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 A B S T R A C T

We study capital regulation in a dynamic model for bank deposits. Capital regulation addresses banks’ incentive 
for excessive leverage that dilutes depositors, but preserves some dilution to reduce bank defaults. We show 
theoretically that capital regulation is subject to a time inconsistency problem. In a model with non-maturing 
deposits where optimal withdrawals make deposits endogenously long-term, we find commitment to have 
important effects on the optimal level and cyclicality of capital adequacy. Our results call for a systematic 
framework that limits capital regulators’ discretion.

1. Introduction

Bank capital requirements under Basel III are based on a combina-
tion of required capital ratios, conservation capital buffers (CCoB), and 
countercyclical capital buffers (CCyB). While the former two are formu-
lated as rules, the CCyB can be adjusted dynamically at the discretion 
of macroprudential regulators. Such discretion on the one hand allows 
regulators to react promptly to changes in economic outlooks, but on 
the other hand opens up an important concern from the perspective of 
policy making, that is, capital regulators are now potentially subject 
to the classic time inconsistency problem (Committee on the Global 
Financial System, 2016).1 Echoing this concern, policy makers have 
taken some actions to bound their discretion over capital requirements. 
For instance, the EU Capital Requirements Directive (CRD IV) requires 
national authorities reducing the CCyB rate to communicate for how 
long they expect to not increase it again, imposing some constraints on 
their future selves from tightening up capital requirements too quickly.

I Toni Whited was the editor for this article. We thank the editor, an anonymous referee, Tetiana Davydiuk, Arvind Krishnamurthy, Ye Li, Cecilia Parlatore, 
Ned Prescott, Tom Sargent, Alex Ufier, Fabrice Tourre, Ivan Werning, Wei Cui, Yao Zeng, Yingguang Zhang, and audiences at WFA, EFA, SED, Stanford SITE, 
Annual Bank Research Conference, SFS Cavalcade, ITAM, Bonn/UCL, Tsinghua, FDIC, Wharton, Peking, CityUHK for helpful comments. We thank Yongyi Liao, 
Zetao Wang, and Yunxuan Zhu for excellent research assistance. This paper was circulated under the title ‘‘Capital regulation with non-maturing deposits’’ and 

1 See Kowalik (2011), Agur and Sharma (2014) and  European Systemic Risk Board (2018) for policy discussions about the rule-versus-discretion issue involved 
in capital regulation. See also discussions in the panel ‘‘Banking Regulation: Rules versus Discretion’’ at Atlanta Fed’s 2013 Financial Markets Conference.

Discretion destroys value only when ex-ante optimal policies are 
time inconsistent (Kydland and Prescott, 1977). Despite the concerns 
and actions of regulators, whether or how a time inconsistency problem 
is relevant for capital regulation remains unclear. A clear understanding 
of these issues is pivotal for policy making. For instance, if keeping a 
low CCyB rate remains optimal for a long time after a recession hits, 
the above-mentioned macroprudential ‘‘forward guidance’’ designed by 
the EU CRD IV is redundant under rational expectation, and might even 
restrict the flexibility regulators have in response to unforeseen changes 
during the recovery. In contrast, if keeping a low rate turns out to 
become quickly suboptimal after it gets reduced today, discretionary 
regulators will not implement the CCyB in an optimal way, leading to 
heavy discounts on the ability of such policies to alleviate the distress 
at the burst of a recession.

In this paper, we provide the first analysis of the time inconsistency 
problem associated with bank capital regulation. We show that time 
inconsistency arises if deposits are subject to default risks and are 
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long-term. Deposit value reflects risk-adjusted future payments, and 
therefore, with a long maturity, future leverage of a bank will have 
an effect on current deposit value as it determines the riskiness of 
payments not yet received at that point. With this, we show that being 
able to commit to future leverage matters for today.

Our main analysis is organized into two parts. First, we present a 
baseline model where deposit maturity is long but fixed. This setup 
allows maximal transparency to establish theoretically the regulator’s 
time inconsistency problem. Second, we consider an extended model 
with non-maturing deposits a la Jermann and Xiang (2023) to reflect a 
key feature of bank deposits, that is, the majority of US bank deposits 
are demand and saving deposits for which the maturity is endogenously 
determined by withdrawals. We numerically solve the extended model 
and show how the long-run level (steady states) and dynamics of 
optimal policies vary with commitment.

Bank deposits provide liquidity benefits. In laissez-faire, banks max-
imize equity value only and therefore do not internalize that new 
deposit issuance can dilute the value of legacy deposits by exposing 
them to a higher default risk. Such an equity-debt conflict implies an 
incentive for banks to take an leverage that is excessive from a social 
perspective and has been recognized by policy makers (e.g. Tucker, 
2013; Yellen, 2015) and academics (e.g. Admati and Hellwig, 2014) 
to be an important motivation for capital regulation.2

A capital regulator who maximizes social welfare takes into account 
all stakeholders, i.e. the total value of banks and depositors. By correct-
ing the dilution incentive of banks, capital requirements improve the 
total value that can be generated. However, banks still have the option 
to default when the equity value becomes too low. Therefore, capital 
requirements preserve some dilution.

We show theoretically the value of regulatory commitment to future 
capital requirements. While preserving dilution persuades banks today 
to default less, it also persuades banks yesterday to default less. This 
is because, with a long maturity, the deposit value yesterday declines 
due to the rational expectation of dilution today, effectively enhancing 
the bank’s equity value at that time.. For a regulator who cannot make 
commitments and thus does not face any constraints inherited from 
the past, this constitutes a dynamic externality and implies a tendency 
to adopt an excessively low leverage. To formalize this, we start from 
the steady state of a Markov-perfect regulator who cannot commit to 
future policies but allow it to commit in one shot to deposit issuance 
tomorrow, and we prove that it has an incentive to deviate upward. 
By committing to an amount of deposits that will become suboptimally 
high tomorrow, bank defaults today get reduced.

We then go beyond a one-shot commitment and compare a Ramsey 
regulator who makes full commitments to future policies and a Markov-
perfect regulator. We numerically solve an extended setup featuring 
non-maturing deposits, i.e., deposits have no explicit maturity dates 
and individual depositors decide whether to withdraw at a cost each 
period when liquidity shocks realize. We establish two sets of key 
results.

First, optimal leverage and bank default risk in steady state criti-
cally depend on regulatory commitment. Being able to better prevent 
defaults by using commitment brings a Ramsey regulator a more effi-
cient tradeoff between liquidity and default. We find that the steady 
state equity ratio under a Ramsey regulator can even be lower than 
laissez-faire, which is in sharp contrast to typical models of capital 
requirements. Overall, a regulator who can better prevent default is 
less afraid to take on leverage. We compare the baseline model with 
a fixed deposit maturity and the extended model with non-maturing 
deposits, and we find that endogenous withdrawals can amplify quanti-
tatively the value of commitment because committing to bank leverage 
tomorrow has an additional effect on deposit withdrawals today.

2 While we focus on leverage dynamics as they are directly related to capital 
regulation, banks can dilute legacy deposits also by risk-shifting on the asset 
side, which further amplifies the equity-debt conflict (Leland, 1998).

Second, commitment leads to a stronger countercyclicality in cap-
ital requirements. Facing a negative productivity shock, banks have a 
larger incentive to default. A Ramsey regulator not only loosens capital 
requirements today but also commits to extend such leniency for a long 
time. This is useful for resolving bank defaults on impact. In contrast, 
a Markov-perfect regulator rapidly tightens up its policy as leniency 
starts to imply too much risk and becomes suboptimal fairly quickly as 
productivity reverts back. Our result suggests that bounding the ability 
of regulators to quickly increase the CCyB rate once it has been reduced, 
as required by e.g. the EU CRD IV, can indeed enhance the effectiveness 
of the policy tool.

Beyond our main analysis, we explore regulators with partial com-
mitment, finding that committing to either equity values or deposit 
prices aligns incentives across time, achieving the same steady-state 
outcomes as full commitment. This highlights that one type of com-
mitment is sufficient to address time inconsistency in capital reg-
ulation. Importantly, our findings suggest that a regulator’s ability 
to make credible commitments is more impactful than the specific 
stakeholders—banks or depositors—to whom those commitments are 
made.

Lastly, we provide empirical evidence for our theory by demon-
strating a link between deposit maturity and leverage persistence. We 
exploit a sample of banks that are not particularly large and do not 
have a particularly high deposit insurance coverage. These banks do 
not enjoy strong protection by implicit and explicit guarantees, and 
therefore, their deposits are subject to default risk and dilution can 
be a factor. Among banks that rely mostly on demand and savings 
deposits, those with fewer financially sophisticated depositors exhibit 
more persistent leverage dynamics. This aligns with our hypothesis that 
depositor alertness effectively shortens the maturity of these deposits 
and constrains banks’ ability to dilute. For banks relying mostly on time 
deposits, a longer average maturity of time deposits also implies more 
persistence in leverage.

Literature—There is a large literature on macro-finance models 
that evaluates macroprudential policies, mostly bank capital require-
ments. Optimal policies have been derived by e.g. Chari and Kehoe 
(2016), Davydiuk (2017), Bianchi and Mendoza (2018), Malherbe 
(2020), Schroth (2021), and Van der Ghote (2021). A large number 
of studies examine the impact of exogenous capital requirement rules, 
such as Van den Heuvel (2008), Angeloni and Faia (2013), Repullo and 
Suarez (2013), Mendicino et al. (2018), Begenau (2020), Gertler et al. 
(2020), Corbae and D’Erasmo (2021), Elenev et al. (2021), Whited et al. 
(2021), Begenau and Landvoigt (2022), and Xiang (2022). Different 
from these studies which typically focus on one-period debt and feature 
distortions from government subsidies, our analysis features long-term 
debt and the resulting equity-debt conflict, i.e. dilution. Importantly, 
we also explicitly study a capital regulator’s commitment issues.

There is a growing literature that studies the rich dynamics of 
firms that are financed with long-term debt; see e.g. Gomes et al. 
(2016), Crouzet (2017), Admati et al. (2018), Gamba and Saretto 
(2018), Dangl and Zechner (2021), Demarzo and He (2021), Chaderina 
et al. (2022), Benzoni et al. (2022), Jungherr and Schott (2022), Jer-
mann and Xiang (2023), and Xiang (2024).3 While this literature has 
been focusing on the problem of a borrower, we study a new problem, 
that is, that of a regulator who cares about the total resources in the 
economy. Dilution can be good for the regulator to address borrowers’ 
option to default.4 Quite different from the key insight of existing 
studies that borrowers’ welfare increases if they could commit to dilute 
less, we highlight that social welfare increases if a Markov-perfect 
regulator could commit to dilute more.

3 Aguiar et al. (2019) and Hatchondo et al. (2020) derive optimal paths of 
long-term debt issuance for a sovereign borrower. Bolton et al. (2025) provide 
a model of long-term debt that are fully insured.

4 Donaldson et al. (2025) show that dilution can be good for borrowers to 
loosen borrowing constraints when there is an asset pledgeability issue.
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A large number of studies examine the time inconsistency problem 
associated with bank rescues, including e.g. Acharya and Yorulmazer 
(2007), Farhi and Tirole (2012), Chari and Kehoe (2016) and Keister 
(2016). Capital regulation is viewed as a solution to this problem. Kahn 
and Santos (2015) present a setting where a regulator restricts leverage 
to address bailouts but ignores how it affects banks’ incentive to make 
efforts. Our contribution is to show that long deposit maturities create 
a time inconsistency problem for capital regulation.

An unusual property of our model is that the Ramsey allocation 
features non-stationary Lagrange multipliers together with stationary 
real variables. This is reminiscent of characterizations in the optimal 
taxation literature where convergence of multipliers cannot always be 
established; see e.g. Straub and Werning (2020) or Chien and Wen 
(2022). Bassetto and Cui (2024) solve a Ramsey tax problem and find 
a stationary allocation together with non-stationary multipliers.

The paper proceeds as follows. Section 2 presents our baseline 
model of capital regulators with and without commitment. Section 3 
shows theoretically the value of commitment. Section 4 presents our 
extended model with non-maturing deposits and numerically solves 
optimal policies. Section 5 studies capital regulators with partial com-
mitment. Section 6 connects our theory with empirical observations and 
policy discussions. Section 7 concludes.

2. Model

This section presents our baseline model with a fixed deposit ma-
turity. Section 2.1 describes the laissez-faire economy. Section 2.2 
describes the problem of capital regulators. We use lowercase for 
variables of individual banks and uppercase for aggregate variables.

2.1. Laissez-faire

Time is discrete. All agents are risk-neutral. The economy is popu-
lated with a continuum of banks, each of which faces a continuum of 
depositors and creates value by providing liquidity services. Individual 
𝑖 earns a liquidity benefit of 𝜇𝑏𝑖 by holding 𝑏𝑖 units of deposits. We 
assume that 𝜇 decreases in the aggregate amount of deposits 𝐵 =
∫𝑖∈[0,1]2 𝑏𝑖𝑑𝑖, i.e. 𝜕𝜇(𝐵)

𝜕𝐵 < 0. This assures that a Ramsey regulator in 
our infinite-horizon setup cannot create an infinitely large liquidity 
value and is typical for deposit-in-utility models (e.g. Van den Heuvel, 
2008). Deposit maturity is 1∕𝜆, that is, each period 𝜆 ∈ (0, 1] fraction 
of deposits get matured.5

The assets of a bank generate a per-period profit of 𝑅 + 𝑧. We fix 
aggregate productivity 𝑅 in our baseline model. 𝑧 is a zero-mean bank-
specific i.i.d. productivity shock with c.d.f. (p.d.f.) 𝛷(𝑧) (𝜙(𝑧)) over 
support [−𝑧̄, 𝑧̄]. Taking as given the law of motion for aggregate deposits 
𝐵, i.e. 𝐵′ = 𝛺(𝐵), an individual bank’s equity value and optimal policy 
in laissez-faire are given by:

𝑧 + 𝑣𝑒(𝐵, 𝑏) = 𝑧 + max
𝑏′

{

𝑅 − 𝜆𝑏 + 𝑞(𝐵, 𝑏′)[𝑏′ − (1 − 𝜆)𝑏]

+ 1
𝑟

{

∫

𝑧̄

−𝑣𝑒(𝐵′ ,𝑏′)
[𝑣𝑒(𝐵′, 𝑏′) + 𝑧′]𝑑𝛷(𝑧′)

}}

, (1)

where legacy deposits for the bank is 𝑏 = ∫𝑖∈[0,1] 𝑏𝑖𝑑𝑖 and interest 
rate is 𝑟. Bank takes the deposit pricing schedule 𝑞(𝐵, 𝑏′) as given 
when choosing 𝑏′. Equity value consists of profits 𝑅 + 𝑧, repayment to 
matured deposits 𝜆𝑏, proceeds from new deposits 𝑞[𝑏′ − (1 − 𝜆)𝑏], and 
the continuation value which incorporates the bank’s default option 
tomorrow. A bank defaults if its equity value tomorrow goes below 
zero, i.e. 𝑧′ + 𝑣𝑒(𝐵′, 𝑏′) < 0.

5 Both liquidity value and deposit maturity will be determined by the en-
dogenous withdrawals of depositors in our extended model with non-maturing 
deposits.

Deposit pricing schedule 𝑞(𝐵, 𝑏′) is pinned down by the zero-profit 
condition of new depositors. For a non-defaulting bank, the payoff to 
depositors in the current period consists of liquidity value 𝜇𝑏, repay-
ment to matured deposits 𝜆𝑏, and the value of unmatured deposits 
𝑞(1 − 𝜆)𝑏. That is, depositors’ value is given by:
𝑣𝑏(𝐵, 𝑏, 𝑞) = [𝜇(𝐵) + 𝜆 + 𝑞(1 − 𝜆)]𝑏.

For defaulting banks, our formulation follows Gomes et al. (2016). 
Upon default, depositors take over the bank and initiate a restructuring. 
They first sell off the equity portion to new owners while continuing to 
hold their deposits. This means that depositors have a claim over the 
total bank franchise value 𝑧+𝑣𝑒+𝑣𝑏 in defaulting states. However, they 
incur a dead-weight restructuring loss of 𝜉𝑏. Under this formulation, we 
do not need to track the cross-sectional distribution of deposits when 
considering the aggregate economy from the perspective of a regulator. 
We have, given 𝐵′ = 𝛺(𝐵),

𝑞(𝐵, 𝑏′)𝑏′ = 1
𝑟

{

∫

𝑧̄

−𝑣𝑒(𝐵′ ,𝑏′)
𝑣𝑏(𝐵′, 𝑏′, 𝑞(𝐵′, ℎ𝑏(𝐵′, 𝑏′)))𝑑𝛷(𝑧′)

+ ∫

−𝑣𝑒(𝐵′ ,𝑏′)

−𝑧̄
[𝑧′ + 𝑣𝑒(𝐵′, 𝑏′) + 𝑣𝑏(𝐵′, 𝑏′, 𝑞(𝐵′, ℎ𝑏(𝐵′, 𝑏′)))

− 𝜉𝑏′]𝑑𝛷(𝑧′)
}

, (2)

where optimal policy 𝑏′ = ℎ𝑏(𝐵, 𝑏) solves (1). If deposit maturity is long, 
i.e. 𝜆 < 1, deposit price tomorrow 𝑞(𝐵′, ℎ𝑏(𝐵′, 𝑏′)) enters the equation, 
through which deposit price today will depend on the issuance decision 
of the bank’s tomorrow self.

