −0.00 0.01 −0.00 0.00 
15 0.77 −49.95 0 −0.00 0.00 −0.00 0.01 −0.00 0.01 −0.00 0.00 

 Number of sample couplets 1,954 1,818 1,210 486

* There is at least one treated and one control bond in one-year maturity bucket.

the DiD estimates are statistically insignificant in 69.9% of cases despite 
the strong negative true treatment effect at shorter maturities.

To summarize, the classical DiD specification in Eq.  (1) can lead 
to incorrect conclusions even in the absence of treatment-unrelated 
idiosyncratic yield-curve effects. The problem is that the classical DiD 
specification produces an average treatment effect across treated sam-
ple bonds. But this is not necessarily a very meaningful or informative 
economic quantity. When treatment effects are heterogeneous over the 
term structure – and there is no a priori reason to believe that they 
are not – the goal of estimation should be to capture and measure this, 
which Specification (1) is simply not designed to do.

6.2. Yield-curve control

Dealing with the problem we have just outlined requires allowing 
for heterogeneous effects over the maturity spectrum. As before, the 
straight yield-curve control in Specification (4) does not solve the prob-
lem. For each of the 8000 datasets – 4000 sample couplets of residual 
maturities times the two true treatment-effect scenarios – we compute 
the difference between the DiD coefficients from Specifications (1) and 
(4). All 8000 differences equal 0.000 bps and the differences in 𝑝-values 
range from −0.005 to 0.000. Specifications (1) and (4) are equally 
poor because they both falsely assume homogeneous effects over the 
maturity spectrum.

The fully flexible specification in Eq.  (6), however, works much 
better. The results are in Table  9. For brevity, samples where we do 
not have treated and control bonds with residual maturities of less 
than one year are excluded. The table provides the true underlying 
treatment effects at selected maturities for both the twist and the 
short-end scenarios and, to the right, the range of differences between 
true and estimated effects. The true effects are, for the most part, 
measured in single digit basis points. As seen, for all 5486 samples 

and seven selected maturities, the estimated effects are accurate to 
within a hundredth of a basis point. Thus, using the fully flexible yield-
curve DiD specification in Eq.  (6) results in meaningful and accurate 
treatment-effect estimates over the maturity spectrum.

The DiD estimator in the fully flexible specification, the DiD Delta 
curve, gives the treatment effect as a function of maturity. This is a 
meaningful estimator when the true treatment effect also depends on 
residual maturity. The simulations show that the DiD in curves ap-
proach is capable of measuring even relatively small treatment effects 
with precision over the maturity spectrum. By allowing for maturity-
dependent effects, it resolves the problem created by nonzero correla-
tion between residual maturity and treatment assignment that causes 
the classical and parallel shifts DiD specifications to fail.

7. Both false and garbled treatment effects

In this section, we combine treatment-unrelated idiosyncratic effects 
(Section 4) with systematic, true treatment effects (Section 6). The bond 
(residual maturity) samples are the same as above, and we continue to 
use the Diebold and Li (2006) curve in Eq.  (2) to generate bond yields.

Parameter values and yield changes for treated and control bonds at 
selected maturities are in Table  10. We consider two idiosyncratic and 
two treatment effects, for a total of four combinations. The two idiosyn-
cratic effects are the same as in Section 4 and work predominantly on 
either short or long maturities, respectively. The true treatment effects 
are the same as in Section 6, and either twist the yield curve up at the 
short end and down at the long end, or move it down predominantly 
at the short end, respectively. The idiosyncratic effects impact treated 
and control bonds equally while the treatment effects impact treated 
bonds only. In our simulation, the idiosyncratic effects are larger than 
the treatment effects, having a magnitude of around 50 bps at their 
peak versus 6 bps for the treatment effects.
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Table 9
The fully flexible yield-curve DiD specification to eliminate garbled treatment effects.
This table shows treatment effects estimated with the fully flexible yield-curve DiD specification (as in Table  8). The underlying samples are the ‘‘good sample couplets’’ defined as 
those with at least one treated and one control bond in the one-year maturity bucket (see Panel B of Table  8). There are no treatment-unrelated idiosyncratic yield-curve effects 
in the data but the treatment effect varies over maturity. At selected maturities, the table shows these true underlying effects and, to the right, the minimum and maximum of 
the difference between the estimated and the true treatment effects across the two types of true treatment effects and the good sample couplets by 𝑚 using the DiD Delta curve, 
𝛥4(𝑥). Standard errors are clustered at the bond level and calculated using the delta method.
 Residual Idiosyn- True treatment Differences between estimated and true treatment effects (in bps)
 maturity cratic effect effect (in bps) 𝑚 = 0.25 𝑚 = 1 𝑚 = 3 𝑚 = 10

 (in years) (in bps) Twist Short-end Min Max Min Max Min Max Min Max

1 0 5.87 −6.23 −0.00 0.00 −0.01 0.01 −0.01 0.01 −0.01 0.01  
2 0 3.75 −2.97 −0.00 0.00 −0.00 0.00 −0.00 0.01 −0.01 0.01  
3 0 1.58 −1.39 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.01 0.01  
5 0 −1.87 −0.26 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00  
7 0 −4.11 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00  
10 0 −6.09 0.08 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00  
15 0 −7.72 0.09 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00  

 Number of sample couplets 1,954 1,818 1,210 486

Table 10
Modeling idiosyncratic term-structure and true treatment effects.
To model the term structure we employ Diebold and Li’s (2006) yield-curve specification. This table shows the parameter values to create the true underlying term structures as 
well as the resulting yield levels and yield differences at selected maturities. Panels A and C cover the cases of a yield-curve treatment twist and a yield-curve treatment effect 
only at the short-end in case of an idiosyncratic short-end effect and Panels B and D, respectively, the same in case of an idiosyncratic long-end effect from pre- to post-treatment.
 Parameter values Yields (in %) and differences (in pps)
 𝛾0 𝛾1 𝛾2 𝜆 1y 2y 3y 5y 7y 10y 15y

 Panel A: General short-end effect, treatment yield-curve twist
 Pre-curve 4.000 −2.000 0.000 0.7308 2.58 2.95 3.19 3.47 3.61 3.73 3.82
 Post-curve controls 4.140 −2.650 −0.800 0.7308 2.08 2.51 2.83 3.24 3.47 3.67 3.83
 Difference −0.50 −0.44 −0.36 −0.23 −0.14 −0.06 0.01
 Post-curve treated 4.030 −2.470 −0.620 0.7308 2.14 2.55 2.85 3.22 3.43 3.61 3.75
 Difference 0.06 0.04 0.02 −0.02 −0.04 −0.06 −0.08

 Panel B: General long-end effect, treatment yield-curve twist
 Pre-curve 4.000 −2.000 0.000 0.7308 2.58 2.95 3.19 3.47 3.61 3.73 3.82
 Post-curve controls 3.350 −1.350 1.000 0.7308 2.62 2.93 3.10 3.23 3.28 3.30 3.32
 Difference 0.04 −0.01 −0.09 −0.24 −0.34 −0.43 −0.50
 Post-curve treated 3.240 −1.170 1.180 0.7308 2.68 2.97 3.11 3.21 3.23 3.24 3.24
 Difference 0.06 0.04 0.02 −0.02 −0.04 −0.06 −0.08