An equilibrium of the laissez-faire economy is defined as a set of 
functions for (i) banks’ deposit issuance policy ℎ𝑏(𝐵, 𝑏) and equity value 
𝑧 + 𝑣𝑒(𝐵, 𝑏) given by (1); (ii) deposit pricing schedule 𝑞(𝐵, 𝑏′) given 
by (2); (iii) banks’ optimal default set {𝑧|𝑧 + 𝑣𝑒(𝐵, 𝑏) < 0}; (iv) law of 
motion for 𝐵 that is consistent with banks’ deposit issuance policy, 
i.e. 𝛺(𝐵) = ℎ𝑏(𝐵,𝐵).

2.2. Capital regulators

The notation of the laissez-faire economy presented above mostly 
carries through. As we consider aggregates, we shift to uppercase letters 
𝐵,𝑄,𝐿, 𝑉 𝑒 and 𝑉 𝑏. Section 2.2.1 lays out the planning problem of a 
Ramsey regulator with full commitment. Section 2.2.2 describes the 
corresponding problem of a Markov-perfect regulator without commit-
ment.

2.2.1. Ramsey regulator
By construction, we can measure social welfare in our model using 

total resources of the economy. A Ramsey regulator chooses allocations 
at 𝑡 = 0 to maximize the present value of total resources, taking 
as given banks’ default rule, depositors’ zero-profit condition, and an 
initial 𝐵0. Aggregate resources each period consist of three parts. First, 
bank assets provide constant profits 𝑅 with i.i.d. 𝑧 shocks averaged out. 
Second, bank deposits provide liquidity value 𝜇(𝐵𝑡)𝐵𝑡. Third, a certain 
fraction of banks default, which produces a total restructuring cost of 
𝜉𝐵𝑡𝛷(−𝑉 𝑒

𝑡 ). A Ramsey regulator’s problem is thus given by

max
{𝑉 𝑒

𝑡 ,𝑄𝑡 ,𝐵𝑡+1}∞𝑡=0

∞
∑

𝑡=0

1
𝑟𝑡

[

𝑅 + 𝜇(𝐵𝑡)𝐵𝑡 − 𝜉𝐵𝑡𝛷(−𝑉 𝑒
𝑡 )
]

,

where the optimal choices have to satisfy a series of constraints on 
equity values

𝑉 𝑒
𝑡 = 𝑅 − 𝜆𝐵𝑡 +𝑄𝑡[𝐵𝑡+1 − (1 − 𝜆)𝐵𝑡] +

1
𝑟

[

∫

𝑧̄

−𝑉 𝑒
𝑡+1

(𝑧 + 𝑉 𝑒
𝑡+1)𝑑𝛷(𝑧)

]

,

and on deposit prices

𝑄𝑡𝐵𝑡+1 =
1
𝑟

[

∫

𝑧̄

−𝑉 𝑒
𝑡+1

𝑉 𝑏
𝑡+1𝑑𝛷(𝑧) + ∫

−𝑉 𝑒
𝑡+1

−𝑧̄
(𝑧 + 𝑉 𝑒

𝑡+1 + 𝑉 𝑏
𝑡+1 − 𝜉𝐵𝑡+1)𝑑𝛷(𝑧)

]

,
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for all 𝑡 ≥ 0, with depositors’ value being 𝑉 𝑏
𝑡 = [𝜇(𝐵𝑡) + 𝜆+ (1− 𝜆)𝑄𝑡]𝐵𝑡. 

In addition, there are two no-Ponzi conditions, i.e. lim𝑡→∞
𝐵𝑡
𝑟𝑡 = 0 and 

lim𝑡→∞
𝑉 𝑒
𝑡
𝑟𝑡 = 0, and one no-bubble condition, i.e. lim𝑡→∞

𝑄𝑡
𝑟𝑡 = 0.

The following proposition characterizes the solution to this sequen-
tial problem by splitting it into a continuation problem and an initial 
problem. The continuation problem can be represented recursively and 
leads to definitions of problems with no and partial commitment later.

Proposition 1.  An interior allocation of the Ramsey problem in Sec-
tion 2.2.1 is identical to that of the following problem. A regulator chooses 
deposits 𝐵′, promised equity value 𝑉 𝑒′ and promised deposit price 𝑄′ at 
𝑡 ≥ 0 following:

𝐻(𝐵, 𝑉 𝑒, 𝑄) = max
𝐵′ ,𝑉 𝑒′ ,𝑄′

𝑅 + 𝜇(𝐵)𝐵 − 𝜉𝐵𝛷(−𝑉 𝑒) + 1
𝑟
𝐻(𝐵′, 𝑉 𝑒′, 𝑄′),

subject to two promise keeping constraints: 

𝑉 𝑒 = 𝑅 − 𝜆𝐵 +𝑄[𝐵′ − (1 − 𝜆)𝐵] + 1
𝑟

[

∫

𝑧̄

−𝑉 𝑒′
(𝑧′ + 𝑉 𝑒′)𝑑𝛷(𝑧′)

]

, (3)

and

𝑄𝐵′ = 1
𝑟

{

∫

𝑧̄

−𝑉 𝑒′
𝑉 𝑏(𝐵′, 𝑄′)𝑑𝛷(𝑧′)

+ ∫

−𝑉 𝑒′

−𝑧̄
[𝑧′ + 𝑉 𝑒′ + 𝑉 𝑏 (𝐵′, 𝑄′) − 𝜉𝐵′]𝑑𝛷(𝑧′)

}

, (4)

where depositors’ value is 𝑉 𝑏(𝐵,𝑄) = [𝜇(𝐵) + 𝜆 +𝑄(1 − 𝜆)]𝐵.
Initially, given 𝐵0, the regulator chooses:

max
𝑉 𝑒
0 ,𝑄0

𝐻(𝐵0, 𝑉
𝑒
0 , 𝑄0).

Choice sets of the regulator are consistent with no-Ponzi and no-bubble 
conditions.

Proof.  See Appendix  A.1. □

In the continuation problem, in addition to the natural state vari-
ables 𝐵, the Ramsey regulator is bound by two auxiliary state variables—
promises made about bank equity value 𝑉 𝑒 and deposit price 𝑄. Past 
promises constrain the regulator’s behavior and can support choices 
that might not be optimal ex post conditional on 𝐵 only (Kydland 
and Prescott, 1980). Every period, the Ramsey regulator chooses next 
period’s deposit level 𝐵′ and makes promises for next period’s equity 
value 𝑉 𝑒′ and deposit price 𝑄′.6 Initially, 𝑉 𝑒

0  and 𝑄0 are chosen without 
being constrained by past promises.

2.2.2. Markov-perfect regulator
Based on Proposition  1, we define the problem of a Markov-perfect 

regulator as having neither of the two auxiliary state variables in the 
continuation problem. The Markov-perfect regulator shares the objec-
tive function with Ramsey but faces only the natural state variables 
𝐵. Therefore, it has full discretion regarding what to choose at each 
point in time. There is no need to split the problem into two given the 
initial problem and the continuation problem follow the same recursive 
structure.

Given deposits 𝐵, a Markov-perfect regulator solves: 

𝐻(𝐵) = max
𝐵′

𝑅 + 𝜇(𝐵)𝐵 − 𝜉𝐵𝛷
(

−𝑉 𝑒(𝐵,𝐵′)
)

+ 1
𝑟
𝐻(𝐵′), (5)

where bank equity value is given by:
𝑉 𝑒(𝐵,𝐵′) = 𝑅 − 𝜆𝐵 +𝑄(𝐵′)[𝐵′ − (1 − 𝜆)𝐵]

+ 1
𝑟

{

∫

𝑧̄

−𝑉 𝑒(𝐵′ ,ℎ𝐵 (𝐵′))
[𝑧′ + 𝑉 𝑒(𝐵′, ℎ𝐵(𝐵′))]𝑑𝛷(𝑧′)

}

, (6)

6 When we allow shocks to 𝑅, e.g. for our model with non-maturing de-
posits later, these promises will be state-contingent, i.e., the Ramsey regulator 
picks a separate pair of {𝑉 𝑒′, 𝑄′} for each 𝑅′ tomorrow in the continuation 
problem.

and deposit price is given by:

𝑄(𝐵′)𝐵′ =1
𝑟

{

∫

𝑧̄

−𝑉 𝑒(𝐵′ ,ℎ𝐵 (𝐵′))
𝑉 𝑏(𝐵′, 𝑄(ℎ𝐵(𝐵′)))𝑑𝛷(𝑧′)

+ ∫

−𝑉 𝑒(𝐵′ ,ℎ𝐵 (𝐵′))

−𝑧̄
[𝑧′ + 𝑉 𝑒(𝐵′, ℎ𝐵(𝐵′)) + 𝑉 𝑏(𝐵′, 𝑄(ℎ𝐵(𝐵′)))

− 𝜉𝐵′]𝑑𝛷(𝑧′)
}

, (7)

with depositors’ value being 𝑉 𝑏(𝐵,𝑄) = [𝜇(𝐵)+𝜆+𝑄(1−𝜆)]𝐵. 𝐵′ = ℎ𝐵(𝐵)
is the optimal policy that solves (5), which the current regulator takes 
as given.

3. Capital regulation and commitment

We now demonstrate the time inconsistency problem of capital 
regulation. Section 3.1 explains how long-term defaultable deposits 
create a role for capital regulation. Section 3.2 explains why they 
also imply a time inconsistency problem for a regulator. Section 3.3 
contrasts the time inconsistency problem of a regulator against that of 
banks, the latter of which has been the focus of existing literature.

3.1. Banks’ dilution and capital regulation

In laissez-faire, banks maximize their equity value. In typical models 
of one-period defaultable debt, the equity-value-maximizing objective 
does not impair social welfare. This is because all legacy debt have to 
be repaid before banks can issue new debt, who therefore internalize 
all benefits and costs that result from their issuance decisions. With 
long-term debt, banks make decisions with the presence of legacy 
debt, and they do not internalize that issuing new debt will dilute 
the value of legacy debt by exposing them to additional default risks. 
This classic equity-debt conflict creates a static externality that impairs 
social welfare.

More specifically, the derivative of bank’s objective in (1) with 
respect to deposit choice 𝑏′ is: 

𝑞(𝐵, 𝑏′)+[𝑏′−(1−𝜆)𝑏]
𝜕𝑞(𝐵, 𝑏′)

𝜕𝑏′
+
[

1 −𝛷(−𝑣𝑒(𝐵′, 𝑏′))
] 1
𝑟
𝜕𝑣𝑒(𝐵′, 𝑏′)

𝜕𝑏′
= 0. (8)

where 𝐵′ = 𝛺(𝐵). The first two terms together capture the marginal 
benefit from new issuance proceeds today. The third term is the 
marginal cost reflecting a larger repayment tomorrow.7 With 𝑞(𝐵, 𝑏′)
being typically decreasing in 𝑏′ in well-behaved models, the second 
term corresponds to a negative price impact of issuance—that is, a 
larger repayment pressure leads to a higher default risk tomorrow and 
thus a lower price 𝑞(𝐵, 𝑏′) today at which new deposits 𝑏′−(1−𝜆)𝑏 can be 
issued. Importantly, this means that banks do not internalize that legacy
deposits (1−𝜆)𝑏 also bear part of the default risk and encounter a value 
decline, which is reflected by the dilution term −(1 − 𝜆)𝑏 𝜕𝑞(𝐵,𝑏′)

𝜕𝑏′  in (8). 
Due to this externality, banks have the tendency to issue an amount 
of deposits that is excessive from the perspective of maximizing social 
welfare. By doing so, the increased default risk reduces the present 
value of future payments to legacy deposits, i.e. the debt burden for 
banks, and benefits equity value.

Proposition  2 connects the problem of a capital regulator with 
that of laissez-faire banks. While laissez-faire banks maximize equity 
value 𝑣𝑒 (or its monotone transformation 𝑣𝑒 − 𝜉𝐵𝛷 (−𝑣𝑒)), a regula-
tor also takes into account the value of legacy deposits 𝑉 𝑏. Capi-
tal regulation improves social welfare by correcting the equity-value-
maximizing objective of banks.8 Moreover, all regulators share a total-
value-maximizing objective after the initial period, and therefore, any 

7 By envelope theorem, we know: 𝜕𝑣𝑒(𝐵,𝑏)
𝜕𝑏

= −𝜆 − (1 − 𝜆)𝑞(𝐵, ℎ𝑏(𝐵, 𝑏)) < 0.
8 In addition, since we have assumed that liquidity value 𝜇(𝐵) decreases in 

𝐵 in order to bound the problem of a Ramsey regulator, regulators improve 
welfare also by internalizing that adopting a smaller 𝐵 improves 𝜇(𝐵). In 
Section 4.3, we solve our model and find this channel to play a relatively 
minor role as regulated economies admit a much larger 𝐵 than laissez-faire.
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potential difference between their steady-state policies reflects only 
their different degrees of commitment power.

Proposition 2.  In equilibrium, total value created by a Ramsey capital 
regulator in the continuation problem is 
𝐻(𝐵, 𝑉 𝑒, 𝑄) = 𝑉 𝑒 + 𝑉 𝑏(𝐵,𝑄) − 𝜉𝐵𝛷(−𝑉 𝑒), (9)

and total value created by a Markov-perfect capital regulator is 
𝐻(𝐵) = 𝑉 𝑒 (𝐵, ℎ𝐵(𝐵)

)

+𝑉 𝑏(𝐵,𝑄(ℎ𝐵(𝐵)))− 𝜉𝐵𝛷
(

−𝑉 𝑒 (𝐵, ℎ𝐵(𝐵)
))

, (10)

where ℎ𝐵(𝐵) is its policy function.

Proof.  See Appendix  A.2 □

3.2. Regulator’s time inconsistency problem

Now we describe the tradeoff faced by a regulator and show that 
optimal capital regulation suffers a time inconsistency problem. Sharing 
the same objective, a regulator can create a larger total value by 
committing to deposit issuance that no longer remains optimal as time 
evolves.

Differentiate the Markov-perfect regulator’s objective in (5) with 
respect to deposit choice 𝐵′:
[

−(1 − 𝜆)𝐵
𝜕𝑄(𝐵′)
𝜕𝐵′ + 1

𝑟
𝜕𝐻(𝐵′)
𝜕𝐵′

]

𝜉𝐵𝜙(−𝑉 𝑒(𝐵,𝐵′)) + 1
𝑟
𝜕𝐻(𝐵′)
𝜕𝐵′ = 0.

The first term describes how 𝐵′ reduces default costs today through 
elevating bank equity value 𝑉 (𝐵,𝐵′). The second term describes how 
it affects total value tomorrow. The presence of the dilution term −(1−
𝜆)𝐵 𝜕𝑄(𝐵′)

𝜕𝐵′  reflects that the regulator does not want to fully eliminate 
dilution. This is because banks have the option to default, and thus 
diluting banks’ debt burden can still be valuable. With 𝑄(𝐵′) being 
typically decreasing in well-behaved models, this term is positive.

While a Markov-perfect regulator eliminates the static externality 
caused by banks’ equity-value-maximizing objective, i.e. dilution is 
allowed only when it improves total value today, there is still a dynamic 
externality. This is because allowing dilution can also improve total 
value yesterday. In particular, the value of legacy deposits yesterday 
declines when depositors back then rationally expect today’s dilution 
to reduce the expected payment to them, i.e. 𝑄’s are intertemporally 
connected when 𝜆 < 1. The Markov-perfect regulator does not inter-
nalize such a positive impact of current dilution on its past self and 
therefore has the tendency to under-issue relative to social optimum.

Formally, the Markov-perfect regulator’s objective described by (5) 
increases in total value tomorrow 𝐻(𝐵′) but decreases in deposit price 
today 𝑄(𝐵′).9 Both terms are forward-looking and take into account 
the issuance decision of the regulator tomorrow, i.e. 𝐵′′ = ℎ𝐵(𝐵′). Let 
us consider an experiment where we give the Markov-perfect regulator 
a one-shot opportunity today to choose 𝐵′′. This essentially gives the 
Markov-perfect regulator some commitment power. According to the 
envelope theorem, a small deviation to 𝐵′′ > ℎ𝐵(𝐵′) will affect total 
value tomorrow only in a second-order way because at 𝐵′′ = ℎ𝐵(𝐵′)
total value tomorrow is already maximized. However, this deviation 
can reduce deposit price tomorrow when 𝑄(.) is decreasing, which in 
turn, with 𝜆 < 1, reduces deposit price today in a first-order way. On 
net, total value today increases. Proposition  3 formalizes this reasoning 
and establishes the time inconsistency problem of a capital regulator.

Proposition 3.  In an interior steady state, a Markov-perfect regulator 
improves total value today by committing to a small one-shot deviation to a 
larger issuance tomorrow if (i) deposit pricing function is locally downward 
sloping, i.e. 𝜕𝑄(𝐵′)

𝜕𝐵′ |𝐵′=𝐵𝑠𝑠
< 0 where subscript 𝑠𝑠 denotes steady state values 

and (ii) deposit maturity is long, i.e. 𝜆 < 1.

9 Bank equity value in the objective (after plugging (7) into (6) and then 
simplifying using (10)) can be rewritten as 𝑉 𝑒(𝐵,𝐵′) = 𝑅−𝜆𝐵−𝑄(𝐵′)(1−𝜆)𝐵+
1
𝑟
𝐻(𝐵′). This increases in 𝐻(𝐵′) and decreases in 𝑄(𝐵′).

Proof.  See Appendix  A.3. □

To sum up, committing to a large deposit issuance in the future 
serves as a useful tool for a regulator to prevent bank defaults today. A 
regulator with such an ability, e.g. Ramsey, can create liquidity benefits 
by incurring smaller default costs. This implies a more efficient tradeoff.

3.3. Comparing regulator’s and banks’ time inconsistencies

It is worth comparing the time inconsistency problem of a capital 
regulator that we have established in the previous section and the time 
inconsistency problem of a borrower that has been examined by the 
existing literature. The latter is sometimes called a ‘‘dilution problem’’ 
or a ‘‘leverage ratchet effect’’ and it describes how a borrower’s lack of 
commitment impairs its own welfare (e.g. Gomes et al., 2016; Admati 
et al., 2018). The objective of a capital regulator is different from that 
of a borrower. Therefore, our investigation of optimal regulation is 
different from the existing literature.

To recap the time inconsistency of borrowers, banks in our case, 
let us consider a one-shot commitment opportunity for banks similar 
to that in Section 3.2 for the Markov-perfect regulator. In steady 
state, banks issue new deposits every period, i.e. 𝑏′ − (1 − 𝜆)𝑏 > 0. 
A bank’s objective described by (1) today increases in equity value 
tomorrow 𝑣𝑒(𝐵′, 𝑏′) and deposit price today 𝑞(𝐵, 𝑏′). Both terms are 
forward-looking and take into expectation the issuance decision of bank 
tomorrow, i.e. 𝑏′′ = ℎ𝑏(𝐵′, 𝑏′). Let us give an individual bank a one-shot 
opportunity today to choose 𝑏′′. According to the envelope theorem, 
a small deviating to 𝑏′′ < ℎ𝑏(𝐵′, 𝑏′) will affect equity value tomorrow 
only in a second-order way because at 𝑏′′ = ℎ𝑏(𝐵′, 𝑏′) equity value 
tomorrow is already maximized. However, this deviation can increase 
deposit price tomorrow when 𝑞(𝐵′, 𝑏′′) is decreasing in 𝑏′′, which in 
turn, with 𝜆 < 1, increases deposit price today in a first-order way. On 
net, equity value today increases. Proposition  4 echoes Proposition  3 
and establishes the time inconsistency problem of banks.

Proposition 4.  In an interior steady state, a laissez-faire bank improves 
equity value today by committing to a small one-shot deviation to a lower 
issuance tomorrow if (i) deposit pricing function is locally downward slop-
ing, i.e. 𝜕𝑞(𝐵𝑠𝑠 ,𝑏′)

𝜕𝑏′ |𝑏′=𝐵𝑠𝑠
< 0 where subscript 𝑠𝑠 denotes steady state values 

and (ii) deposit maturity is long, i.e. 𝜆 < 1.

Proof.  See Appendix  A.4. □

Why is an increase in deposit issuance tomorrow good for enhancing 
equity value today under a Markov-perfect regulator but bad under 
laissez-faire banks? The difference is driven by the fact that equity 
value decreases in deposit price conditioning on total value tomorrow 
(Footnote 3.2), but increases in deposit price conditioning on equity 
value tomorrow (Eq. (1) when 𝑏′ − (1 − 𝜆)𝑏 > 0). An increase in 
issuance tomorrow always reduces the price of long-term deposits 
today, however, it improves equity value today at the point where 
total value tomorrow is maximized but reduces equity value today at 
the point where equity value tomorrow is maximized. Intuitively, to 
elevate equity value at time 𝑡, one should enhance the value of newly 
issued deposits 𝐵𝑡+1 − (1 − 𝜆)𝐵𝑡 > 0. The Markov-perfect regulator at 
time 𝑡 + 1 protects the value of all deposits 𝐵𝑡+1—for the purpose of 
enhancing equity value at time 𝑡, it should instead dilute the value of 
legacy deposits (1−𝜆)𝐵𝑡 by choosing a higher 𝐵𝑡+2. In contrast, a bank at 
time 𝑡+1 takes into account none of the deposits then existing—for the 
purpose of enhancing equity value at time 𝑡, it should instead protect 
the value of newly issued deposits 𝐵𝑡+1 − (1 − 𝜆)𝐵𝑡 by choosing a lower 
𝐵𝑡+2.
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4. Optimal policies with non-maturing deposits

In the previous section we demonstrated the value of one-shot com-
mitment. In this section, we numerically solve the optimal policies of 
Ramsey and Markov-perfect regulators to gauge the effect of full com-
mitment. We do so in an extended model with non-maturing deposits 
and with aggregate shocks. Our modeling of deposits follows Jermann 
and Xiang (2023) that captures a key feature of bank deposits that 
distinguishes them from corporate bonds with fixed maturity. In par-
ticular, a major portion of US bank deposits have no explicit maturity 
dates and depositors withdraw on demand, which implies that the 
effective deposit maturity is endogenously changing. While we are 
able to analytically show the value of one-shot commitment in this 
extended setup similar to Propositions  3 and 4 for our baseline model, 
we delegate these results to Appendix  B in order to focus on the new 
set of results coming out of model solutions.

Section 4.1 describes laissez-faire, Ramsey- and Markov-perfect-
regulated economies. Section 4.2 describes our numerical methods and 
parameter choices. Section 4.3 compares steady states. Section 4.4 
compares impulse responses to a negative aggregate shock.

4.1. Setup

4.1.1. Laissez-faire
The liquidity benefit derived by depositor 𝑖 with deposits 𝑏𝑖 consists 

of two components. First, as in the baseline model, there is a benefit 
𝜇(𝐵) of holding deposits within the period for day-to-day transactions 
with 𝜇(.) being decreasing. Second, at the end of each period a liquidity 
shock hits, and upon withdrawal a depositor receives benefit 𝜈 with 
c.d.f. (p.d.f.) 𝐹 (𝜈) (𝑓 (𝜈)) over support [𝜈, 𝜈̄]. This reflects various needs 
that require cash. Withdrawal incurs a marginal cost of 𝜅. Therefore, 
depositor 𝑖 finds it optimal to withdraw the entire 𝑏𝑖 if 𝜈 is large enough 
such that
1 + 𝜈 − 𝜅 ≥ 𝑞,

where the deposit price 𝑞 equals the risk-adjusted present value of fu-
ture payments and is thus exactly the opportunity cost of withdrawing.

In this setup, the mass of withdrawing depositors is given by: 
𝜆(𝑞) = 1 − 𝐹 (𝑞 + 𝜅 − 1), (11)

and the liquidity value per unit of deposits combines holding and 
expected withdrawing benefits, i.e. 

𝐿 (𝐵, 𝑞) = 𝜇(𝐵) + ∫

𝜈̄

𝑞+𝜅−1
(𝜈 − 𝜅)𝑑𝐹 (𝜈). (12)

We allow shocks to aggregate productivity, i.e. 𝑅′ = (1 − 𝜌𝑅)𝑅∗ +
𝜌𝑅𝑅+𝜎𝑅𝑢̃ where 𝑅∗ is the average productivity and 𝑢̃ ∼  (0, 1). Given 
law of motion for 𝐵, i.e. 𝐵′ = 𝛺(𝑅,𝐵), and that for 𝑅, an individual 
bank solves
𝑧 + 𝑣𝑒(𝑅,𝐵, 𝑏)

= 𝑧 + max
𝑏′

{

𝑅 − 𝜆(𝑞(𝑅,𝐵, 𝑏′))𝑏 + 𝑞(𝑅,𝐵, 𝑏′){𝑏′ − [1 − 𝜆(𝑞(𝑅,𝐵, 𝑏′))]𝑏}

+ 1
𝑟
𝐄
{

∫

𝑧̄

−𝑣𝑒(𝑅′ ,𝐵′ ,𝑏′)
[𝑣𝑒(𝑅′, 𝐵′, 𝑏′) + 𝑧′]𝑑𝛷(𝑧′)

}

}

, (13)

given

𝑞(𝑅,𝐵, 𝑏′)𝑏′ = 1
𝑟
𝐄
{

𝑣𝑏(𝐵′, 𝑏′, 𝑞(𝑅′, 𝐵′, ℎ𝑏(𝑅′, 𝐵′, 𝑏′)))

+ ∫

−𝑣𝑒(𝑅′ ,𝐵′ ,𝑏′)

−𝑧̄
[𝑧′ + 𝑣𝑒(𝑅′, 𝐵′, 𝑏′) − 𝜉𝑏′]𝑑𝛷(𝑧′)

}

,

where 𝑣𝑏(𝐵, 𝑏, 𝑞) = {𝐿(𝐵, 𝑞) + 𝜆(𝑞) + [1 − 𝜆(𝑞)]𝑞}𝑏; ℎ𝑏(𝑅,𝐵, 𝑏) solves (13); 
𝜆(.) and 𝐿(.) are given by (11) and (12).

An equilibrium of the laissez-faire economy requires that individual 
banks’ optimal deposit issuance policy is consistent with law of motion 
for aggregate deposits 𝐵, i.e. 𝛺(𝑅,𝐵) = ℎ𝑏(𝑅,𝐵,𝐵).

4.1.2. Ramsey regulator
A Ramsey regulator solves

max
{𝑉 𝑒

𝑡 (𝑅
𝑡),𝑄𝑡(𝑅𝑡),𝐵𝑡+1(𝑅𝑡)}∞𝑡=0

𝐄0

∞
∑

𝑡=0

1
𝑟𝑡

[

𝑅𝑡 + 𝐿(𝐵𝑡, 𝑄𝑡) − 𝜉𝐵𝑡𝛷(−𝑉 𝑒
𝑡 )
]

,

subject to for all 𝑡 ≥ 0

𝑉 𝑒
𝑡 = 𝑅𝑡 − 𝜆(𝑄𝑡)𝐵𝑡 +𝑄𝑡{𝐵𝑡+1 − [1 − 𝜆(𝑄𝑡)]𝐵𝑡}

+ 1
𝑟
𝐄𝑡

[

∫

𝑧̄

−𝑉 𝑒
𝑡+1

(𝑧 + 𝑉 𝑒
𝑡+1)𝑑𝛷(𝑧)

]

,

𝑄𝑡𝐵𝑡+1 =
1
𝑟
𝐄𝑡

[

𝑉 𝑏
𝑡+1 + ∫

−𝑉 𝑒
𝑡+1

−𝑧̄
(𝑧 + 𝑉 𝑒

𝑡+1 − 𝜉𝐵𝑡+1)𝑑𝛷(𝑧)
]

,

and no-Ponzi and no-bubble conditions, where 𝑉 𝑏
𝑡 = {𝐿(𝐵𝑡, 𝑄𝑡)+𝜆(𝑄𝑡)+

[1 − 𝜆(𝑄𝑡)]𝑄𝑡}𝐵𝑡; 𝜆(.) and 𝐿(.) are given by (11) and (12); 𝑅𝑡 is the 
history of aggregate productivities up to period 𝑡.

4.1.3. Markov-perfect regulator
Given 𝐵 and law of motion for 𝑅, a Markov-perfect regulator solves:

𝐻(𝑅,𝐵) = max
𝐵′

𝑅 + 𝐿
(

𝐵,𝑄
(

𝑅,𝐵′))𝐵 − 𝜉𝐵𝛷
(

−𝑉 𝑒(𝑅,𝐵,𝐵′)
)

+ 1
𝑟
𝐄𝐻(𝑅′, 𝐵′), (14)

given

𝑉 𝑒(𝑅,𝐵,𝐵′) = 𝑅 − 𝜆(𝑄(𝑅,𝐵′))𝐵 +𝑄(𝑅,𝐵′){𝐵′ − [1 − 𝜆(𝑄(𝑅,𝐵′))]𝐵}

+ 1
𝑟
𝐄
{

∫

𝑧̄

−𝑉 𝑒(𝑅′ ,𝐵′ ,ℎ𝐵 (𝑅′ ,𝐵′))
[𝑧′ + 𝑉 𝑒(𝑅′, 𝐵′, ℎ𝐵(𝑅′, 𝐵′))]𝑑𝛷(𝑧′)

}

,

𝑄(𝑅,𝐵′)𝐵′ = 1
𝑟
𝐄
{

𝑉 𝑏(𝐵′, 𝑄(𝑅′, ℎ𝐵(𝑅′, 𝐵′)))

+ ∫

−𝑉 𝑒(𝑅′ ,𝐵′ ,ℎ𝐵 (𝑅′ ,𝐵′))

−𝑧̄
[𝑧′ + 𝑉 𝑒(𝑅′, 𝐵′, ℎ𝐵(𝑅′, 𝐵′)) − 𝜉𝐵′]𝑑𝛷(𝑧′)

}

,

where 𝑉 𝑏(𝐵,𝑄) = {𝐿(𝐵,𝑄)+𝜆(𝑄)+𝑄[1−𝜆(𝑄)]}𝐵; ℎ𝐵 (𝑅,𝐵) solves (14); 
𝜆(.) and 𝐿(.) are given by (11) and (12).

4.2. Solution

For the Ramsey problem, we show the existence of a pseudo steady 
state in some aggregate quantities. Specifically, 𝐵𝑡, 𝑄𝑡 and 𝑉 𝑒

𝑡  converge 
to a stationary point. However, Lagrange multipliers associated with 
equity and pricing constraints, even when multiplied by 𝑟𝑡 to adjust for 
time discounting, keep growing at a speed under which the no-Ponzi 
and no-bubble conditions are satisfied. This is different from common 
models, i.e. consumption-saving models, where Lagrange multipliers 
becomes stationary after adjusted for time discounting, and is remi-
niscent of characterizations in the optimal taxation literature where 
convergence of multipliers cannot always be established. While we 
prove Proposition  5 for our model with non-maturing deposits, our 
baseline model with fixed maturity exhibits the same property. To solve 
the Ramsey problem requires us to first substitute out all multipliers by 
hand.

Proposition 5.  The existence of a Ramsey steady state in which real 
variables 𝐵𝑡, 𝑉 𝑒

𝑡  and 𝑄𝑡 stay constant does not imply constant Lagrange 
multipliers.

Proof.  See Appendix  A.5. □

The problems of the Markov-perfect regulator and laissez-faire 
banks (also the partial commitment regulators later) are nontrivial to 
solve. Local approximations of such equations are challenging because 
generalized Euler equations include derivatives of policy functions 
which are not determined by the system of first-order conditions (Klein 
et al., 2008). We build on Gomes et al. (2016) and Dennis (2022) 
for a fully local method that is scalable and can solve the steady 

Journal of Financial Economics 169 (2025) 104060 

6 



U. Jermann and H. Xiang

state with essentially no approximation error. Our approach can also 
handle the distinction between aggregate and individual state variables. 
To illustrate the main idea of the approach, consider the first-order 
condition for a laissez-faire bank in our baseline model, i.e. Eq. (8), 
which involves a pricing derivative given by:10

𝜕𝑞(𝐵, 𝑏′)
𝜕𝑏′

𝑏′ + 𝑞(𝐵, 𝑏′) = 1
𝑟

{

𝜇(𝐵′) + [𝜆 + (1 − 𝜆)𝑞(𝐵′, ℎ𝑏(𝐵′, 𝑏′))]

× [1 − 𝜉𝑏′𝜙(−𝑣𝑒(𝐵′, 𝑏′)) −𝛷(−𝑣𝑒(𝐵′, 𝑏′))]

− 𝜉𝛷(−𝑣𝑒(𝐵′, 𝑏′)) + (1 − 𝜆)𝑏′
𝜕𝑞(𝐵′, ℎ)

𝜕ℎ
|ℎ=ℎ𝑏(𝐵′ ,𝑏′)

𝜕ℎ𝑏
(

𝐵′, 𝑏′
)

𝜕𝑏′

}

,

where 𝐵′ = 𝛺(𝐵). For local solutions, policy function cannot be pinned 
down before solving for the steady state. Therefore, with the presence 
of 𝜕ℎ𝑏

(

𝐵′ ,𝑏′
)

𝜕𝑏′ , the system of first-order conditions used for local solutions 
is short one equation. To fill the gap, we iterate over the steady 
state and local dynamics jointly. In particular, for conjectured linear 
processes for 𝜕ℎ𝑏

(

𝐵′ ,𝑏′
)

𝜕𝑏′  and 𝛺(𝐵), we solve for the model’s steady state 
and then perturb it to the second order (for instance with Dynare). The 
computed dynamics allow us to update our conjecture. This process is 
repeated until convergence.