 Panel C: General short-end effect, treatment short-end effect
 Pre-curve 4.000 −2.000 0.000 0.7308 2.58 2.95 3.19 3.47 3.61 3.73 3.82
 Post-curve controls 4.140 −2.650 −0.800 0.7308 2.08 2.51 2.83 3.24 3.47 3.67 3.83
 Difference −0.50 −0.44 −0.36 −0.23 −0.14 −0.06 0.01
 Post-curve treated 4.141 −2.781 −0.670 0.7308 2.02 2.48 2.82 3.24 3.47 3.67 3.83
 Difference −0.06 −0.03 −0.01 0.00 0.00 0.00 0.00

 Panel D: General long-end effect, treatment short-end effect
 Pre-curve 4.000 −2.000 0.000 0.7308 2.58 2.95 3.19 3.47 3.61 3.73 3.82
 Post-curve controls 3.350 −1.350 1.000 0.7308 2.62 2.93 3.10 3.23 3.28 3.30 3.32
 Difference 0.04 −0.01 −0.09 −0.24 −0.34 −0.43 −0.50
 Post-curve treated 3.351 −1.481 1.130 0.7308 2.56 2.90 3.08 3.23 3.28 3.30 3.32
 Difference −0.06 −0.03 −0.01 0.00 0.00 0.00 0.00

7.1. The classical DiD specification

When both idiosyncratic and true treatment effects are present in 
the data, the classical DiD specification in Eq.  (1) produces the sum 
of the corresponding individual false and garbled treatment effects 
from Sections 4 and 6. This is evident by comparing the DiD estimates 
with both effects present to the sum of the DiD estimates with the 
individual effects only. Across the four combinations of idiosyncratic 
and treatment effects, the four 𝑚’s for treated-bond residual maturities, 
and the 1000 sample draws – a total of 16,000 cases – the differences 
range from −0.003 to 0.003 bps, which is negligible.

The problem with the classical DiD specification in Eq.  (1) is that it 
assumes constant idiosyncratic and true treatment effects over the ma-
turity spectrum. Thus, when these effects are actually heterogeneous, 
the specification produces a potpourri of false treatment effects and 
garbled true effects. The magnitude of the error is a function of the 
underlying yield-curve effects and the treatment-maturity correlation 
arising from differences in the maturity distributions of treated and 
control bonds. More extreme differences in effects across maturities and 
more extreme correlations lead to larger errors. As before, the straight 
yield-curve control in Specification (4) is just as problematic as the 

classical DiD specification. Across the four effect combinations, the four 
treated-bond 𝑚’s, and the 1000 sample draws, the DiD estimates are 
identical in all 16,000 cases.

7.2. Fully flexible yield-curve DiD specification

Finally, we report on the results from running the DiD in curves 
in Eq.  (6) on the dataset with idiosyncratic and true treatment ef-
fects. The estimated effects are based on the DiD Delta curve, 𝛥4(𝑥). 
Table  11 shows the results. The table provides the true underlying 
effects of the four combinations of idiosyncratic effects (predominantly 
short-end or long-end) and treatment effects (twist or predominantly 
short-end) at seven selected maturities. To the right, for each of the 
seven maturities, it shows the minimum and maximum of the range of 
differences between estimated and true treatment effects across good 
sample couplets, broken down by 𝑚 for the treated bonds. As above, 
a good sample couplet is one in which there is both a treated and a 
control bond with less than one year of residual maturity. This gives a 
total of 10,936 runs. The largest estimation error is 0.01 bps in absolute 
value terms. In other words, DiD in curves accurately captures the true 
treatment effects.
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Table 11
The fully flexible yield-curve DiD specification to eliminate both false and garbled treatment effects.
This table shows treatment effects estimated with the fully flexible yield-curve DiD specification (as in Table  8). The underlying samples are the ‘‘good sample couplets’’ defined 
as those with at least one treated and one control bond in the one-year maturity bucket (see Panel B of Table  8). There are both treatment-unrelated idiosyncratic yield-curve as 
well as yield-curve treatment effects in the data and both vary over maturity. At selected maturities, the table shows these true underlying effects and, to the right, the minimum 
and maximum of the difference between the estimated and the true treatment effects across the four combinations of idiosyncratic effects (at short- or long-end) and treatment 
effects (twist or short-end) and the good sample couplets separately by 𝑚 using the DiD Delta curve, 𝛥4(𝑥). Standard errors are clustered at the bond level and calculated using 
the delta method.
 Residual Idiosyncratic yield-curve True treatment Differences between estimated and true treatment effects (in bps)
 maturity effects (in bps) effect (in bps) 𝑚 = 0.25 𝑚 = 1 𝑚 = 3 𝑚 = 10

 (in years) Short-end Long-end Twist Short-end Min Max Min Max Min Max Min Max

1 −50.35 3.91 5.87 −6.23 −0.01 0.01 −0.01 0.01 −0.01 0.01 −0.01 0.01  
2 −43.65 −1.47 3.75 −2.97 −0.00 0.00 −0.01 0.01 −0.01 0.01 −0.01 0.01  
3 −35.82 −9.31 1.58 −1.39 −0.01 0.00 −0.01 0.00 −0.01 0.00 −0.01 0.01  
5 −22.58 −23.60 −1.87 −0.26 −0.00 0.00 −0.01 0.00 −0.00 0.00 −0.00 0.00  
7 −13.69 −33.54 −4.11 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00  
10 −5.77 −42.50 −6.09 0.08 −0.00 0.00 −0.00 0.00 −0.00 0.01 −0.00 0.00  
15 0.77 −49.95 −7.72 0.09 −0.00 0.00 −0.01 0.01 −0.01 0.01 −0.00 0.00  

 Number of sample couplets 3,908 3,636 2,420 972

Table 12
The fully flexible DiD model with alternative curve specifications.
This table shows distributions of the difference between estimated and true treatment effects at selected maturities for the fully flexible yield-curve DiD specification in Eq.  (6) 
using Fisher (1966) and Svensson (1994) curves (see Footnote 14 for details) and OLS and NLS, respectively. The table uses the 4000 simulated maturity sample couplets to 
produce 24,000 yield sample couplets: 8000 comprise one of the two idiosyncratic yield-curve effects and 16,000 a combination of an idiosyncratic with one of the two treatment 
effects. In each maturity sample couplet, the shortest (longest) bonds are removed until the shortest (longest) treated and the shortest (longest) control bond are no more than 
0.25 (1) years apart from each other (no samples are lost because of this filter). Panel A shows results for good sample couplets. A sample is labeled ‘‘good’’ for maturity 𝑥 if there 
are at least three treated and three control bonds in the maturity bucket to the left as well as in that to the right using the maturity-bucket grid formed by the seven selected 
maturities, i.e., (0, 1], (1, 2], . . . , (10, 15], and (15, 20]. If this is not satisfied, the sample is labeled ‘‘bad’’ for that maturity. Panel B (C) shows results for bad sample couplets at 
maturity 𝑥 when 𝑚 = 0.25 or 𝑚 = 1 (𝑚 = 3 or 𝑚 = 10) years. ‘‘e’’ stands for error. 
 Residual Maturity Yield Differences between estimated and true treatment effects (in bps)
 maturity sample sample Fisher (1966) Svensson (1994)
 (in years) couplets couplets Mean Min P1 Med P99 Max e>1bp Mean Min P1 Med P99 Max e>1bp