Our parametrization is as follows. A period is a year. The average 
profitability of bank assets is 𝑅∗ = 0.02. The default loss is 𝜉 = 0.2. 
The withdrawal cost is 𝜅 = 0.1. We assume that 𝜈 follows an expo-
nential distribution, i.e. 𝑓 (𝜈) = 𝑎 exp(−𝑎𝜈), with 𝑎 = 20. These choices 
follow Jermann and Xiang (2023) who aim to approximately match 
simulated moments of the laissez-faire economy and obvious empirical 
counterparts. We differ in four parameters to produce a higher default 
risk, without which Ramsey solutions can feature steady states with 
zero default and less interesting local dynamics. For the zero-mean i.i.d. 
shocks to profitability, we set 𝜙(𝑧) = 𝜄0− 𝜄1𝑧2. By imposing 𝜙(𝑧̄) = 0 and 
𝛷(𝑧̄) = 1, we can use 𝑧̄ to pin down 𝜄0 and 𝜄1. We set 𝑧̄ = 0.26. We set 
the benefit of holding deposits as 𝜇(𝐵) = 0.1245−0.012×𝐵. Finally, we 
set the discount rate to 1∕𝑟 = 0.9.

4.3. Steady states

Table  1 shows the deterministic steady states for laissez-faire, 
Ramsey- and Markov-perfect-regulated (MP) economies. We highlight 
two main findings. First, by comparing laissez-faire and two regulated 
economies on the left panel, one can see that with regulation the default 
rate is a lot lower while the amount of deposits is a lot higher. By 
addressing dilution, capital regulation can actually increase the steady-
state amount of deposits 𝐵𝑠𝑠 that banks absorb. This is despite the fact 
that regulators internalize that a large amount of deposits leads to a 
low marginal value of holding them, i.e. 𝜕𝜇(𝐵)∕𝜕𝐵 < 0. In laissez-
faire, banks’ strong incentive to dilute ex post is punished heavily by 
a large credit spread at the issuance stage, making deposits very costly 
for banks. Capital regulation assures depositors that their money is 
safe to some extent and therefore facilitates borrowing. Even though 
steady states of regulated economies admit more deposits, default risks 
𝛷(−𝑉 𝑒

𝑠𝑠) are much lower. This result highlights how the borrowing 
constraint is endogenously tightened up by banks’ dilution incentive, 
which is in sharp contrast to models where bank deposits are insured 
and capital requirements reduce equilibrium debt.11

10 This is obtained by differentiating the left- and right-hand sides of (2) at 
the same time.
11 That the amount of deposits in the laissez-faire is smaller than in the 
regulated economies does not imply non-binding capital requirements. For 
instance, in the steady states of Markov-perfect regulated economies, both 
under endogenous- and fixed-maturity, we have verified that bank equity value 
function 𝑉 𝑒(𝑅,𝐵,𝐵′) is locally increasing in 𝐵′ when evaluated at the point 
(𝑅,𝐵,𝐵′) = (𝑅∗, 𝐵𝑠𝑠, 𝐵𝑠𝑠). This means that banks themselves would like to 
absorb more deposits than the 𝐵𝑠𝑠 chosen by a Markov-perfect regulator.

Second, by comparing between two regulated economies on the 
left panel, we find that regulatory commitment can lead to a larger 
amount of deposits and a higher default risk. Naturally, commitment 
implies better outcomes—for instance, the total value in steady state 
𝐻𝑠𝑠 is higher in the Ramsey-regulated economy. However, we do not 
find bank leverage 𝐵𝑠𝑠∕𝐻𝑠𝑠 or default risk to be lower. The Ramsey 
regulator’s ability to commit brings a better tradeoff between liquidity 
benefits and default costs, who ends up issuing more deposits to create 
liquidity while admitting more defaults. In contrast, to issue more 
deposits forces the Markov-perfect regulator to bear a much larger 
amount of default risk and is not optimal. Interestingly, we find that 
the steady state leverage chosen by the Ramsey regulator can be even 
higher than that in laissez-faire. This highlights the importance of prop-
erly accounting for regulatory commitment before making model-based 
policy recommendations regarding the appropriate level of capital 
requirements.

In addition to these two main results, it is worth noting that the en-
dogeneity of deposit withdrawals can significantly amplify the value of 
regulatory commitment. We solve on the right panel our baseline model 
in Section 2 with fixed maturity and no net benefit of withdrawing. We 
in this case fix 𝜆 = 0.3439, and then re-adjust 𝜇(𝐵) = 0.098 − 0.012 × 𝐵
and 𝑧̄ = 0.121 so that laissez-faire economies with and without endoge-
nous withdrawals have a similar amount of deposits in steady states. 
We find that with endogenous withdrawals, commitment can produce 
large differences in steady state levels of deposits 𝐵𝑠𝑠 and total value 
𝐻𝑠𝑠.12 This is because endogenous withdrawals imply that future bank 
leverage will affect not only the current value of unmatured deposits as 
in our baseline setup, but also the amount that ends up getting matured 
today, i.e. how many depositors end up withdrawing. This additional 
channel can amplify the negative effect of inefficient leverage taking 
resulting from lack of commitment. In particular, withdrawals affect 
banks’ default incentive and depositors’ liquidity benefits by (14), and 
being able to commit to future leverage allows the Ramsey regulator to 
better account for these effects. Our result suggests that this can further 
widen the difference between Ramsey and Markov-perfect regulators 
regarding their optimal policies and how much value can be created.

4.4. Responses to aggregate shocks

This section shows the dynamics of regulated and laissez-faire 
economies in response to shocks to aggregate productivity 𝑅. This 
experiment is informative about the optimal setting of CCyB.

Fig.  1 reports the impulse responses to a negative i.i.d. 𝑅 shock at 
𝑡 = 10, which represents a recession caused by, for example, a housing 
crisis or a pandemic that lasts for one year. Upon the shock, bank equity 
values fall and therefore banks default more. By allowing banks to issue 
more deposits, both Ramsey and Markov-perfect regulators inflate the 
equity value and incentivize banks to default less.

Importantly, there is a clear difference in terms of policy persistence 
between the two regulators. Right upon the shock, the Markov-perfect 
regulator aggressively increases deposits for 𝑡 = 11. Even though an 
immediate deleveraging at 𝑡 = 12 is costly because this requires banks 
to inject a large amount of equity to retire these deposits who are 
therefore very likely to default, the deleveraging still unfolds relatively 
rapidly. In comparison, the Ramsey regulator increases deposits for 𝑡 =
11 in a milder way, but importantly commits to extend the increase for a 
longer time even though it becomes value destroying after productivity 
has reverted back to its long-run level. This allows Ramsey to better 
resolve defaults at 𝑡 = 10. Panels 1(c) and 1(d) display the equity 
ratios 1−𝐵∕𝐻 in two regulated economies and the difference between 
them (Ramsey-MP, i.e. Ramsey minus Markov-perfect). Relative to the 
Markov-perfect regulator, the Ramsey regulator keeps the equity ratio 
low for a longer period of time post the shock.

12 In an alternative recalibration with 𝜇(𝐵) = 0.07 − 0.012 × 𝐵 and 𝑧̄ = 0.15, 
laissez-faire economies with and without endogenous withdrawals have similar 
steady-state leverage ratios 𝐵𝑠𝑠∕𝐻𝑠𝑠 and default probabilities 𝛷(−𝑉 𝑒

𝑠𝑠). Our 
results are similar.
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Table 1
Steady states of laissez-faire and regulated economies. Parameters: 𝑟 = 1∕0.9, 𝜉 = 0.2, 𝜅 = 0.1, 𝑎 = 20, 𝜇 = 0.1245− 0.012×𝐵,𝑅∗ =
0.02, 𝜌𝑅 = 0, 𝜎𝑅 = 0, 𝑧̄ = 0.26. For the fixed-maturity model with 𝜆 = 0.3439, we adjust 𝑧̄ = 0.121 and 𝜇 = 0.098 − 0.012 × 𝐵 for 
comparability between laissez-faire economies.
 Moments Endogenous maturity Fixed maturity
 Laissez-faire Ramsey MP Laissez-faire Ramsey MP  
 𝐵𝑠𝑠 0.5165 1.1269 0.8166 0.5160 0.5633 0.5622 
 𝑉 𝑒

𝑠𝑠 0.1534 0.2112 0.2207 0.0897 0.1119 0.1127 
 𝛷(−𝑉 𝑒

𝑠𝑠) 0.1089 0.0248 0.0163 0.0457 0.0041 0.0034 
 𝜆𝑠𝑠 0.3439 0.1213 0.0707 0.3439 0.3439 0.3439 
 𝐿𝑠𝑠 0.1195 0.1177 0.1205 0.0918 0.0912 0.0913 
 𝐻𝑠𝑠 0.7046 1.4706 1.1577 0.6266 0.7093 0.7092 
 1 − 𝐵𝑠𝑠∕𝐻𝑠𝑠 0.2669 0.2337 0.2946 0.1764 0.2058 0.2073 

Fig. 1. Regulator’s commitment and impulse responses to i.i.d. 𝑅 shocks. Notes: 𝜌𝑅 = 0, 𝜎𝑅 = 0.04, and the other parameters follow Table  1. Ramsey-MP represents Ramsey minus 
Markov-perfect.

Fig.  2 considers a typical business cycle shock, i.e. a small but 
persistent drop in asset productivity 𝑅, specifically with 𝜌𝑅 = 0.9
and 𝜎𝑅 = 0.01. For both regulators, aggregate bank deposits shrink 
drastically to reduce the exposure of banks to the long-lasting increase 
in default risk. By 2(c) and 2(d), the impact of commitment echoes 
that in the i.i.d. shock case—that is, relative to the Markov-perfect 
regulator, the Ramsey regulator adopts a low equity ratio for quite a 
period of time. Overall, our result lends support to policy designs that 
bound the ability of a regulator to quickly revert capital buffers back 
to a stringent level after they get reduced, with the EU CRD IV as a 
prominent example. See more discussions in Section 6.3.

Fig.  3 plots the responses of the laissez-faire economy to negative 
productivity shocks and compares them with those of the Markov-
perfect regulated economy (MP-LF represents Markov-perfect minus 
laissez-faire). Panels 3(a)–3(c) show the i.i.d. shock case. When shocks 
are i.i.d., banks themselves do not adjust the amount of deposits, which 
implies that post-shock periods do not observe a lower equity ratio. 
This is because equity value is already maximized under banks’ own 
choice for 𝑏′, and therefore pushing it up further does not help reduce 
default probability. In contrast, the regulator restricts deposit issuance 
in steady state to address dilution, and has the room to allow more 
deposits to temporarily increase equity value when a negative shock 
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Fig. 2. Regulator’s commitment and impulse responses to persistent 𝑅 shocks. Notes: 𝜌𝑅 = 0.9, 𝜎𝑅 = 0.01, and the other parameters follow Table  1. Ramsey-MP represents Ramsey 
minus Markov-perfect.

hits. Panel 3(c) shows that capital regulation stringency, the difference 
between the required capital ratio and banks’ own optimal choice, falls 
right following the shock. Panels 3(d)–3(f) show the persistent shock 
case. Similar to the i.i.d. case, capital regulation stringency reduces post 
the shock.

5. Partial commitment

Following the two polar cases, i.e. Ramsey with full commitment 
and Markov-perfect with no commitment, we now present two interme-
diate cases. The difference between Ramsey and Markov-perfect is that 
the former faces two auxiliary state variables—prior promises about 
bank equity value and deposit price—after the initial period while the 
latter faces none. Each of our two regulators with partial commitment 
has only one of the two auxiliary state variables in the continuation 
problem. In the first economy, the regulator commits to bank equity 
values only while deposit prices are set in a time-consistent way. In 
the second economy, the regulator commits to deposit prices only 
while bank equity values are set in a time-consistent way. Presumably, 
committing to either equity values or deposit prices would be less 
involved in practice than committing to both. Therefore, how these 
partial commitment cases are different from the Ramsey case is of 
interest for policy making.

A key result we find is that partial commitment regulators pick the 
same steady state as Ramsey despite that they have less commitment 
power. Here for transparency we analyze the baseline model with a 

fixed maturity as in Sections 2 and 3. This result holds in our extended 
setup with non-maturing deposits, and we delegate the analysis to 
Appendix  B.

5.1. Setup

Aggregate productivity 𝑅 is constant. The problem of a regulator 
committing to bank equity values can be split into a continuation 
problem and an initial problem. The continuation problem is given 
recursively: 

𝐻(𝐵, 𝑉 𝑒) = max
𝐵′ ,𝑉 𝑒′

𝑅 + 𝜇(𝐵)𝐵 − 𝜉𝐵𝛷(−𝑉 𝑒) + 1
𝑟
𝐻(𝐵′, 𝑉 𝑒′), (15)

subject to promise keeping to equity value 𝑉 𝑒: 

𝑉 𝑒 = 𝑅−𝜆𝐵+𝑄(𝐵′, 𝑉 𝑒′)[𝐵′−(1−𝜆)𝐵]+ 1
𝑟

[

∫

𝑧̄

−𝑉 𝑒′
(𝑉 𝑒′+𝑧′)𝑑𝛷(𝑧′)

]

, (16)

given a deposit pricing schedule:

𝑄(𝐵′, 𝑉 𝑒′)𝐵′ = 1
𝑟

{

∫

𝑧̄

−𝑉 𝑒′
𝑉 𝑏(𝐵′, 𝑄(ℎ𝐵(𝐵′, 𝑉 𝑒′), ℎ𝑉 𝑒 (𝐵′, 𝑉 𝑒′)))𝑑𝛷(𝑧′)

+ ∫

−𝑉 𝑒′

−𝑧̄
[𝑧′ + 𝑉 𝑒′ + 𝑉 𝑏(𝐵′, 𝑄(ℎ𝐵(𝐵′, 𝑉 𝑒′), ℎ𝑉 𝑒 (𝐵′, 𝑉 𝑒′))) − 𝜉𝐵′]𝑑𝛷(𝑧′)

}

,

(17)

where depositors’ value is 𝑉 𝑏(𝐵,𝑄) = [𝜇(𝐵) + 𝜆 + (1 − 𝜆)𝑄]𝐵; optimal 
policies 𝐵′ = ℎ𝐵(𝐵, 𝑉 𝑒) and 𝑉 𝑒′ = ℎ𝑉 𝑒 (𝐵, 𝑉 𝑒) together solve (15).
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Fig. 3. Laissez-faire impulse responses to 𝑅 shocks. Notes: 𝜌𝑅 = 0, 𝜎𝑅 = 0.04 in the upper panel and 𝜌𝑅 = 0.9, 𝜎𝑅 = 0.01 in the lower panel. The other parameters follow Table  1. 
MP-LF represents Markov-perfect minus laissez-faire.

Initially, given 𝐵0, the regulator chooses:
max
𝑉 𝑒
0

𝐻(𝐵0, 𝑉
𝑒
0 ).

The problem of a regulator committing to deposit prices can be for-
mulated in a similar way. In the continuation problem, taking as given 
𝐵,𝑄 and an equity valuation schedule 𝑉 𝑒(𝐵′, 𝑄′;𝐵,𝑄), the regulator 
chooses deposits 𝐵′ and promised deposit price 𝑄′ subject to promise 
keeping to deposit price 𝑄. Initially, the regulator picks 𝑄0 given 𝐵0. 
To save space, this problem is presented in Appendix  C.

5.2. Capital regulation and partial commitment

In the two partial commitment cases, regulators have less power 
than Ramsey to control future deposit issuance because they can put 
one fewer promise keeping constraint on their future selves. Interest-
ingly, however, we numerically solve the steady states of the three 
models and find them to be identical. This result implies that, in 
steady state, one type of commitment is sufficient to align regulators’ 
incentives across time.

The intuition is as follows. Our result in Section 3.2 implies that for 
the Markov-perfect regulator, issuance decisions that maximize future 
total value are not consistent with maximizing current total value. To 
see why such a time inconsistency is absent for the partial commitment 
regulator, one shall first recognize the fact that total value combines 
equity and deposit values—total value 𝐻 = 𝑉 𝑒+𝑉 𝑏(𝐵,𝑄)−𝜉𝐵𝛷(−𝑉 𝑒) is 
increasing in both 𝑉 𝑒 and 𝑄. In the continuation problem of a regulator 
committing partially to equity values, with 𝑉 𝑒 committed previously 
together with 𝐵, it can maximize total value only by maximizing 
deposit price 𝑄. Moreover, based on the deposit pricing equation, i.e.

𝑄𝐵′ = 1
𝑟

[

𝑉 𝑏(𝐵′, 𝑄′) + ∫

−𝑉 𝑒′

−𝑧̄
(𝑧′ + 𝑉 𝑒′ − 𝜉𝐵′)𝑑𝛷(𝑧′)

]

,

fixing choice variables 𝐵′ and 𝑉 𝑒′, decisions by the future regulator 
that achieve maximal 𝑄′ imply maximal 𝑄, and there is no other 
forward-looking term that can potentially create a misalignment be-
tween objectives today and tomorrow. Similarly, in the continuation 
problem of a regulator committing partially to deposit prices, with 𝑄
committed previously together with 𝐵, it can maximize total value only 
by maximizing equity value 𝑉 𝑒. Based on the equity value equation, i.e.

𝑉 𝑒 = 𝑅 − 𝜆𝐵 +𝑄[𝐵′ − (1 − 𝜆)𝐵] + 1
𝑟

[

∫

𝑧̄

−𝑉 𝑒′
(𝑉 𝑒′ + 𝑧′)𝑑𝛷(𝑧′)

]

,

fixing state variables 𝐵,𝑄 and choice variables 𝐵′, decisions by the 
future regulator that achieve maximal 𝑉 𝑒′ imply maximal 𝑉 𝑒, and 
there is no other forward-looking term that can potentially create a 
misalignment between objectives today and tomorrow.

Formally, Proposition  6 allows the regulator with partial commit-
ment to equity values to commit today to a small one-shot deviation in 
𝐵′′ away from its steady state level 𝐵𝑠𝑠 while fixing 𝐵′ = 𝐵𝑠𝑠. It shows 
that such additional commitment power does not improve total value 
today.13 This is consistent with our numerical findings that steady states 
of this partial commitment regulator is identical to that of Ramsey, even 
though Ramsey has more commitment power.

13 Once 𝐵′ and 𝐵′′ gets decided, promise-keeping constraints today and 
tomorrow pin down 𝑉 𝑒′ and 𝑉 𝑒′′. The inequality condition imposed on the 
steady-state pricing derivative, which can be verified numerically, rules out 
a knife-edge scenario where two promise keeping constraints are linearly 
dependent locally. Otherwise, there are multiple combinations of {𝑉 𝑒′, 𝑉 𝑒′′}
that can satisfy promise keeping for a given choice of {𝐵′, 𝐵′′}, making the 
one-shot deviation problem not well-identified.
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Proposition 6.  In an interior steady state with 𝜆 < 1, a regulator 
with partial commitment to equity values cannot improve total value to-
day by committing to a small one-shot deviation in issuance tomorrow 
if 𝜕𝑄(𝐵′ ,𝑉 𝑒

𝑠𝑠)
𝜕𝐵′ |𝐵′=𝐵𝑠𝑠

≠ − 𝑄𝑠𝑠
[

1−𝛷𝑠𝑠+(𝜉𝐵𝑠𝑠𝜙𝑠𝑠+𝛷𝑠𝑠)𝜆
]

𝐵𝑠𝑠[1−𝛷𝑠𝑠+1−𝜆+
(

𝜉𝐵𝑠𝑠𝜙𝑠𝑠+𝛷𝑠𝑠
)

𝜆]𝜆
 where subscript 𝑠𝑠

denotes steady state values.

Proof.  See Appendix  A.6. □

In general, numerical solutions suggest that the allocations of the 
Ramsey regulator and two regulators with partial commitment are dif-
ferent. This is because in the initial period there are no prior promises. 
Consider the regulator with partial commitment to equity values. Eq-
uity value 𝑉 𝑒

0  is not previously committed, and this means that a 
maximal 𝑄0 does not necessarily correspond to a maximal 𝐻0. Our 
reasoning above no longer holds. Future regulator’s decisions that 
achieve maximal 𝑄1 might not be optimal for today.

Overall, our analysis shows that while it is fairly valuable to have 
one type of credible promises that a regulator can make, adding a 
second one can encounter strongly diminishing returns in the long run. 
Interpreting a commitment to equity values as a commitment to bank 
shareholders and a commitment to deposit prices as a commitment to 
depositors or other debt holders of banks, our result suggests that a 
regulator can be very effective without cultivating close relations with 
both groups. For instance, a close relation to banks’ shareholders or 
managers would be sufficient in the long run from this perspective. The 
ability to make credible commitments is more important than to whom 
such commitments are made.

6. Discussions

Two features of bank deposits give rise to both banks’ dilution and 
regulators’ time inconsistency: They are subject to default risk and are 
long-term in nature. Section 6.1 connects these features to existing 
empirical findings. Section 6.2 provides evidence suggesting that banks 
engage in dilution. Section 6.3 provides anecdotal evidence of time 
inconsistency in capital regulators’ policymaking.

6.1. Modeling deposits

About half of US bank deposits are uninsured. According to Ohlrogge 
(2025), more than 20% of bank failures between 1992 and 2022 in the 
US led to losses on uninsured deposits, tilting towards smaller banks 
and the pre-2008 period. Martin et al. (2025) show that for a small 
bank on the verge of failure, uninsured depositors were actively pulling 
their money out. Egan et al. (2017) conduct a structural estimation 
using data from the sixteen largest US banks between 2002 and 2013 
and find that the demand for uninsured deposits decreases as default 
risk increases.

While uninsured depositors tend to respond to increases in bank 
default risks, the responsiveness can be limited by a number of factors. 
For time deposits, the maturity is fixed and depositors might not 
be able to react promptly. For demand and saving deposits, deposi-
tors’ limited attention, financial knowledge, and transaction costs can 
all contribute to their unalertness to changes in bank fundamentals, 
leading to less frequent withdrawals than expected when default risk 
rises.14 Martin et al. (2025) show that, although more uninsured depos-
itors withdrew as the bank approached failure, a significant amount of 
uninsured transactional deposits remained, particularly from customers 
with long-standing relationships.

14 Depositors’ unalertness is also consistent with the low responsiveness of 
bank equity values and deposit rates with respect to changes in monetary 
policy. See e.g. Flannery and James (1984), Drechsler et al. (2021), and Whited 
et al. (2021).

Our modeling of long-term defaultable deposits incorporates these 
two characteristics: deposits are subject to default risk, but existing 
depositors are not continuously compensated for changes in default 
risk. With this, we show that dilution becomes relevant for banks, on 
the one hand making capital regulation valuable while on the other 
hand creating regulators’ time inconsistency problem.

6.2. Banks’ deposit dilution

Long-term defaultable debt implies that shareholders would like to 
engage in dilution as a result of an agency conflict. A direct implication 
of this is that leverage dynamics become more persistent. A firm 
financed by short-term debt adjusts its leverage quickly in response 
to shocks. In contrast, a firm financed by long-term debt is reluctant 
to reduce its leverage when it is high due to the current incentive to 
dilute. Conversely, firms find it hard to increase leverage when it is 
low because lenders anticipate future incentives to dilute. Dangl and 
Zechner (2021) and Chaderina et al. (2022) document that firms using 
more long-term debt are less likely to reduce their leverage when it 
is high. Jungherr and Schott (2022) show that the response of debt to 
output is slower for firms with more long-term debt.

We now look into a sample of banks whose deposits are exposed 
non-trivially to default risk and test whether the positive relation be-
tween deposit maturity and leverage persistence exists for banks. While 
it is straightforward to measure the average maturity of time deposits, 
the maturity of demand and saving deposits depends on withdrawals 
and is difficult to measure precisely. We hypothesize that depositors are 
less alert to changes in the risk of their banks if they are less financially 
sophisticated. A bank facing less alert depositors can dilute more freely, 
and the lack of depositor discipline implies a longer effective maturity 
of demand and saving deposits. In particular, we start with the county-
level ratio of residents without a college degree and calculate the 
weighted average for each bank-year across all counties where the bank 
operates, using deposit amounts as weights.15

In each quarter, our sample excludes a bank if either its insured 
deposit share or asset size is among the top 25% in the cross section. 
Depositors in these banks can be largely protected from default risk by 
either explicit guarantees from deposit insurance or implicit guarantees 
due to these banks’ systemic importance. With this, we run the follow-
ing regression separately in two subsamples based on whether more 
than 50% of bank 𝑖’s deposits in quarter 𝑡 are time deposits:
𝐿𝑒𝑣𝑖,𝑡+1 = 𝛽1𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 × 𝐿𝑒𝑣𝑖,𝑡 + 𝛽2𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 + 𝛽3𝐿𝑒𝑣𝑖,𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡

+ 𝛤𝑡 + 𝜍𝑖 + 𝜖𝑖,𝑡+1. (18)

Here, bank deposit maturity 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 is the log average maturity 
of time deposits in the subsample of banks that rely mostly on time 
deposits, and is the ratio of no college degree in the subsample of banks 
that rely mostly on demand and saving deposits. 𝐿𝑒𝑣𝑖,𝑡 is the deposit-to-
asset ratio. Control variables include log assets, insured deposit share, 
ratio of time to total deposits, ROA, and security-to-asset ratio. We also 
include bank and time fixed effects.

Our results presented in Panel A of Table  2 are consistent with 
our expectation for a positive 𝛽1. Column (1) and (2) suggest that for 
banks relying mostly on demand and saving deposits, those with less 
alert depositors exhibit more persistence in their leverage, consistent 
with them having a longer effective maturity and being more prone to 
dilution. Column (3) and (4) suggest that for banks relying mostly on 
time deposits, a longer average maturity of time deposits also implies 
more persistence in leverage. In Panel B, we estimate Eq. (18) with 
observations where either the insured deposit share or asset size is 

15 Our main data source is Drechsler et al. (2021), who compile data from 
the Call Reports, FDIC and the US Census. Our sample spans between 1994 
and 2017.
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Table 2
Bank dilution and deposit maturity. Panel A estimates Eq (18) in a sample excluding banks whose insured deposit share 
or asset size belongs to top 25% in a given quarter. Panel B estimates Eq (18) in a sample including banks whose insured 
deposit share or asset size belongs to top 25% in a given quarter. Columns (1) and (2) include bank-quarter observations where 
time deposit share is below 0.5, and 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 is the ratio of no college degree. Columns (3) and (4) include bank-quarter 
observations where time deposit share is above 0.5, and 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 is the log average maturity of time deposits. Standard 
errors are clustered at the bank level and reported in parentheses. ***/**/* denotes 99%/95%/90% significance.
 𝐿𝑒𝑣𝑖,𝑡+1
 Time deposits≤50% Time deposits>50%
 (1) (2) (3) (4)

 Panel A: Bottom 75% insurance coverage and size
 𝐿𝑒𝑣𝑖,𝑡 ×𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 0.151*** 0.143** 0.009*** 0.010***  
 (0.058) (0.056) (0.003) (0.003)  
 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 −0.120** −0.129*** −0.003 −0.003  
 (0.051) (0.049) (0.003) (0.003)  
 𝐿𝑒𝑣𝑖,𝑡 0.638*** 0.649*** 0.741*** 0.750***  
 (0.046) (0.044) (0.007) (0.007)  
 FEs Yes Yes Yes Yes  
 Controls No Yes No Yes  
 𝑅2 0.909 0.909 0.944 0.945  
 Obs 220,972 220,972 110,059 110,059  
 Panel B: Top 25% insurance coverage or size
 𝐿𝑒𝑣𝑖,𝑡 ×𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 −0.007 0.002 0.001 −0.000  
 (0.059) (0.059) (0.005) (0.005)  
 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖,𝑡 −0.011 −0.027 0.005 0.005  
 (0.050) (0.051) (0.004) (0.004)  
 𝐿𝑒𝑣𝑖,𝑡 0.859*** 0.851*** 0.813*** 0.809***  
 (0.046) (0.047) (0.007) (0.007)  
 FEs Yes Yes Yes Yes  
 Controls No Yes No Yes  
 𝑅2 0.954 0.954 0.956 0.956  
 Obs 191,917 191,917 109,884 109,884  

among the top 25%. The estimates for 𝛽1 are close to zero. This placebo 
test supports the hypothesis that when default risk is minimal—whether 
due to explicit or implicit guarantees—dilution tends to be weak.

6.3. Regulator’s time inconsistency

The main contribution of this paper is to show that long-term 
defaultable deposits imply a time inconsistency problem for capital 
regulators. There are a series of policy discussions and actions that 
reveal capital regulators’ worry about the potential time inconsistency 
issue, as it could severely impair the working of policies. In particu-
lar, Committee on the Global Financial System (2016) advocates for 
a systematic framework that ‘‘allows that sort of flexibility that is often 
associated with the term ‘discretion’ while avoiding the disadvantages of 
discretionary policy pointed out by Kydland and Prescott (1977)’’. We 
consider our theory to have clearly pointed out for the first time 
one prominent but non-exclusive feature of banks that warrants such 
concerns. Here we provide some examples in regulators’ setting of bank 
capital adequacy where time inconsistency and thus commitment are 
relevant.

6.3.1. Ccyb
A key innovation of Basel III is to grant regulators the ability 

to adjust banks’ capital adequacy dynamically through time-varying 
capital buffers, i.e. the CCyB. As of today, there is no consensus about 
how systematic risks shall be measured and how they shall be mapped 
into actual calibrations of bank capital adequacy. This leaves national 
regulators substantial discretion regarding when, by how much, and for 
how long CCyB will be adjusted.

Following the advice by Basel Committee on Banking Supervision 
(2010), the EU CRD IV (Article 136(7)) requires national authorities to 
announce ‘‘where the buffer rate is decreased, the indicative period during 
which no increase in the buffer rate is expected, together with a justification 
for that period’’. For example, the Bank of Italy explained in its 2015 
Financial Stability Report that it would be unlikely to increase the CCyB 

in 2016, in particular, ‘‘even were the rate of growth in lending to reach 5 
percent at the end of 2016 (at the uppermost threshold of the likely results), 
the credit-to-GDP gap would still be such as to render macroprudential 
interventions unnecessary ’’. Following the reduction of the CCyB rate to 
0% in March 2020, the Financial Policy Committee (FPC) of the Bank of 
England advised that ‘‘to help ensure banks plan for the future and support 
the economy the FPC has confirmed that it expects to keep the rate at 0% 
for at least another year ’’.

As noted in Section 4.4, regulators without commitment tend to 
tighten capital requirements too quickly, which heavily discounts the 
effectiveness of the CCyB in mitigating the impact of a recession. Their 
announcements to keep the CCyB rate low for a sufficient amount of 
time can therefore be a valuable commitment device that supports an 
optimal path for CCyB. As pointed out by European Systemic Risk Board 
(2018) regarding the forward guidance practice in CCyB, ‘‘predictive 
power of the CCyB rates implied by the buffer guides could be assessed 
against the authority’s track record’’, which helps to‘‘anchor market expec-
tations’’ and addresses the issue associated with ‘‘the considerable amount 
of discretion’’.

6.3.2. Other measures
While the CCyB component of capital requirements clearly involves 

a lot of discretion, governments can take other temporary measures 
that change the capital stringency banks face without explicitly varying 
capital requirements. One prominent example is how governments 
worldwide reacted to the 2008 financial crisis. In particular, many gov-
ernments purchased bank stocks at a high price, including e.g. the US 
Troubled Asset Relief Program (TARP) and the UK bank rescue package, 
which resembled a temporary relaxation of capital requirements that 
benefits bank equity values. The planning of share buybacks by banks 
resembles a follow-up policy tightening given it is costly for them to 
issue equity. For instance, in exchange for the TARP money, banks 
had to give the US Treasury a 5% annual dividend before 2013 and 
9% thereafter. Such a design was to incentivize banks to buy back 
shares in 5 years. The UK government also designed a long window 
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to sell back the stocks it purchased through the bank rescue package. 
For instance, the UK government has self-imposed a 2026 deadline to 
fully privatize NatWest, formerly known as the Royal Bank of Scotland. 
Clearly, implementing these long-horizon buyback policies requires 
commitment.16

Another example is how governments made their own decisions 
regarding the pace to transit to Basel III, which imposes more stringent 
standards than its predecessors (Basel Committee on Banking Super-
vision, 2020). Relatedly, Gropp et al. (2024) provide evidence that 
European countries allowed their domestic banks to inflate ‘‘on paper’’ 
their level of regulatory capital to accommodate the 2011 Capital Ex-
ercise conducted by the European Banking Authority.17 Countries have 
the discretion to accelerate or slow down the transition process, which 
affects banks significantly as equity issues are costly. Commitment 
power can be valuable in sustaining an optimal transition.