 Panel A: Good samples
1 641 3,846 0.11 −1.11 −0.47 0.07 0.88 1.99 23 0.00 −0.01 −0.00 0.00 0.00 0.01 –
2 1,287 7,722 −0.03 −1.55 −0.52 −0.02 0.42 1.00 6 0.00 −0.01 −0.00 0.00 0.00 0.01 –
3 2,105 12,630 −0.04 −1.31 −0.47 −0.02 0.29 0.69 4 0.00 −0.01 −0.00 0.00 0.00 0.01 –
5 3,552 21,312 0.01 −0.53 −0.25 0.02 0.28 0.99 – 0.00 −0.01 −0.00 0.00 0.00 0.01 –
7 3,805 22,830 0.02 −0.77 −0.27 0.01 0.34 1.38 3 −0.00 −0.01 −0.00 −0.00 0.00 0.01 –
10 3,980 23,880 −0.01 −0.99 −0.28 −0.01 0.26 0.49 – 0.00 −0.01 −0.00 0.00 0.00 0.01 –
15 1,447 8,682 0.02 −0.83 −0.44 0.02 0.46 0.86 – 0.00 −0.01 −0.00 0.00 0.00 0.01 –

 Total 16,817 100,902 36 0

 Panel B: Bad samples when 𝑚 = 0.25 or 𝑚 = 1 years
1 1,372 8,232 0.08 −2.05 −0.73 0.05 1.09 3.30 135 −0.00 −0.06 −0.01 −0.00 0.01 0.15 –
2 956 5,736 −0.04 −2.14 −0.72 −0.03 0.61 1.74 32 −0.00 −0.02 −0.01 −0.00 0.01 0.04 –
3 618 3,708 −0.06 −1.34 −0.65 −0.05 0.42 1.10 8 −0.00 −0.01 −0.00 −0.00 0.00 0.01 –
5 107 642 0.02 −0.53 −0.42 0.02 0.41 0.64 – −0.00 −0.01 −0.00 0.00 0.00 0.00 –
7 87 522 0.03 −0.66 −0.50 0.03 0.48 0.70 – 0.00 −0.00 −0.00 0.00 0.00 0.00 –
10 13 78 −0.06 −1.04 −1.04 −0.04 0.36 0.36 1 0.00 −0.00 −0.00 0.00 0.00 0.00 –
15 1,429 8,574 0.02 −3.13 −0.79 0.01 0.94 5.62 118 −0.00 −0.02 −0.01 0.00 0.01 0.02 –

 Total 4,582 27,492 294 0

 Panel C: Bad samples when 𝑚 = 3 or 𝑚 = 10 years
1 1,987 11,922 0.27 −3.44 −2.10 0.09 4.72 8.47 2,598 0.00 −4.99 −0.17 −0.00 0.16 5.27 25
2 1,757 10,542 0.05 −3.68 −1.01 0.03 1.35 2.87 388 0.00 −0.89 −0.06 −0.00 0.06 1.51 3
3 1,277 7,662 −0.02 −3.04 −0.98 −0.00 0.77 2.28 91 0.00 −0.19 −0.02 0.00 0.02 0.44 –
5 341 2,046 −0.00 −0.99 −0.53 0.01 0.46 0.81 – 0.00 −0.02 −0.01 0.00 0.01 0.03 –
7 108 648 0.02 −0.66 −0.36 0.01 0.44 0.59 – 0.00 −0.01 −0.00 0.00 0.00 0.00 –
10 7 42 −0.00 −0.40 −0.40 −0.02 0.37 0.37 – 0.00 −0.00 −0.00 0.00 0.00 0.00 –
15 1,124 6,744 0.00 −1.70 −0.67 0.01 0.62 1.60 32 0.00 −0.02 −0.01 0.00 0.01 0.01 –

 Total 6,601 39,606 3,109 28

These results illustrate that the fully flexible specification is capable 
of separating small, maturity-dependent treatment effects from large, 
maturity-dependent idiosyncratic effects. Through the DiD Delta curve, 
𝛥4(𝑥), the specification estimates the treatment effect as a function of 
maturity, and through the post-treatment Delta curve, 𝛥3(𝑥), it accu-
rately controls for treatment-unrelated idiosyncratic effects. Thus, false 
treatment effects are eliminated and treatment effects meaningfully 
expressed as a function of maturity. As a result, correlation between 
treatment assignment and residual maturity is not an issue.

7.3. Trend plots

Visual inspection of trend lines is a commonly used diagnostic 
tool to assess the exclusion restriction in DiD analyses. A graphical 
detection of non-parallel pre-event trends is interpreted as DiD analyses 
being problematic because measured treatment effects can result from 
treatment-unrelated variation in the data (Roberts and Whited, 2013). 
When dealing with variables that have term structures, it is important 
to pay attention to differences in residual maturities between treated 
and control units. Suppose, for example, that treated units have shorter 
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maturities than controls and that there are idiosyncratic effects in 
the pre-event period that pushes the long end up. This would result 
in non-parallel trends of average outcome variables. Observing this, 
a researcher may decide to abandon the research. If there are true 
treatment effects, these will consequently go undetected.

It is also possible that the distributions of treated and control units 
over residual maturities combine with heterogeneous idiosyncratic ef-
fects in such a way that pre-event trends of averages look parallel 
despite differences in residual maturities, while, subsequently, post-
event idiosyncratic movements give rise to false treatment effects under 
the classical DiD specification as discussed. A similar problem can 
arise under a steep curve, where differences in residual maturities 
between treated and control units give rise to differences in pre-event 
outcome variables that can be so large that it becomes difficult to 
detect smaller trends. Falsely assured by what looks like parallel trends, 
a researcher running the classical DiD specification, with or without 
maturity control, may subsequently falsely conclude that there is a 
statistically significant treatment effect. The key point is that trend plots 
need to provide adequate control for differences in residual maturities 
to be meaningful.

The term-effect problem with respect to trend plots can potentially 
be mitigated by using maturity buckets – averaging first within buckets 
and then across – but the usefulness of this approach depends on the 
closeness of matching and outcome variable variation within buckets. 
A more complicated approach could involve estimating curves at a 
suitable frequency and look for systematic deviations from parallel 
trends in different parts of the maturity spectrum. However, it is even 
more important to use a well designed DiD methodology. As implied 
by our results, the fully flexible DiD specification is well specified even 
if there are non-parallel pre-event trends of treated and control unit 
averages that are driven by residual maturity differences between the 
two groups.

8. Alternative curves and an example

In this section, we address the sensitivity of a DiD in curves to the 
functional form. Using our simulated data, we consider alternatives to 
the Nelson–Siegel/Diebold–Li curve from the literature. In addition, we 
provide an example with real data that compares performance using the 
classical DiD specification versus DiD in curves.

8.1. Alternative curves

Prior to Nelson and Siegel (1987), curves were often fitted as poly-
nomials, especially cubics, sometimes with additional non-exponential 
terms. A prominent example is Fisher (1966), who proposes a cubic 
with an added ln(𝑥) term. Cubics and their variations have the draw-
backs that they blow up at long maturities and can impute too much 
local curvature even though they can also fit real data well (Nelson 
and Siegel, 1987). Below, we present the results from running the fully 
flexible DiD specification on our simulated data using two alternative 
curves: Fisher (1966) and Svensson’s (1994) extension of Nelson and 
Siegel (1987).14 We use the same 4000 sample couplets of maturities 
as before.

In practice, as well as in our simulated data, the yield curve typically 
exhibits substantial curvature at short maturities. This can be especially 
problematic when we work with a less than perfect curve specification. 
For this reason, we sequentially remove the shortest bond from each 
sample couplet until the difference in maturity between the shortest 
treated and shortest control bond is no more than 0.25 years. We 

14 This means that 𝐋𝑖𝑡 in Specification (6) becomes either (i) Fisher (1966): 
(1, 𝑥, 𝑥2, 𝑥3, ln(𝑥)); or (ii) Svensson (1994): (1, 𝑙1,𝑡(𝑥; 𝜆1), 𝑙2,𝑡(𝑥; 𝜆1), 𝑙3,𝑡(𝑥; 𝜆2)), 
where 𝑙1,𝑡(𝑥; 𝜆1) = 1−𝑒−𝑥∕𝜆1

𝑥∕𝜆1
, 𝑙2,𝑡(𝑥; 𝜆1) = 1−𝑒−𝑥∕𝜆1

𝑥∕𝜆1
− 𝑒−𝑥∕𝜆1 , and 𝑙3,𝑡(𝑥; 𝜆2) = 1−𝑒−𝑥∕𝜆2

𝑥∕𝜆2
−

𝑒−𝑥∕𝜆2 . Subscripts on 𝑥 are not shown. 

also sequentially remove the longest bond from each sample couplet 
until the difference in maturity between the longest treated and longest 
control bond is no more than one year. No sample couplet is lost as a 
result of this proximity filtering procedure.

For each sample couplet of maturities, we generate two samples 
of treated and control bond yields using the two idiosyncratic effects 
discussed above. We then generate four additional samples of yields by 
adding the two treatment effects (as above) to each idiosyncratic effect. 
Thus, in total, there are 24,000 individual samples (of Diebold–Li yield 
couplets), 16,000 of which have true treatment effects.

For each of the two alternative curve specifications, we estimate 
treatment effects using the fully flexible approach at the following 
maturities: 1, 2, 3, 5, 7, 10, and 15 years. The grid formed by these 
test-maturities gives rise to a set of maturity buckets, {(𝑎𝑖, 𝑏𝑖]}8𝑖=1, with 
the leftmost and rightmost buckets being (0, 1] and (15, 20], respectively. 
For each test-maturity, we label a sample as ‘‘good’’ if there are at least 
three treated bonds and at least three controls in the maturity buckets 
to the immediate left and right. If this is not satisfied, the sample is 
labeled as ‘‘bad’’ for that test-maturity. Under Fisher’s (1966) curve 
specification, the model is estimated with OLS. Under Svensson (1994), 
we use NLS.

Table  12 reports on the differences between the estimated and true 
treatment effects at the seven test-maturities. We first discuss Panel A, 
which is for the good samples. Because of the simulation structure with 
𝑚 = 0.25, 1, 3, 10 for treated bonds and 𝑚 = 0.25 for controls, there are 
fewer good samples for the short and 15 year maturities than for the 
intermediate test-maturities. As seen, the Fisher (1966) model performs 
well when samples are good; estimation errors exceed one basis point 
in only 36 out of 100,902 cases, or 0.04%. Most of these are at the one-
year maturity, where the incidence of errors larger than a basis point 
is still small, namely, 0.60%. The Svensson (1994) model, has a perfect 
fit, with the largest estimation error being 0.01 bps in absolute value. 
This is not surprising since it nests Nelson–Siegel/Diebold–Li.

Panel B is for bad samples when the unconditional distributions of 
control and treated bond maturities are the same or close (𝑚 = 0.25 or 
1 for treated bonds). For these bad samples, estimation performance 
remains good. For the Fisher (1966) model, there are now 294 out 
of 27,492 (1.07%) estimates that exceed one basis point. These are 
predominantly at the extremities of the maturity spectrum. Svensson’s 
model once again performs almost perfectly, with the largest estima-
tion error being 0.15 bps (in absolute value). This is at the one-year 
maturity. At other maturities, the largest error is 0.04 bps in absolute 
value.

Panel C is for bad samples when treated bonds are drawn from 
distributions that are highly skewed relative to that of control bonds 
(𝑚 = 3 or 10). The scarcity of treated bonds at the short end of the 
maturity spectrum gives rise to poor estimation performance at short 
maturities. However, performance remains good even for the Fisher 
(1966) model at maturities of three years and up, with only 0.72% of 
cases having an estimation error larger than one basis point. In this 
range, Svensson’s (1994) model has an almost perfect fit.

These results show that having the wrong curve specification is 
not necessarily a problem as long as treated and control bond sample 
distributions are not heavily skewed away from each other. Larger 
denseness of bonds around the test-maturity helps performance.

8.2. Example with real data

The example uses a dataset of two groups of zero-coupon Spanish 
government bonds, each with its own set of haircuts in Eurosystem 
repos as set by the European Central Bank (ECB). In these operations, 
the Eurosystem provides reserves to banks in the euro area against 
collateral, including Spanish government bonds. For a given residual 
maturity, haircuts for Group 1 bonds are low and haircuts for Group 2 
bonds are correspondingly high. This disparity is a result of bonds being 
rated by different rating agencies (or not at all), with different risk 
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Table 13
Example – Eurosystem haircut update.
On October 1, 2013, haircuts in Eurosystem repos for reserves were updated differentially for eligible bonds rated AAA to A− (labeled ‘‘controls’’) versus those rated BBB+ to 
BBB− (labeled ‘‘treated’’) according to the Eurosystem’s rating classification, with haircuts increasing relatively more in the latter group across the maturity spectrum. We run 
several DiD specifications on Spanish government bonds using a forty-day window around this event. Because all treated bonds are zeros, we use zeros only as controls. Bonds 
with stale market prices in Bloomberg as well as the announcement date, September 27, and the day between this and October 1, September 30, are dropped. Panel A shows the 
distribution of residual maturities. The truncated sample drops bonds with residual maturities of more than 7.5 years. The other panels show DiD estimates using the classical 
DiD specification (Panel B) or at selected maturities under DiD in curves (Panel C). Specifications with Diebold–Li curves are estimated with NLS; otherwise, OLS. Standard errors 
are clustered at the bond level (and calculated using the delta method when NLS is used). Superscripts indicate statistical significance at the 1% (a), 5% (b), and 10% levels (c). 
Significant coefficients at 10% or better are in bold. 𝑡-statistics are in parentheses.
 Full sample Truncated sample
 Panel A: Number of bonds by maturity buckets
 Maturity buckets Treated Control Treated Control