7. Conclusions

In this paper, we provide the first analysis of the time inconsistency 
problem of bank capital regulation. When financed with long-term 
defaultable deposits, banks in laissez-faire have an incentive to take an 
excessive leverage that dilutes the value of legacy depositors. Capital 
regulators correct the strong dilution incentive of banks but preserve 
some dilution as such leniency is valuable for reducing bank defaults. 
A regulator with commitment can use promises to future leniency—
allowing an excessive leverage that implies a suboptimally high level 
of dilution tomorrow—to persuade banks to not default today. We show 
that commitment has long-run effects that are significant. Additionally, 
upon a negative shock, we show that regulators find a temporary 
relaxation of capital requirements beneficial, and one with commitment 
uses promises to extend such leniency into a longer period of time. 
Our theory echoes policy makers’ preliminary attempts to develop a 
systematic framework that limits the discretion of capital regulators.

We have intentionally kept our model simple so that we can il-
lustrate the time inconsistency problem of capital regulation with 
transparency. Even though we have incorporated non-maturing de-
posits to reflect a salient feature of bank debt relative to typical 
non-financial corporate debt, there are other features worth incorporat-
ing from a quantitative standpoint. For instance, while we have been 
focusing on the standard agency conflict between equity holders and 
depositors of a bank, i.e. a dilution problem, the model can be easily 
extended to allow distortions from deposit insurance. The existence of 
insured deposits will not change the key insights of the paper but can 
be valuable for making precise quantitative prescriptions. Furthermore, 
it is interesting to consider a full-blown general equilibrium model with 
firm production, capital accumulation, and household preferences. We 
leave these to future research.
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Appendix A. Proofs

A.1. Proposition  1

The Lagrangian for our sequential Ramsey regulator in Section 2.2.1 
is: 

max
{𝑉 𝑒

𝑡 ,𝑄𝑡 ,𝐵𝑡+1 ,𝛾𝑡 ,𝜁𝑡}∞𝑡=0

∞
∑

𝑡=0

1
𝑟𝑡

{

𝑅 + 𝜇(𝐵𝑡)𝐵𝑡 − 𝜉𝐵𝑡𝛷(−𝑉 𝑒
𝑡 )

+ 𝛾𝑡

{

𝑅 − 𝜆𝐵𝑡 +𝑄𝑡[𝐵𝑡+1 − (1 − 𝜆)𝐵𝑡]

+ 1
𝑟

[

∫

𝑧̄

−𝑉 𝑒
𝑡+1

(𝑧 + 𝑉 𝑒
𝑡+1)𝑑𝛷(𝑧)

]

− 𝑉 𝑒
𝑡

}

+ 𝜁𝑡

{

1
𝑟

[

[

𝜇(𝐵𝑡+1) + 𝜆 + (1 − 𝜆)𝑄𝑡+1
]

𝐵𝑡+1

+ ∫

−𝑉 𝑒
𝑡+1

−𝑧̄
(𝑧 + 𝑉 𝑒

𝑡+1 − 𝜉𝐵𝑡+1)𝑑𝛷(𝑧)
]

−𝑄𝑡𝐵𝑡+1

}}

,

where 𝛾𝑡 and 𝜁𝑡 are two Lagrange multipliers; 𝐵0 is predetermined.
An interior equilibrium allocation can be solved through three sets 

of first-order conditions (with respect to 𝐵𝑡+1, 𝑉 𝑒
𝑡 , 𝑄𝑡) and two sets of 

constraints. First-order conditions at time 𝑡 > 0 are given by:
1
𝑟
{𝜇𝑡+1 + 𝐵𝑡+1𝜇

𝐵
𝑡+1 − 𝜉𝛷(−𝑉 𝑒

𝑡+1) − 𝛾𝑡+1[𝜆 +𝑄𝑡+1(1 − 𝜆)]} + 𝛾𝑡𝑄𝑡

+ 𝜁𝑡

{

1
𝑟
[𝜆 + 𝜇𝑡+1 + 𝐵𝑡+1𝜇

𝐵
𝑡+1 + (1 − 𝜆)𝑄𝑡+1 − 𝜉𝛷(−𝑉 𝑒

𝑡 )] −𝑄𝑡

}

= 0,

𝛾𝑡[𝐵𝑡+1 − (1 − 𝜆)𝐵𝑡] − 𝜁𝑡𝐵𝑡+1 + 𝜁𝑡−1(1 − 𝜆)𝐵𝑡 = 0,

𝜉𝜙(−𝑉 𝑒
𝑡 )𝐵𝑡 − 𝛾𝑡 + 𝛾𝑡−1[1 −𝛷(−𝑉 𝑒

𝑡 )] + 𝜁𝑡−1[𝛷(−𝑉 𝑒
𝑡 ) + 𝜉𝜙(−𝑉 𝑒

𝑡 )𝐵𝑡] = 0,

where 𝜇𝐵 represents the derivative of 𝜇(𝐵𝑡) with respect to 𝐵𝑡.
Meanwhile, first-order conditions at 𝑡 = 0 are:

1
𝑟
{𝜇𝑡+1 + 𝐵𝑡+1𝜇

𝐵
𝑡+1 − 𝜉𝛷(−𝑉 𝑒

𝑡+1) − 𝛾𝑡+1[𝜆 +𝑄𝑡+1(1 − 𝜆)]} + 𝛾𝑡𝑄𝑡

+ 𝜁𝑡
{ 1
𝑟
[𝜆 + 𝜇𝑡+1 + 𝐵𝑡+1𝜇

𝐵
𝑡+1 + (1 − 𝜆)𝑄𝑡+1 − 𝜉𝛷(−𝑉 𝑒

𝑡 )] −𝑄𝑡

}

= 0,

𝛾𝑡[𝐵𝑡+1 − (1 − 𝜆)𝐵𝑡] − 𝜁𝑡𝐵𝑡+1 = 0,

𝜉𝜙(−𝑉 𝑒
𝑡 )𝐵𝑡 − 𝛾𝑡 = 0.

Now consider the first-order conditions for the continuation prob-
lem in Proposition  1. They are given by:
1
𝑟
{

𝜇′ + 𝜇𝐵′𝐵′ − 𝜉𝛷(−𝑉 𝑒′) − 𝛾 ′[𝜆 +𝑄′(1 − 𝜆)]
}

+ 𝛾𝑄

+ 𝜁
{1
𝑟
[

𝜆 + 𝜇′ + 𝜇𝐵′𝐵′ + (1 − 𝜆)𝑄′ − 𝜉𝛷(−𝑉 𝑒′)
]

−𝑄
}

= 0,

𝛾 ′[𝐵′′ − (1 − 𝜆)𝐵′] − 𝜁 ′𝐵′′ + 𝜁 (1 − 𝜆)𝐵′ = 0,

𝜉𝐵′𝜙(−𝑉 𝑒′) − 𝛾 ′ + 𝛾[1 −𝛷(−𝑉 𝑒′)] + 𝜁
[

𝛷(−𝑉 𝑒′) + 𝜉𝐵′𝜙(−𝑉 𝑒′)
]

= 0,

where 𝛾 and 𝜁 are multipliers associated with promise keeping con-
straints on equity value and deposit price, respectively.

Two additional conditions that pin down 𝑄0 and 𝑉 𝑒
0  in the initial 

problem are:
𝛾
[

𝐵′ − (1 − 𝜆)𝐵
]

− 𝜁𝐵′ = 0,

𝜉𝜙(−𝑉 𝑒)𝐵 − 𝛾 = 0.

One can see that these two sets of first-order conditions are iden-
tical. Together with identical constraints on bank equity values and 
deposit prices, they imply identical interior allocations.
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A.2. Proposition  2

For the Ramsey regulator, plug (4) into (3) and we get

𝑉 𝑒 + [𝜆 + (1 − 𝜆)𝑄]𝐵 = 𝑅 + 1
𝑟
[𝑉 𝑒′ + 𝑉 𝑏(𝐵′, 𝑄′) − 𝜉𝐵′𝛷(−𝑉 𝑒′)].

Conjecture (9) to hold, and we can then rewrite the objective into 
𝑉 𝑒 + 𝑉 𝑏(𝐵,𝑄) − 𝜉𝐵𝛷(−𝑉 𝑒). We have verified our conjecture.

For the Markov-perfect regulator, plug (7) into (6) and we get

𝑉 𝑒(𝐵,𝐵′) + [𝜆 + (1 − 𝜆)𝑄(𝐵′)]𝐵 = 𝑅 + 1
𝑟
[

𝑉 𝑒(𝐵′, ℎ𝐵(𝐵′))

+ 𝑉 𝑏(𝐵′, 𝑄(ℎ𝐵(𝐵′))) − 𝜉𝐵′𝛷(−𝑉 𝑒(𝐵′, ℎ𝐵(𝐵′)))
]

Conjecture (10) to hold, and we can then rewrite the objective into 
𝑉 𝑒(𝐵,𝐵′) + 𝑉 𝑏(𝐵,𝑄(𝐵′)) − 𝜉𝐵𝛷

(

−𝑉 𝑒 (𝐵,𝐵′)). At optimum 𝐵′ = ℎ𝐵(𝐵), 
and we have verified our conjecture.

A.3. Proposition  3

Define the objective of a Markov-perfect regulator in Eq.  (5) as 
𝐻̃(𝐵,𝐵′) ≡ 𝑅 + 𝜇(𝐵)𝐵 − 𝜉𝐵𝛷(−𝑉 𝑒(𝐵,𝐵′)) + 1

𝑟𝐻(𝐵′) where value and 
pricing functions are given by (6) and (7). Denote steady-state values 
under a Markov-perfect regulator with subscript 𝑠𝑠. The first-order 
condition in steady state implies:
𝜕𝐻̃(𝐵,𝐵′)

𝜕𝐵′ |𝐵=𝐵′=𝐵𝑠𝑠
= 0.

Interior solution implies that deposits 𝐵𝑠𝑠 > 0 and default probability 
𝛷𝑠𝑠 ∈ (0, 1).

We consider a regulator who chooses 𝐵′ and 𝐵′′ today at time 𝑡
and follows the optimal policy of a Markov-perfect regulator beyond 
𝑡+2. Our goal is to show that if conditions (i) and (ii) are satisfied, the 
objective of this regulator is strictly increasing in 𝐵′′ when evaluated 
at the point where 𝐵 = 𝐵′ = 𝐵′′ = 𝐵𝑠𝑠. This makes a one-shot deviation 
to 𝐵′′ > 𝐵𝑠𝑠 profitable. This regulator’s problem is given by: 

max
𝐵′ ,𝐵′′

𝑅 + 𝜇(𝐵)𝐵 − 𝜉𝐵𝛷(−𝑉 𝑒(𝐵,𝐵′, 𝐵′′)) + 1
𝑟
𝐻̃(𝐵′, 𝐵′′) (A.1)

where

𝑉 𝑒 (𝐵,𝐵′, 𝐵′′) = 𝑅 − 𝜆𝐵 + 𝑄̃
(

𝐵′, 𝐵′′) [𝐵′ − (1 − 𝜆)𝐵]

+ 1
𝑟

{

∫

𝑧̄

−𝑉 𝑒(𝐵′ ,𝐵′′)

[

𝑧′ + 𝑉 𝑒 (𝐵′, 𝐵′′)] 𝑑𝛷(𝑧′)
}

, (A.2)

and

𝑄̃
(

𝐵′, 𝐵′′)𝐵′ = 1
𝑟

{

[𝜇
(

𝐵′) + 𝜆 +𝑄
(

𝐵′′) (1 − 𝜆)]𝐵′

+ ∫

−𝑉 𝑒(𝐵′ ,𝐵′′)

𝑧̄

[

𝑧′ + 𝑉 𝑒 (𝐵′, 𝐵′′) − 𝜉𝐵′] 𝑑𝛷(𝑧′)
}

. (A.3)

Combine (6) and (7), and then utilize (10). We can show: 
𝑉 𝑒(𝐵′, 𝐵′′) − 𝜉𝐵′𝛷(−𝑉 𝑒(𝐵′, 𝐵′′)) + 𝑉 𝑏(𝐵′, 𝑄(𝐵′′)) = 𝐻̃(𝐵′, 𝐵′′). (A.4)

where 𝑉 𝑏(𝐵,𝑄) = [𝜇(𝐵)+𝜆+𝑄(1−𝜆)]𝐵. After plugging (A.3) into (A.2) 
and then using (A.4), we have:

𝑉 𝑒 (𝐵,𝐵′, 𝐵′′) = 𝑅 − 𝜆𝐵 − (1 − 𝜆)𝐵𝑄̃
(

𝐵′, 𝐵′′) + 1
𝑟
𝐻̃(𝐵′, 𝐵′′).

Differentiate the objective in (A.1) with respect to 𝐵′′. Since
𝜕𝐻̃(𝐵′ ,𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
= 0, the derivative at 𝐵 = 𝐵′ = 𝐵′′ = 𝐵𝑠𝑠 is given 

by: 

− 𝜉𝐵𝑠𝑠𝜙𝑠𝑠(1 − 𝜆)𝐵𝑠𝑠
𝜕𝑄̃(𝐵′, 𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
. (A.5)

Given condition (ii), i.e. 𝜆 < 1, to show that (A.5) is strictly positive, it 
is sufficient to show that 𝜕𝑄̃(𝐵′ ,𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
< 0.

Using (A.4), we can rewrite (A.3) into:

𝑄̃
(

𝐵′, 𝐵′′)𝐵′ = 1
𝑟

{

𝐻̃(𝐵′, 𝐵′′) − ∫

𝑧̄

−𝑉 𝑒(𝐵′ ,𝐵′′)

[

𝑧′ + 𝑉 𝑒 (𝐵′, 𝐵′′)] 𝑑𝛷(𝑧′)
}

.

Differentiate it with respect to 𝐵′′ and then evaluate at steady state:
𝜕𝑄̃(𝐵′, 𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
= −1

𝑟
(1 −𝛷𝑠𝑠)

1
𝐵𝑠𝑠

𝜕𝑉 𝑒(𝐵′, 𝐵′′)
𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠

.

Here we again have utilized that 𝜕𝐻̃(𝐵′ ,𝐵′′)
𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠

= 0. To sign this 
expression, differentiate (A.4) with respect to 𝐵′′ and then evaluate at 
steady state:
𝜕𝑉 𝑒(𝐵′, 𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
(1 + 𝜉𝐵𝑠𝑠𝜙𝑠𝑠) + (1 − 𝜆)𝐵𝑠𝑠

𝜕𝑄(𝐵′′)
𝜕𝐵′′ |𝐵′′=𝐵𝑠𝑠

=
𝜕𝐻̃(𝐵′, 𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
= 0.

Condition (i), i.e. 𝜕𝑄(𝐵′)
𝜕𝐵′ |𝐵′=𝐵𝑠𝑠

< 0, and (ii), i.e. 𝜆 < 1, together imply 
that 𝜕𝑉

𝑒(𝐵′ ,𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
> 0. This implies 𝜕𝑄̃(𝐵′ ,𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
< 0.

A.4. Proposition  4

Denote steady state values in laissez-faire with subscript 𝑠𝑠, which 
implies 𝐵𝑠𝑠 = 𝛺(𝐵𝑠𝑠). Define the objective of a laissez-faire bank in Eq. 
(1) as 𝑣̃𝑒(𝐵𝑠𝑠, 𝑏, 𝑏′) ≡ 𝑅 − 𝜆𝑏 + 𝑞(𝐵𝑠𝑠, 𝑏′)[𝑏′ − (1 − 𝜆)𝑏] + 1

𝑟 ∫
𝑧̄
−𝑣𝑒(𝐵𝑠𝑠 ,𝑏′)

[𝑧′ +
𝑣𝑒(𝐵𝑠𝑠, 𝑏′)]𝑑𝛷(𝑧′) where pricing function is given by (2). The first-order 
condition in steady state implies:
𝜕𝑣̃𝑒(𝐵𝑠𝑠, 𝐵𝑠𝑠, 𝑏′)

𝜕𝑏′
|𝑏′=𝐵𝑠𝑠

= 0.

Interior solution implies that deposits 𝐵𝑠𝑠 > 0 and default probability 
𝛷𝑠𝑠 ∈ (0, 1).