 (in years) Number Percent Number Percent Number Percent Number Percent

 0–1 2 15.4 5 6.8 2 18.2 5 14.3
 1–3 5 38.5 10 13.7 5 45.5 10 28.6
 3–5 2 15.4 9 12.3 2 18.2 9 25.7
 5–7 1 7.7 10 13.7 1 9.1 10 28.6
 7–10 2 15.4 6 8.2 1 9.1 1 2.9
 10–15 11 15.1  
 15–20 9 12.3  
 20–25 10 13.7  
 > 25 1 7.7 3 4.1  
 Total 13 100.0 73 100.0 11 100.0 35 100.0

 Panel B: Classical DiD specification, Eq.  (1)
 𝛽𝐷𝑖𝐷 −0.081𝒂 −0.057𝒄 −0.004 −0.007
 (−2.73) (−1.84) (−0.21) (−0.41)
 ln(𝑥) 0.927𝒄 −0.266
 (1.96) (−1.38)
 Adj. R-squared 0.6912 0.7152 0.9320 0.9339

 Panel C: Fully flexible yield-curve DiD specifications, Eq.  (6)  
 Maturity (in years) Diebold–Li (2006) Fisher (1966) Diebold–Li (2006) Fisher (1966)
 1 0.038𝒄 0.005 0.041𝒄 0.039𝒃
 (1.95) (0.32) (1.72) (2.27)
 2 0.018 −0.010 0.011 0.022𝒄
 (1.33) (−0.91) (0.92) (1.82)
 3 0.006 0.002 −0.007 −0.000
 (0.46) (0.13) (−0.45) (−0.02)
 5 −0.004 0.017 −0.024 −0.014
 (−0.30) (1.46) (−1.51) (−0.94)
 7 −0.009 −0.002 −0.029 −0.022
 (−0.49) (−0.20) (−1.39) (−0.80)
 Adj. R-squared 0.9903 0.9921 0.9804 0.9807
 𝜆 0.6148 − 0.4726 −

assessments of Spain, and the fact that haircuts in Eurosystem repos 
are a function of these credit ratings. The event is a Eurosystem haircut 
update on October 1, 2013, that caused haircuts in these two groups to 
diverge, with Group 2 bonds experiencing a relative increase in haircuts 
over the whole maturity spectrum.15 We label Group 2 bonds as treated 
and Group 1 bonds as controls. The two groups of bonds are from 
the public list of eligible collateral as published by the ECB.16 Market 
prices are obtained from Bloomberg for a forty-day window around 
the event. A two-month window is commensurate with best practice 
in the literature (see Table  2). Bonds that experience rating changes 
over the event window or have stale or missing market prices are 
dropped. Because the Spanish government bonds with low ratings and 
high haircuts (Group 2) with market prices in the Bloomberg system 
are exclusively zeros, we also use zeros as controls. We are not aware 
of differences between the bonds in the two groups except for their 
residual maturities and Eurosystem haircuts.

The economic question is whether haircuts in central-bank repos 
affect bond yields. They may do so if the reserves provided in these 
repos have value to banks that can participate in the operations. To 
examine this, we employ DiD analyses.17 Results are in Table  13.

15 Full details on how haircuts are set by the ECB for government bonds, 
the data, the event, and references are in Internet Appendix A.3.
16 See https://www.ecb.europa.eu/mopo/coll/assets/html/list-MID.en.html.

The first point to observe is that the distributions of residual ma-
turities of the two groups are dissimilar (Panel A). For example, there 
is only one treated bond with maturity in excess of ten years, whereas 
45.2% of controls are in this range. Thus, we run the analyses on the 
full dataset as well as a truncated version where maturity distribu-
tions are more similar. In the truncated sample, bonds with residual 
maturity of more than 7.5 years are dropped, leaving the range of 
maturities as 0.33 to 7.08 years for both groups. Panel B (to the left) 
shows that the classical DiD specification on the full sample, with 
or without ln(𝑥) as maturity control, results in an economically large 
negative treatment estimate (−8.1 bps and −5.7 bps, respectively) that 
is statistically significant at conventional levels. One could, therefore, 
be tempted to conclude that higher haircuts improve yields, which 
makes little economic sense. However, Panel B (to the right) also shows 
that on the truncated dataset with more congruent distributions of 
treated and control bonds, the classical DiD specification results in a 
statistically insignificant treatment estimate in both cases (with and 
without maturity control). The negative estimate based on the full 

17 The haircut update was announced on September 27, 2013 and imple-
mented two business days later, on October 1, 2013. We exclude the two 
business days before implementation, thus estimating a joint announcement 
and implementation effect.
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dataset with highly dissimilar maturity distributions is an example of a 
false treatment effect.

It would be premature, however, to conclude from this that there 
is no treatment effect. Panel C shows the results from DiD analyses in 
curves using Diebold and Li (2006) and Fisher (1966) specifications on 
the full and truncated datasets. The results show a significant treatment 
effect at the one-year maturity of around four basis points, but no effect 
at other test maturities. This could be because participants in Eurosys-
tem repos to whom additional reserves from the central bank have 
marginal value hold shorter-dated paper. Under Diebold–Li curves, 
the results are approximately the same on the full and the truncated 
datasets (3.8 bps and 4.1 bps, respectively at the one-year maturity), 
which serves as an example of the robustness of this particular speci-
fication in real data. This may be because bonds are often priced off 
this or similar curves in practice. While the Fisher specification shows 
no significant treatment effect under the full dataset, when maturity 
distributions are more congruent, it gives results that are similar to 
those under Diebold–Li, in particular, an estimated treatment effect on 
treated bonds of 3.9 bps at the one-year maturity.

9. Semi-synthetic matching

In this section, we discuss an alternative two-stage matching ap-
proach for dealing with the term effect problem. In the first stage, 
DiDs are calculated individually for each treated bond using a maturity-
matched synthetic control. In the second stage, treatment effects are 
examined over the maturity spectrum. We continue to work with the 
same samples as above. In this zero coupon setup, if we fit a curve in 
the second stage with the same functional form as used in the fully 
flexible DiD specification, point estimates of treatment effects turn out 
to be the same. More generally, the semi-synthetic matching approach 
is also well suited to samples with coupon bonds.

9.1. First stage

The basic idea is to compare actual yields of treated bonds to 
model-implied yields of synthetic controls that are matched on residual 
maturities and coupons. We calculate the ‘‘semi-synthetic DiD’’ for each 
treated bond as follows:

1. For each period, pre-event and post-event, estimate the control-
bond yield curve.

2. For each treated bond, 𝑖, and period, 𝑡, compute the yield dif-
ference, 𝛥𝑦𝑖,𝑡, as the actual yield of the treated bond minus the 
model-implied yield of the matched synthetic control bond.

3. For each treated bond, 𝑖, calculate the difference between the 
yield differences post and pre treatment. This is the semi-
synthetic DiD for each bond over the treatment event, specifi-
cally, 𝑦𝑖𝑒𝑙𝑑𝐷𝑖𝐷

𝑖 = 𝛥𝑦𝑖,𝑃 𝑜𝑠𝑡 − 𝛥𝑦𝑖,𝑃 𝑟𝑒.

The semi-synthetic DiDs remove idiosyncratic term effects that im-
pact treated and control bonds the same way. This resolves the problem 
of false treatment effects. However, garbled measurement of true treat-
ment effects can still arise, depending on how the semi-synthetic DiDs 
are used. We consider two types of approaches. In the first and simplest 
one, the semi-synthetic DiDs are averaged, possibly within selected 
maturity buckets. In the second and more complex approach, a curve 
is fitted through the semi-synthetic DiDs.

We use the same 16,000 datasets as in Section 7, generated by 4000 
sample couplets of residual maturities and two possibilities each for the 
idiosyncratic and true treatment effects. In stage one, we estimate semi-
synthetic DiDs within these datasets. The yield curve for control  bonds 

is estimated with the Diebold and Li (2006) specification in Eq.  (2). For 
each of the 16,000 datasets, there are fifty treated bonds and, thus, fifty 
semi-synthetic DiDs.

9.2. Second-stage: Average semi-synthetic DiDs

For each of the 16,000 samples, we regress the fifty semi-synthetic 
DiDs on a constant, 

𝑦𝑖𝑒𝑙𝑑𝐷𝑖𝐷
𝑖 = 𝛽𝐷𝑖𝐷 × 𝐶 + 𝜀𝑖, (9)

to produce the average semi-synthetic DiD. Since the synthetic DiDs 
are designed to eliminate false treatment effects, we compare the 
resulting DiD estimates from Eq.  (9) to those from the classical DiD 
specification in Eq.  (1) when only true treatment effects are present. 
Across the 16,000 cases, the differences in DiD coefficients range from 
−0.003 bps to 0.004 bps.18 Thus, averaging over semi-synthetic DiDs 
eliminates false treatment effects but not garbled true treatment effects, 
and the discussion on this issue from Section 6 applies. Averaging 
semi-synthetic DiDs within maturity buckets can reduce the garbling 
problem, but the paucity of data in practice limits this approach.

9.3. Second stage: Fitting a curve

There are many ways to fit a second-stage curve, for instance, one 
can run linear or nonlinear regressions or use specifications from the 
yield-curve literature as above. In practice, it may be advisable to 
consider different curve specifications for robustness. Below, we fit 
a Diebold–Li curve and compare the results to those from the fully 
flexible approach in Eq.  (6). In addition, we consider linear regression. 
Although misspecified, linear regression is standard and, therefore, 
interesting to look at.

We fit Diebold–Li curves for the semi-synthetic DiDs from the first 
stage against residual maturity in the same 10,936 good datasets as 
in Table  11 (NLS with 𝜆𝑆𝑒𝑒𝑑 = 1). Across the same seven selected 
maturities, we obtain identical results as under the fully flexible yield-
curve DiD approach. The largest difference in absolute value terms 
is 0.01 bps.19 Thus, fitting a well specified curve in a second stage 
resolves the remaining problem, namely, garbled measurement of true 
treatment effects.

Fig.  6 provides graphical intuition for this result. The figure is based 
on a randomly selected sample couplet with 𝑚 = 0.25 for the treated 
bonds. Both types of effects are present. The solid (blue) line shows the 
change in the estimated Diebold–Li control-bond curve over the treat-
ment for an idiosyncratic short-end effect on the left and a long-end 
effect on the right. In each plot, the (green) crosses and (red) diamonds 
show the change in the treated bond yields over the event induced by 
the treatment twist and short-end effect, respectively, together with the 
respective idiosyncratic effect. Therefore, the differences between the 
(green) crosses and the (blue) solid line represent the semi-synthetic 
DiDs under the treatment twist, while the differences between the 
(red) diamonds and the (blue) solid line are the semi-synthetic DiDs 
under the predominantly short-end treatment effect. Applying second-
stage curve fitting after first-stage semi-synthetic matching and using 
the Diebold and Li (2006) curve in each step essentially does in two 
steps what the fully flexible yield-curve DiD specification in Eq.  (6) does 
in one.

Using linear regression in the second stage works less well, but 
might provide the right qualitative conclusion. Consider, for example, 
the twist effect in the sample of fifty treated and fifty control bonds 
shown in Panel A of Fig.  6. Regressing the fifty semi-synthetic DiDs 

18 Details are in Table A.4 in the Internet Appendix.
19 Details are in Table A.5 in the Internet Appendix.
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Fig. 6. Illustration of semi-synthetic matching.
This illustration is based on a random sample couplet when 𝑚 = 0.25 years for both control and treated bonds. Figs.  6a and 6b provide graphical illustrations for semi-synthetic 
matching when there is an idiosyncratic yield-curve effect only at the short-end or only at the long-end, respectively. In each plot, given the idiosyncratic yield-curve effects there 
is either an additional yield-curve treatment twist or a yield-curve treatment effect predominantly at the short-end. The solid (blue) line in each plot shows the change in the 
estimated control-bond curve from pre- to post treatment using Diebold–Li (2006). The (green) crosses and (red) diamonds in each plot show the changes in the treated bond 
yields from pre- to post-treatment for a yield-curve treatment twist and predominantly short-end effect, respectively.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

on residual maturity, 𝑥, yields the following fitted line (𝑡-statistics in 
brackets): 

𝑦𝑖𝑒𝑙𝑑
𝐷𝑖𝐷
𝑖 = 4.274

(9.53)
− 0.915

(−16.00)
𝑥𝑖 and 𝑅2

𝑎𝑑𝑗 = 0.8389. (10)

The positive intercept reflects the positive short-end effect, and the neg-
ative slope coefficient reflects the negative long-end effect. However, 
because the semi-synthetic DiDs are not linear in residual maturity, 
using a linear specification in the second-stage estimation gives less 
accurate results. For example, according to the linear regression the 
effect is zero at 4.67 years while the true effect is zero at 3.82 years. A 
linear second-stage specification is problematic if the treatment effect 
has more than one zero or is otherwise highly nonlinear.

9.4. Advantages and disadvantages of different approaches

Both the DiD in curves in Eq.  (6) and semi-synthetic matching 
with second-stage curve fitting resolve the problems of false treat-
ment effects and garbled measurement of true treatment effects. The 
point estimates of the treatment effect are identical under the two 
approaches when the same curve specification is used. They are to a 
large extent just two different ways to estimate the same DiD Delta 
curve. Notwithstanding this, the two approaches have different ad-
vantages and disadvantages. With spot rates on the left-hand side of 
the regression equation, the fully flexible yield-curve DiD approach 
estimates the DiD Delta curve with one single regression and allows 
clustering standard errors at the bond level. This ability to cluster is 
lost under semi-synthetic matching. As discussed in the literature, cal-
culating standard errors when synthetic controls are used may require 
bootstrapping methods (Xu, 2017; Abadie, 2021).