We consider a bank who chooses 𝑏′ and 𝑏′′ today at time 𝑡 and 
follows the optimal policy of a laissez-faire bank without commitment 
beyond 𝑡 + 2. Our goal is to show that if conditions (i) and (ii) are 
satisfied, the objective of this bank is strictly decreasing in 𝑏′′ when 
evaluated at the point where 𝐵 = 𝑏 = 𝑏′ = 𝑏′′ = 𝐵𝑠𝑠. This makes a 
one-shot deviation to 𝑏′′ < 𝐵𝑠𝑠 profitable. This bank’s problem is given 
by:

max
𝑏′ ,𝑏′′

𝑅 − 𝜆𝑏 + 𝑞(𝐵𝑠𝑠, 𝑏
′, 𝑏′′)[𝑏′ − (1 − 𝜆)𝑏]

+ 1
𝑟

{

∫

𝑧̄

−𝑣̃𝑒(𝐵𝑠𝑠 ,𝑏′ ,𝑏′′)
[𝑧′ + 𝑣̃𝑒(𝐵𝑠𝑠, 𝑏

′, 𝑏′′)]𝑑𝛷(𝑧′)
}

(A.6)

where

𝑞(𝐵𝑠𝑠, 𝑏
′, 𝑏′′)𝑏′ = 1

𝑟

{

[𝜇(𝐵𝑠𝑠) + 𝜆 + (1 − 𝜆)𝑞(𝐵𝑠𝑠, 𝑏
′′)]𝑏′

+ ∫

−𝑣̃𝑒(𝐵𝑠𝑠 ,𝑏′ ,𝑏′′)

−𝑧̄
[𝑧′ + 𝑣̃𝑒(𝐵𝑠𝑠, 𝑏

′, 𝑏′′) − 𝜉𝑏′]𝑑𝛷(𝑧′)
}

.

(A.7)
Differentiate the objective in (A.6) with respect to 𝑏′′. Since

𝜕𝑣̃𝑒(𝐵𝑠𝑠 ,𝐵𝑠𝑠 ,𝑏′′)
𝜕𝑏′′ |𝑏′′=𝐵𝑠𝑠

= 0, the derivative at 𝐵 = 𝑏 = 𝑏′ = 𝑏′′ = 𝐵𝑠𝑠 is 
given by: 

𝜆𝐵𝑠𝑠
𝜕𝑞(𝐵𝑠𝑠, 𝐵𝑠𝑠, 𝑏′′)

𝜕𝑏′′
|𝑏′′=𝐵𝑠𝑠

. (A.8)

To show that (A.8) is strictly negative, it is sufficient to show that 
𝜕𝑞(𝐵𝑠𝑠 ,𝐵𝑠𝑠 ,𝑏′′)

𝜕𝑏′′ |𝑏′′=𝐵𝑠𝑠
< 0.

Differentiate (A.7) with respect to 𝑏′′ and then evaluate at steady 
state:

𝜕𝑞(𝐵𝑠𝑠, 𝐵𝑠𝑠, 𝑏′′)
𝜕𝑏′′

|𝑏′′=𝐵𝑠𝑠
= 1

𝑟
(1 − 𝜆)

𝜕𝑞(𝐵𝑠𝑠, 𝑏′′)
𝜕𝑏′′

|𝑏′′=𝐵𝑠𝑠
.

Here we again utilize that 𝜕𝑣̃𝑒(𝐵𝑠𝑠 ,𝐵𝑠𝑠 ,𝑏′′)
𝜕𝑏′′ |𝑏′′=𝐵𝑠𝑠

= 0. Condition (i), 
i.e. 𝜕𝑞(𝐵𝑠𝑠 ,𝑏′)

𝜕𝑏′ |𝑏′=𝐵𝑠𝑠
< 0, and (ii), i.e. 𝜆 < 1, together imply that 

𝜕𝑞(𝐵𝑠𝑠 ,𝐵𝑠𝑠 ,𝑏′′)
𝜕𝑏′′ |𝑏′′=𝐵𝑠𝑠

< 0.
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A.5. Proposition  5

The Lagrangian for our sequential Ramsey regulator with non-
maturing deposits is

max
{

𝑉 𝑒
𝑡 (𝑅𝑡 ),𝑄𝑡 (𝑅𝑡 )

𝐵𝑡+1(𝑅𝑡 ),𝛾𝑡 (𝑅𝑡 ),𝜁𝑡 (𝑅𝑡 )

}∞

𝑡=0

𝐄0

∞
∑

𝑡=0

1
𝑟𝑡

{

𝑅𝑡 + 𝐿(𝐵𝑡, 𝑄𝑡)𝐵𝑡 − 𝜉𝐵𝑡𝛷(−𝑉 𝑒
𝑡 )

+ 𝛾𝑡

{

𝑅𝑡 − 𝜆(𝑄𝑡)𝐵𝑡 +𝑄𝑡[𝐵𝑡+1 − (1 − 𝜆(𝑄𝑡))𝐵𝑡]

+ 1
𝑟
𝐄𝑡

[

∫

𝑧̄

−𝑉 𝑒
𝑡+1

(𝑧 + 𝑉 𝑒
𝑡+1)𝑑𝛷(𝑧)

]

− 𝑉 𝑒
𝑡

}

+ 𝜁𝑡

{

1
𝑟
𝐄𝑡

[

[

𝐿(𝐵𝑡+1, 𝑄𝑡+1) + 𝜆(𝑄𝑡+1) + (1 − 𝜆(𝑄𝑡+1))𝑄𝑡+1
]

𝐵𝑡+1

+ ∫

−𝑉 𝑒
𝑡+1

−𝑧̄
(𝑧 + 𝑉 𝑒

𝑡+1 − 𝜉𝐵𝑡+1)𝑑𝛷(𝑧)
]

−𝑄𝑡𝐵𝑡+1

}}

,

where 𝐿(𝐵𝑡, 𝑄𝑡) = 𝜇(𝐵𝑡)+∫
𝜈̄
𝑄𝑡+𝜅−1

(𝜈−𝜅)𝑑𝐹 (𝜈) and 𝜆(𝑄𝑡) = 1−𝐹 (𝑄𝑡+𝜅−1); 
𝛾𝑡 and 𝜁𝑡 are two Lagrange multipliers; 𝑅𝑡 is the history of shocks up 
till time 𝑡; 𝐵0 is predetermined.

First-order conditions in state 𝑅𝑡 at time 𝑡 are given by:
1
𝑟
𝐄𝑡{𝐿𝑡+1 + 𝐵𝑡+1𝐿

𝐵
𝑡+1 − 𝜉𝛷(−𝑉 𝑒

𝑡+1) − 𝛾𝑡+1[𝜆𝑡+1 +𝑄𝑡+1(1 − 𝜆𝑡+1)]} + 𝛾𝑡𝑄𝑡

+ 𝜁𝑡

{

1
𝑟
𝐄𝑡[𝜆𝑡+1 + 𝐿𝑡+1 + 𝐵𝑡+1𝐿

𝐵
𝑡+1 + (1 − 𝜆𝑡+1)𝑄𝑡+1 − 𝜉𝛷(−𝑉 𝑒

𝑡 )] −𝑄𝑡

}

= 0,

(A.9)
𝐿𝑄

𝑡 𝐵𝑡 + 𝛾𝑡[−𝜆
𝑄
𝑡 𝐵𝑡 + 𝐵𝑡+1 − (1 − 𝜆𝑡)𝐵𝑡 + 𝜆𝑄𝑡 𝑄𝑡𝐵𝑡] − 𝜁𝑡𝐵𝑡+1

+ 𝜁𝑡−1(𝜆
𝑄
𝑡 + 𝐿𝑄

𝑡 + 1 − 𝜆𝑡 − 𝜆𝑄𝑡 𝑄𝑡)𝐵𝑡 = 0, (A.10)

𝜉𝜙(−𝑉 𝑒
𝑡 )𝐵𝑡 − 𝛾𝑡 + 𝛾𝑡−1[1 −𝛷(−𝑉 𝑒

𝑡 )] + 𝜁𝑡−1[𝛷(−𝑉 𝑒
𝑡 ) + 𝜉𝜙(−𝑉 𝑒

𝑡 )𝐵𝑡] = 0, (A.11)

where 𝐿𝐵 and 𝐿𝑄 represent derivatives of 𝐿(𝐵𝑡, 𝑄𝑡) with respect to 𝐵𝑡
and 𝑄𝑡 respectively; 𝜆𝑄 represents the derivative of 𝜆(𝑄𝑡) with respect 
to 𝑄𝑡.

Define 𝛾∗𝑡 = 𝛾𝑡 + 1 and 𝜁∗𝑡 = 𝜁𝑡 + 1. Set deposits, equity value and 
deposit price to their steady-state levels, i.e. 𝐵𝑠𝑠, 𝑉 𝑒

𝑠𝑠 and 𝑄𝑠𝑠. Eqs. (A.9), 
(A.10) and (A.11) evolve into:
𝛾∗𝑡+1 = 𝐴0𝛾∗𝑡 + 𝐴1𝜁∗𝑡 ,

𝛾∗𝑡 = 𝐵0𝛾∗𝑡−1 + 𝐵1𝜁∗𝑡−1,

𝜁∗𝑡 = 𝛺𝑠𝑠𝐵
0𝛾∗𝑡−1 + [𝛺𝑠𝑠𝐵

1 + (1 + 𝐿𝑄
𝑠𝑠 −𝛺𝑠𝑠)]𝜁∗𝑡−1,

where 𝛺𝑠𝑠 = 𝜆𝑠𝑠 + (𝑄𝑠𝑠 − 1)𝜆𝑄𝑠𝑠 and

𝐴0 =
𝑟𝑄𝑠𝑠

𝜆𝑠𝑠 + (1 − 𝜆𝑠𝑠)𝑄𝑠𝑠
,

𝐴1 =
𝜆𝑠𝑠 + 𝐿𝑠𝑠 + 𝐵𝑠𝑠𝐿𝐵

𝑠𝑠 + (1 − 𝜆𝑠𝑠)𝑄𝑠𝑠 − 𝜉𝛷(−𝑉 𝑒
𝑠𝑠) − 𝑟𝑄𝑠𝑠

𝜆𝑠𝑠 + (1 − 𝜆𝑠𝑠)𝑄𝑠𝑠
,

𝐵0 = 1 −𝛷(−𝑉 𝑒
𝑠𝑠),

𝐵1 = 𝛷(−𝑉 𝑒
𝑠𝑠) + 𝜉𝜙(−𝑉 𝑒

𝑠𝑠)𝐵𝑠𝑠.

Some manipulations yield:

𝜁∗𝑡 =
{

[𝛺𝑠𝑠𝐵
1 + (1 + 𝐿𝑄

𝑠𝑠 −𝛺𝑠𝑠)] −𝛺𝑠𝑠𝐵
0𝐴1 − 𝐵1

𝐴0 − 𝐵0

}

𝜁∗𝑡−1.

We know that (𝐴0 − 𝐵0)𝛾∗𝑡 + (𝐴1 − 𝐵1)𝜁∗𝑡 = 0, which means that
{

[𝛺𝑠𝑠𝐵
1 + (1 + 𝐿𝑄

𝑠𝑠 −𝛺𝑠𝑠)] −𝛺𝑠𝑠𝐵
0 𝐴1 − 𝐵1

𝐴0 − 𝐵0
+ 𝐴1 𝐴0 − 𝐵0

𝐴1 − 𝐵1
− 𝐴0

}

𝜁∗𝑡−1 = 0.

Setting the term in the bracket to zero gives us the condition we need 
in addition to two constraints to solve for 𝐵𝑠𝑠, 𝑄𝑠𝑠 and 𝑉 𝑒

𝑠𝑠. We verify 
numerically that under our calibration there exists a {𝐵𝑠𝑠, 𝑄𝑠𝑠, 𝑉 𝑒

𝑠𝑠}
that solves these three equations. However, 1 < [𝛺𝑠𝑠𝐵1 + (1 + 𝐿𝑄

𝑠𝑠 −
𝛺𝑠𝑠)]−𝛺𝑠𝑠𝐵0 𝐴1−𝐵1

𝐴0−𝐵0 < 𝑟. This serves a counter-example against constant 
Lagrange multipliers.

A.6. Proposition  6

First, similar to Proposition  2, it is easy to conjecture and verify that 
for a capital regulator with partial commitment to equity values, total 
value in the continuation problem is 
𝐻(𝐵, 𝑉 𝑒) = 𝑉 𝑒 + 𝑉 𝑏(𝐵,𝑄(ℎ𝐵(𝐵, 𝑉 𝑒), ℎ𝑉 𝑒 (𝐵, 𝑉 𝑒))) − 𝜉𝐵𝛷(−𝑉 𝑒) (A.12)

with ℎ𝐵(𝐵, 𝑉 𝑒) and ℎ𝑉 𝑒 (𝐵, 𝑉 𝑒) being its policy functions.
Plug (17) into (16) and then use (A.12). We can rewrite the ob-

jective of the regulator with partial commitment to equity values 
into:

𝑅+𝜇(𝐵)𝐵− 𝜉𝐵𝛷(−𝑉 𝑒) + 1
𝑟
𝐻(𝐵′, 𝑉 𝑒′) = 𝑉 𝑒 − 𝜉𝐵𝛷(−𝑉 𝑒) +𝑉 𝑏(𝐵,𝑄(𝐵′, 𝑉 𝑒′))𝐵.

Rewrite the problem of a regulator with partial commitment to 
equity values into 
𝐻(𝐵, 𝑉 𝑒) = max

𝐵′
𝑉 𝑒 − 𝜉𝐵𝛷(−𝑉 𝑒) + 𝑉 𝑏(𝐵,𝑄(𝐵′, 𝑈 (𝐵′, 𝐵, 𝑉 𝑒)))𝐵 (A.13)

where 𝑈 (𝐵′, 𝐵, 𝑉 𝑒) is given implicitly by:
𝑉 𝑒 = 𝑅 − 𝜆𝐵 +𝑄(𝐵′, 𝑈 (𝐵′, 𝐵, 𝑉 𝑒))[𝐵′ − (1 − 𝜆)𝐵]

+ 1
𝑟

{

∫

𝑧̄

−𝑈 (𝐵′ ,𝐵,𝑉 𝑒)
[𝑈 (𝐵′, 𝐵, 𝑉 𝑒) + 𝑧′]𝑑𝛷(𝑧′)

}

, (A.14)

given pricing schedule 

𝑄(𝐵′, 𝑉 𝑒′)𝐵′ = 1
𝑟

{

𝑉 𝑏(𝐵′, 𝑄
(′))+∫

−𝑉 𝑒′

−𝑧̄
[𝑧′+𝑉 𝑒′− 𝜉𝐵′]𝑑𝛷(𝑧′)

}

. (A.15)

with 𝑄 (′) ≡ 𝑄
(

ℎ𝐵
(

𝐵′, 𝑉 𝑒′) , 𝑈
(

ℎ𝐵
(

𝐵′, 𝑉 𝑒′) , 𝐵′, 𝑉 𝑒′)) and ℎ𝐵(.) solv-
ing (A.13). In this case, given the pricing schedule, 𝑈 (𝐵′, 𝐵, 𝑉 𝑒) denotes 
the choice for 𝑉 𝑒′ that can satisfy prior promise 𝑉 𝑒 given the choice for 
𝐵′ and policy of the future regulator.

Denote steady state values under the partial commitment regulator 
with subscript 𝑠𝑠. We know from first-order condition that
𝜕𝑄𝐵

𝑠𝑠 + 𝜕𝑄𝑉
𝑠𝑠𝜕𝑈𝑠𝑠 = 0.

where we define 𝜕𝑄𝐵 ≡ 𝜕𝑄(𝐵′ ,𝑉 𝑒′)
𝜕𝐵′ , 𝜕𝑄𝑉 ≡ 𝜕𝑄(𝐵′ ,𝑉 𝑒′)

𝜕𝑉 𝑒′ , and 𝜕𝑈 ≡
𝜕𝑈 (𝐵′ ,𝐵,𝑉 𝑒)

𝜕𝐵′ . By differentiating (A.14), we have

𝜆𝐵𝑠𝑠𝜕𝑄
𝐵
𝑠𝑠 +𝑄𝑠𝑠 +

[

𝜆𝐵𝑠𝑠𝜕𝑄
𝑉
𝑠𝑠 +

1
𝑟
(

1 −𝛷𝑠𝑠
)

]

𝜕𝑈𝑠𝑠 = 0.

Substitute out 𝜕𝑈𝑠𝑠 and we have in steady state: 

𝜕𝑄𝐵
𝑠𝑠 − 𝜕𝑄𝑉

𝑠𝑠
𝜆𝐵𝑠𝑠𝜕𝑄𝐵

𝑠𝑠 +𝑄𝑠𝑠

𝜆𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠 +

1
𝑟

(

1 −𝛷𝑠𝑠
)

= 0. (A.16)

We consider a regulator who chooses 𝐵′ and 𝐵′′ today at time 𝑡 and 
follows the optimal policy of a partial commitment regulator beyond 
𝑡 + 2. Our goal is to show the condition under which the derivative of 
its objective with respect to 𝐵′′ is 0 when evaluated at the point implied 
by (A.16).