However, semi-synthetic matching also has some advantages, such 
as being more easily adapted to samples with coupon bonds. Further-
more, semi-synthetic matching puts less demands on maturity coverage 
for both groups, treated bonds or controls, since curves are only esti-
mated for one of these in the first stage. Although we used synthetic 
controls above, one could reverse the process and calculate semi-
synthetic DiDs with actual control-bond yields and synthetic yields for 
treated bonds. In semi-synthetic matching, error is reduced if one uses 
the synthetic yields of the group where curves can be estimated with 
the most precision. The semi-synthetic approach is suited to staggered 
DiD.

In the literature, one can also find examples of fully-synthetic 
matching, where both treated and control spot curves are synthetic
(Eser and Schwaab, 2016; Lentner, 2023). This requires good samples 
for both sets of bonds. An advantage of the semi-synthetic approach 
relative to a fully synthetic procedure is that potential imprecision from 
curve fitting is limited to one group of bonds.

Some key advantages (+) and disadvantages (−) of the fully flex-
ible yield-curve DiD specification and the semi-synthetic matching 
approach:

• Fully flexible yield-curve DiD specification:

+ Simple implementation: One single regression (using stan-
dard software)

+ Allows clustering standard errors at the bond level
− Designed for zero coupon bonds
− Requires good residual maturity coverage for both groups

• Semi-synthetic matching:

− Implementation is more laborious
− Does not allow clustering standard errors at the bond level
+ Works with coupon bonds
+ Do not need to estimate curves for both groups (treated 
bonds and controls).

10. False and garbled effects in non-DiD settings

The issues discussed in this paper are not unique to DiD analysis, but 
are relevant also in simpler settings when the left-hand side variable 
exhibits a term structure. Consider, for example, a cross-section of 
fixed-income securities where a subgroup is assigned a characteristic 
that is hypothesized to have impact on yields. We label this subgroup
assigned and consider several specifications that are often used in the 
literature to capture the incremental yield of assigned bonds. The issue 
is, similarly to before, that this incremental difference, or assignment 
effect, can be heterogeneous over the maturity spectrum. As a result, 
the standard specifications are misspecified in significant ways.
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Table 14
False and garbled assignment effects in pure cross-sectional data.
This table shows the results of estimating assignment effects with the specification indicated in each panel. Panels A to D provide the distributions of assignment effects. Panel E 
shows the true underlying effects at selected maturities and, to the right, distributions of the difference between estimated and true assignment effects by maturity. In terms of 
data, Panels A to D are based on the 1000 sample draws that contain sample couplets for four modes 𝑚 of the assigned bonds, namely 𝑚 = 0.25, 1, 3, 10 (non-assigned bonds have 
𝑚 = 0.25 always). This is a total of 4000 sample couplets (see Table  4). Each sample couplet represents one cross-section of assigned and non-assigned bonds. Panel E is based 
on the subset of 2734 ‘‘good sample couplets’’ defined as those with at least one assigned and one non-assigned bond in the one-year maturity bucket (see Panel B of Table  8). 
The underlying shape of the yield curve in all panels corresponds to the pre-event curve from the DiD analysis (see Fig.  4). In Panels A to C there are no true assignment effects. 
In Panels D and E there are true assignment effects. They correspond to the treatment yield-curve twist of the DiD analysis (see Fig.  4a). The largest and smallest numbers in 
absolute value terms in the distribution within each panel are marked in bold.
 Mode 𝑚 Residual Number True assign- Distribution of estimated
 maturity of sample ment effects assignment effects (in bps)
 (in years) couplets (in bps) Mean SD Med Min Max

 Panel A: False effects with Eqn (1′): 𝑦𝑖𝑒𝑙𝑑𝑖 = 𝛽0 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖
0.25 – 1,000 0 −0.47 8.57 −0.45 −30.56 30.56  

1 – 1,000 0 4.42 8.22 4.20 −18.79 30.87  
3 – 1,000 0 12.63 7.64 12.66 −14.62 36.43  
10 – 1,000 0 27.65 7.16 27.51 2.51 57.62  

 Panel B: False effects with Eqn (1′′): 𝑦𝑖𝑒𝑙𝑑𝑖 = 𝛽0 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝛽1𝑥𝑖 + 𝜀𝑖
0.25 – 1,000 0 −0.22 4.71 −0.31 −13.01 15.02  

1 – 1,000 0 2.31 4.51 2.36 −11.83 18.17  
3 – 1,000 0 6.27 3.92 6.27 −4.30 16.67  
10 – 1,000 0 6.69 3.60 6.76 −3.54 19.44  

 Panel C: False effects with Eqn (4′): 𝑦𝑖𝑒𝑙𝑑𝑖 = 𝐁′ 𝐋𝑖 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖
0.25 – 1,000 0 −0.00 0.00 −0.00 −0.00 0.00  

1 – 1,000 0 −0.00 0.00 −0.00 −0.00 0.00  
3 – 1,000 0 0.00 0.00 0.00 −0.00 0.00  
10 – 1,000 0 −0.00 0.00 0.00 −0.00 0.00  

 Panel D: Garbled effects with Eqn (4′): 𝑦𝑖𝑒𝑙𝑑𝑖 = 𝐁′ 𝐋𝑖 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖
0.25 – 1,000 −2.02 0.54 −2.02 −3.88 −0.26  

1 – 1,000 Maturity- −2.24 0.48 −2.25 −3.53 −0.41  
3 – 1,000 dependent −2.87 0.48 −2.88 −4.37 −1.12  
10 – 1,000 −4.35 0.50 −4.36 −5.71 −2.68  

 Panel E: Correct effects with Eqn (6′): 𝑦𝑖𝑒𝑙𝑑𝑖 = 𝐁′
1𝐋𝑖 + 𝐁′

2𝐋𝑖 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖
 − 1 2,734 5.87 0.00 0.00 0.00 −0.01 0.01  
 − 2 2,734 3.75 −0.00 0.00 −0.00 −0.01 0.01  
 − 3 2,734 1.58 −0.00 0.00 −0.00 −0.01 0.01  
 − 5 2,734 −1.87 −0.00 0.00 0.00 −0.00 0.00  
 − 7 2,734 −4.11 −0.00 0.00 −0.00 −0.00 0.00  
 − 10 2,734 −6.09 −0.00 0.00 −0.00 −0.00 0.00  
 − 15 2,734 −7.72 −0.00 0.00 −0.00 −0.00 0.00  

Specification (1′) is an adaptation of the classical DiD specification 
in Eq.  (1) to a plain cross-sectional setup. 𝛽𝑎 measures the assign-
ment effect in the cross-section of assigned and non-assigned bonds. 
Specification (1′′) controls for maturity, 𝑥, linearly. Specification (4′) 
controls for the term structure, analogously to the straight yield-curve 
control in Eq.  (4). Finally, Specification (6′) estimates separate Diebold–
Li curves for each group of bonds, analogously to the fully flexible DiD 
specification in Eq.  (6).

𝑦𝑖𝑒𝑙𝑑𝑖 = 𝛽0 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖 (1′)

𝑦𝑖𝑒𝑙𝑑𝑖 = 𝛽0 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝛽1𝑥𝑖 + 𝜀𝑖 (1′′)

𝑦𝑖𝑒𝑙𝑑𝑖 = 𝐁′𝐋𝑖 + 𝛽𝑎 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖 (4′)

𝑦𝑖𝑒𝑙𝑑𝑖 = 𝐁′
1𝐋𝑖 + 𝐁′

2𝐋𝑖 1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑,𝑖 + 𝜀𝑖 (6′)

To study this setting, we use the same 4000 sample couplets of 
residual maturities as before (1000 sample draws and four modes 𝑚 =
0.25, 1, 3, 10 of treated bonds), with ‘‘treated’’ (‘‘control’’) relabeled ‘‘as-
signed’’ (‘‘non-assigned’’). Yields are generated by Diebold–Li curves, 
as before. We use the pre-event curve and the twist effect in Fig.  4 as 
the baseline curve for non-assigned bonds and the assignment effect, 
respectively. We first consider the case that there is no true assignment 
effect. Instead, unknown to a researcher, there is a common curve for 
assigned and non-assigned bonds. Panels A, B, and C of Table  14, show 
the results for the first three specifications. Not unexpectedly, the two 
first specifications result in a high incidence of large false assignment 
effects, with the first being the worst.

However, the third specification with straight yield-curve control 
eliminates the false assignment effects. Interestingly, this contrasts with 
the parallel case in the DiD setup, where straight yield-curve control 
resulted in large false treatment effects. The reason straight yield-curve 
control performs worse in the DiD setup in this case is the tendency 
of this specification to ascribe differential movements over an event 
window as being due to treatment, when this may simply be due to 
common effects that are heterogeneous over the maturity spectrum.

When there is a true assignment effect that is heterogeneous over 
the maturity spectrum, however, Specification (4′) does not work well 
because it assumes, falsely, that the assignment effect is independent of 
residual maturity. Effectively, it measures an average assignment effect 
over assigned bonds, which is not necessarily an informative quantity. 
This is seen in Panel D, where the twist effect is added to assigned 
bonds. The estimated assignment effects on all 4000 sample couplets 
are negative, being between −5.71 and −0.26 bps. In contrast, the 
true effect at the one-year residual maturity, for instance, is a positive 
5.87 bps. Panel E shows that the fully flexible assignment specification 
in Eq.  (6′) resolves the problem; the difference between the estimated 
assignment effect and the true assignment effect is zero at all maturities. 
Thus, when assignment effects vary over the maturity spectrum – and 
there is no a priori reason to believe that they do not – it is important 
to incorporate this into the specification, just as in DiD analyses.

As in the DiD setup, one can also proceed in two stages by first 
estimating the yield differences between assigned bonds and maturity-
matched synthetic non-assigned bonds (or the reverse). Averaging in 
the second stage, as in Ang et al. (2010), would give the same results 
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as in Specification (4′). Curve fitting in a second stage is identical 
to Specification (6′), assuming consistent functional forms. The cross-
sectional setup described here can be extended to a panel setting 
where the assignment Delta curve can be estimated on a date by date 
basis and averaged, for example, across dates as in the Fama-MacBeth 
procedure (Nyborg and Woschitz, 2021).

11. Concluding remarks

It is common practice in finance to use difference-in-differences 
(DiD) analysis to test the impact of hypothesized treatment on variables 
that exhibit term structures. However, for such variables, this paper 
shows that the classical DiD specification in Eq.  (1) systematically 
produces false and garbled treatment effects. This is the case even under 
random treatment assignment. These problems arise because of two 
ubiquitous features of real data, namely: (i) term effects, which vary 
over time and may or may not be related to hypothesized treatment, 
and (ii) different sample distributions of maturities for treated and 
control units. The second feature gives rise to nonzero correlation 
between the treatment assignment and residual maturity which, given 
the first feature, leads to a problem of false and garbled treatment 
effects. Although we have cast our analysis in the context of bond 
yields and the term structure of interest rates, the issues discussed in 
this paper are relevant for any variable that exhibits a term structure, 
for example, option-implied volatilities, futures prices, risk premia, and 
so on. If a variable exhibits a term structure, there is little reason to 
believe that treatment effects should be homogeneous over the maturity 
spectrum, that is, have no term structure.

The classical DiD equation is misspecified because it erroneously 
assumes that treatment unrelated effects for each unit are fixed, when 
they actually depend on residual maturity, and because it does not 
allow for heterogeneous treatment effects over the maturity spectrum. 
Researchers sometimes try to control for the term structure by augment-
ing or modifying the classical DiD specification with control variables 
that capture residual maturities. However, this does not do much in 
terms of reducing the fundamental misspecification unless these control 
variables are also interacted with the specification’s indicator variables. 
As we show, allowing for such interaction is essential with respect to 
addressing the maturity mismatch feature of most data and treatment 
effects that are heterogeneous over the maturity spectrum. Failure to do 
this can lead to large false treatment effects, whose signs are sample 
dependent, overlaid on garbled estimates of true treatment effects, 
whose signs are also sample dependent.

We discuss two ways to resolve the problem. The first approach is 
designed for zero coupon bonds or analogous variables whose values 
can be written as functions of residual maturity. It captures the treat-
ment effect as a curve over the maturity spectrum (the DiD Delta curve) 
by including a baseline pre-event curve in the DiD specification as well 
as incremental curves for (i) post event, (ii) treated bonds, and (iii) the 
interaction of these, which is the DiD Delta curve. This is very much 
like a standard DiD specification, but over curves. The drawback of this 
approach is that it is not well suited to studying yields of coupon bonds 
or other situations where the link between residual maturity and the 
value of the dependent variable is similarly complex.

Thus, we also discuss a two-step approach that we refer to as semi-
synthetic matching. In a first step, DiDs of individual treated units 
are calculated relative to synthetic matches. In a second step, these 
individual units can be examined over the maturity spectrum. The two 
methods are identical for zero coupon bonds when curves are estimated 
with the same functional form. However, the one-step approach has the 
advantage that it allows clustering standard errors.

Naturally, as for any econometric procedure, the performance of 
these approaches relate to how noisy the underlying data is and also to 
how precisely curves can be estimated. Although yield curves are often 
estimated using the Nelson and Siegel (1987) model, as we do in this 
paper, as these authors discuss, cubics often have better fit within the 

sample range of maturities while being equally parsimonious. In prac-
tice, the most appropriate curve specification is likely to vary across 
applications. Finally, we show that the issues discussed in this paper 
are not unique to DiD analysis, but also to more simpler assignment 
specifications when the dependent variable has a term structure. Anal-
ogously to the DiD setup, in the simple assignment inference problem 
it is also essential to allow for heterogeneous effects over the maturity 
spectrum for results to be meaningful.
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