This regulator’s problem is given by:

max
𝐵′ ,𝐵′′

𝑅 + 𝜇(𝐵)𝐵 − 𝜉𝐵𝛷 (−𝑉 𝑒) + 1
𝑟
[

𝑅 + 𝜇(𝐵′)𝐵′

− 𝜉𝐵′𝛷(−𝑈̃
(

𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒))
]

+ 1
𝑟2
𝐻(𝐵′′, 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)),

where today’s promise 𝑈̃ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) is given by
𝑉 𝑒 = 𝑅 − 𝜆𝐵 + 𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)[𝐵′ − (1 − 𝜆)𝐵]

+ 1
𝑟

{

∫

𝑧̄

−𝑈̃ (𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)
[𝑈̃ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) + 𝑧′]𝑑𝛷(𝑧′)

}

(A.17)

and tomorrow’s promise 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) ≡ 𝑈 (𝐵′′, 𝐵′, 𝑈̃ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒))
is given by
𝑈̃ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) = 𝑅 − 𝜆𝐵′ +𝑄(𝐵′′, 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒))[𝐵′′ − (1 − 𝜆)𝐵′]

+ 1
𝑟

{

∫

𝑧̄

−𝑈̂ (𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)
[𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) + 𝑧′]𝑑𝛷(𝑧′)

}

, (A.18)
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given

𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)𝐵′ = 1
𝑟

{

𝑉 𝑏(𝐵′, 𝑄(𝐵′′, 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)))

+ ∫

−𝑈̃
(

𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)

−𝑧̄
[𝑧′ + 𝑈̃

(

𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) − 𝜉𝐵′]𝑑𝛷(𝑧′)
}

. (A.19)

Plug (A.19) into (A.17):

𝑉 𝑒 − 𝜉𝐵𝛷 (−𝑉 𝑒) + 𝑉 𝑏(𝐵, 𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒))

= 𝑅 − 𝜉𝐵𝛷 (−𝑉 𝑒) + 𝜇(𝐵)𝐵 + 1
𝑟
[

𝑉 𝑏(𝐵′, 𝑄(𝐵′′, 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)))

+ 𝑈̃
(

𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) − 𝜉𝐵′𝛷(−𝑈̃
(

𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒))
]

.

Manipulate (A.18) using (A.12) and (A.15):

𝑈̃ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) + 𝑉 𝑏(𝐵′, 𝑄(𝐵′′, 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)))

− 𝜉𝐵′𝛷(−𝑈̃
(

𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒))

= 𝑅 + 𝐿(𝐵′)𝐵′ − 𝜉𝐵′𝛷(−𝑈̃
(

𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)) + 1
𝑟
𝐻(𝐵′′, 𝑈̂ (𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)).

Based on the above two equations, we can rewrite the objective of this 
regulator with a one-shot deviation opportunity as: 

max
𝐵′ ,𝐵′′

𝑉 𝑒 − 𝜉𝐵𝛷(−𝑉 𝑒) + 𝑉 𝑏(𝐵, 𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)). (A.20)

Now we are ready to show the condition under which the derivative of 
(A.20) with respect to 𝐵′′ is 0 when evaluated at the point implied by 
(A.16), that is, 

(1 − 𝜆)𝐵𝑠𝑠
𝜕𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)

𝜕𝐵′′ 𝑠𝑠
= 0. (A.21)

Differentiate (A.17), (A.18), and (A.19) with respect to 𝐵′′. We 
end up with three equations that allow us to solve for 𝜕𝑄̃(𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)

𝜕𝐵′′ 𝑠𝑠
, 

𝜕𝑈̃ (𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)
𝜕𝐵′′ 𝑠𝑠

, and 𝜕𝑈̂ (𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)
𝜕𝐵′′ 𝑠𝑠

. Tedious algebra yield:

𝜕𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)
𝜕𝐵′′ 𝑠𝑠

⎡

⎢

⎢

⎣

1 + 1 − 𝜆
1 −𝛷𝑠𝑠

𝜆
1−𝛷𝑠𝑠

𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠

𝜆
1−𝛷𝑠𝑠

𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠 +

1
𝑟

+ (𝜉𝐵𝑠𝑠𝜙𝑠𝑠 +𝛷𝑠𝑠)
𝜆

1 −𝛷𝑠𝑠

]

= 1
𝑟
(1 − 𝜆)

⎡

⎢

⎢

⎣

𝜕𝑄𝐵
𝑠𝑠 − 𝜕𝑄𝑉

𝑠𝑠
𝜆𝐵𝑠𝑠𝜕𝑄𝐵

𝑠𝑠 +𝑄𝑠𝑠

𝜆𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠 +

1
𝑟

(

1 −𝛷𝑠𝑠
)

⎤

⎥

⎥

⎦

, (A.22)

of which the right-hand side is 0 by (A.16). It is easy to verify using 
(A.16) that if

𝜕𝑄𝐵
𝑠𝑠 ≠ −

𝑄𝑠𝑠[1 −𝛷𝑠𝑠 + (𝜉𝐵𝑠𝑠𝜙𝑠𝑠 +𝛷𝑠𝑠)𝜆]
𝐵𝑠𝑠

[

1 −𝛷𝑠𝑠 + 1 − 𝜆 +
(

𝜉𝐵𝑠𝑠𝜙𝑠𝑠 +𝛷𝑠𝑠
)

𝜆
]

𝜆
,

the second term on the left-hand side of (A.22) is not 0. This implies 
that 𝜕𝑄̃(𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)

𝜕𝐵′′ 𝑠𝑠
= 0.

Appendix B. One-shot commitments with non-maturing deposits

It is straightforward to show that Propositions  1 and 2 carry through 
into our extended model with non-maturing deposits. First, the se-
quential problem of a Ramsey regulator can be reformulated into a 
continuation problem and an initial problem, with the former being 
recursive. In the case with shocks, promised equity values and deposit 
prices in the continuation problem are contingent on states next period 
𝑅′, that is, given current state {𝑅,𝐵, 𝑉 𝑒, 𝑄}, a Ramsey regulator chooses 
{𝐵′, 𝑉 𝑒′(𝑅′), 𝑄′(𝑅′)}; in the initial problem the regulator picks a pair 
of {𝑉 𝑒

0 , 𝑄0} for each 𝑅0. Second, the regulators’ objective 𝐻 = 𝑉 𝑒 +
𝑉 𝑏(𝐵,𝑄)− 𝜉𝐵𝛷(−𝑉 𝑒) where 𝑉 𝑏(𝐵,𝑄) = {𝐿(𝐵,𝑄)+𝜆(𝑄)+ [1−𝜆(𝑄)]𝑄}𝐵
with 𝜆(.) and 𝐿(.) given by (11) and (12). While we do not provide a 
detailed proof here to save space, they are available upon request.

B.1. Regulator’s time inconsistency problem

We now show the value of commitment via a one-shot deviation 
exercise similar to Section 3. Proposition  7 generalizes Proposition 
3 into this extended setup. In particular, a Markov-perfect regulator 
can improve total value today by deviating in one shot to a higher 
deposit issuance tomorrow when deposit maturity is long enough, if 
granted with such an ability to commit. In the fixed-maturity case, 
by committing to a higher deposit issuance tomorrow, risk-adjusted 
payments to legacy deposits decline and equity value today increases. 
With endogenous maturity, as expected payments to unwithdrawn 
deposits decline, more depositors will end up withdrawing today. This 
additional channel of withdrawals can either amplify or dampen the 
increase in equity value depending on whether deposits are valued 
above or below par—the former case implies a rollover gain and the 
latter a rollover loss. Overall, equity value today improves as long as 
the former channel is dominant—that is, when the equilibrium mass of 
non-withdrawing depositors 1 − 𝜆𝑠𝑠 is large.

Proposition 7.  In an interior steady state with non-maturing deposits, 
a Markov-perfect regulator improves total value today by committing to 
a small one-shot deviation to a larger issuance tomorrow if (i) deposit 
pricing function 𝑄(.) decreases in 𝐵′ at 𝐵′ = 𝐵𝑠𝑠 and (ii) deposit maturity 
𝜆𝑠𝑠 < min{1 + 1+𝜉𝐵𝑠𝑠𝜙𝑠𝑠

𝜉𝐵𝑠𝑠𝜙𝑠𝑠

(

𝑄𝑠𝑠 − 1
)

𝑓𝑠𝑠, 1} where subscript 𝑠𝑠 denotes steady 
state values.

Proof.  The proof follows the same structure as Appendix  A.3, and to 
save space, we here highlight only the differences. Fix productivity 𝑅
to be constant so that it is no longer an argument of any functions. 
We consider a regulator who chooses 𝐵′ and 𝐵′′ today at time 𝑡 and 
follows the optimal policy of a Markov-perfect regulator beyond 𝑡 + 2. 
The first-order condition with respect to 𝐵′′ (generalizing (A.5)) is: 
{

𝜉𝐵𝑠𝑠𝜙𝑠𝑠
[

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) − (1 − 𝜆𝑠𝑠)
]

+ 𝑓𝑠𝑠(1 −𝑄𝑠𝑠)
}

𝐵𝑠𝑠
𝜕𝑄̃(𝐵′, 𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
,

(B.1)

where subscript 𝑠𝑠 denotes steady state values; 𝑄̃(𝐵′, 𝐵′′) is the deposit 
price at time 𝑡 given the choice {𝐵′, 𝐵′′}.

Condition (ii), i.e. 𝜆𝑠𝑠 < 1 + 1+𝜉𝐵𝑠𝑠𝜙𝑠𝑠
𝜉𝐵𝑠𝑠𝜙𝑠𝑠

(

𝑄𝑠𝑠 − 1
)

𝑓𝑠𝑠, guarantees that 
the first term of (B.1) is negative. Conditions (i) and (ii), i.e. 𝜆𝑠𝑠 < 1, 
together imply that 𝜕𝑄̃(𝐵′ ,𝐵′′)

𝜕𝐵′′ |𝐵′=𝐵′′=𝐵𝑠𝑠
< 0. □

Proposition  8 generalizes Proposition  4 into this extended setup. 
In particular, a bank in laissez-faire has an incentive to deviate to 
a low deposit issuance tomorrow when deposit maturity is long, if 
granted with such an ability to commit. This commitment increases the 
price at which new deposits can be issued today and in turn benefits 
equity value. With endogenous maturity, fewer depositors will end up 
withdrawing expecting a smaller default risk tomorrow. Overall, equity 
value improves as long as new issuance 𝜆𝑠𝑠 every period is nontrivial.

Proposition 8.  In an interior steady state with non-maturing deposits, a 
laissez-faire bank improves equity value today by committing to a small one-
shot deviation to a lower issuance tomorrow if (i) deposit pricing function 
𝑞(.) decreases in 𝑏′ at 𝑏′ = 𝐵𝑠𝑠 and (ii) deposit maturity 𝜆𝑠𝑠 < 1 and 
𝜆𝑠𝑠 > (𝑞𝑠𝑠 − 1)𝑓𝑠𝑠 where subscript 𝑠𝑠 denotes steady state values.

Proof.  The proof follows the same structure as Appendix  A.4, and to 
save space, we here highlight only the differences. Fix productivity 𝑅
to be constant so that it is no longer an argument of any functions. We 
consider a bank who chooses 𝑏′ and 𝑏′′ today at time 𝑡 and follows the 
optimal policy of a laissez-faire bank without commitment beyond 𝑡+2. 
The first-order condition with respect to 𝑏′′ (generalizing (A.8)) is: 
[

𝜆𝑠𝑠 − (𝑞𝑠𝑠 − 1)𝑓𝑠𝑠
]

𝐵𝑠𝑠
𝜕𝑞(𝐵𝑠𝑠, 𝐵𝑠𝑠, 𝑏′′)

𝜕𝑏′′
|𝑏′′=𝐵𝑠𝑠

, (B.2)
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where subscript 𝑠𝑠 denotes steady state values; 𝑞(𝐵𝑠𝑠, 𝑏′, 𝑏′′) is the 
deposit price at time 𝑡 given the choice {𝑏′, 𝑏′′} and aggregate 𝐵𝑠𝑠.

Condition (ii), i.e. 𝜆𝑠𝑠 > (𝑞𝑠𝑠 − 1)𝑓𝑠𝑠, guarantees that the first term 
of (B.2) is positive. Conditions (i) and (ii), i.e. 𝜆𝑠𝑠 < 1, together imply 
that 𝜕𝑞(𝐵𝑠𝑠 ,𝐵𝑠𝑠 ,𝑏′′)

𝜕𝑏′′ |𝑏′′=𝐵𝑠𝑠
< 0. □

B.2. Partial commitment

Now we present the problem of a regulator with partial commitment 
to equity values in our extended model with non-maturing deposits. We 
then show that there is no profitable one-shot deviation in steady state, 
again echoing our baseline results in Section 5.2. Numerically we solve 
the model and confirm that the steady states of two regulators with 
partial commitment are identical to that of Ramsey.

As we mentioned earlier, with shocks, promised values in the con-
tinuation problem of a recursively-formulated Ramsey regulator are 
state-contingent. The problem of a regulator committing to equity 
values can also be split into a continuation problem and an initial 
problem. The continuation problem is given recursively:
𝐻(𝑅,𝐵, 𝑉 𝑒) = max

𝐵′ ,𝑉 𝑒′(𝑅′)
𝑅 + 𝐿(𝐵,𝑄(𝐵′, 𝑉 𝑒′(𝑅′);𝑅))𝐵 − 𝜉𝐵𝛷(−𝑉 𝑒)

+ 1
𝑟
𝐄𝐻(𝑅′, 𝐵′, 𝑉 𝑒′(𝑅′)), (B.3)

subject to promise keeping to equity value 𝑉 𝑒:

𝑉 𝑒 = 𝑅 − 𝜆(𝑄(𝐵′, 𝑉 𝑒′(𝑅′);𝑅))𝐵

+ 𝑄(𝐵′, 𝑉 𝑒′(𝑅′);𝑅){𝐵′ − [1 − 𝜆(𝑄(𝐵′, 𝑉 𝑒′(𝑅′);𝑅))]𝐵}

+ 1
𝑟
𝐄
{

∫

𝑧̄

−𝑉 𝑒′(𝑅′)
[𝑉 𝑒′(𝑅′) + 𝑧′]𝑑𝛷(𝑧′)

}

,

given a deposit pricing schedule:
𝑄(𝐵′, 𝑉 𝑒′(𝑅′);𝑅)𝐵′

= 1
𝑟
𝐄
{

𝑉 𝑏(𝐵′, 𝑄(ℎ𝐵(𝑅′, 𝐵′, 𝑉 𝑒′(𝑅′)), ℎ𝑉 𝑒 (𝑅′′;𝑅′, 𝐵′, 𝑉 𝑒′(𝑅′));𝑅′))

+ ∫

−𝑉 𝑒′(𝑅′)

−𝑧̄
[𝑧′ + 𝑉 𝑒′(𝑅′) − 𝜉𝐵′]𝑑𝛷(𝑧′)

}

,

where 𝑉 𝑏(𝐵,𝑄) = {𝜆(𝑄) + 𝐿(𝐵,𝑄) + [1 − 𝜆(𝑄)]𝑄}𝐵; 𝜆(.) and 𝐿(.) are 
given by (11) and (12); ℎ𝐵(𝑅,𝐵, 𝑉 𝑒) and ℎ𝑉 𝑒 (𝑅′;𝑅,𝐵, 𝑉 𝑒) together solve 
(B.3).

Initially, given 𝐵0 and 𝑅0, the regulator chooses:
max
𝑉 𝑒
0

𝐻(𝑅0, 𝐵0, 𝑉
𝑒
0 ).

Proposition  9 generalizes Proposition  6 into this extended setup. In 
particular, the partial-commitment regulator in steady state, if granted 
with the ability to commit in one shot to deposit issuance tomorrow, 
has no incentive to deviate. The intuition is similar to that for Proposi-
tion  6. In short, one type of commitment is sufficient to align regulator’s 
incentives across time in the continuation problem.

Proposition 9.  In an interior steady state with non-maturing deposits 
where 𝜆𝑠𝑠 < 1, a regulator with partial commitment to equity values 
cannot improve total value today by committing to a small one-shot de-
viation in issuance tomorrow if the derivative of deposit pricing func-
tion 𝑄(.) with respect to 𝐵′ at {𝐵′ = 𝐵𝑠𝑠, 𝑉 𝑒′ = 𝑉 𝑒

𝑠𝑠} does not equal 
− 𝑄𝑠𝑠

{

1−𝛷𝑠𝑠+(𝜉𝐵𝑠𝑠𝜙𝑠𝑠+𝛷𝑠𝑠)
[

𝑓𝑠𝑠(1−𝑄𝑠𝑠)+𝜆𝑠𝑠
]}

𝐵𝑠𝑠
{

1−𝛷𝑠𝑠+1−𝜆𝑠𝑠+
(

𝜉𝐵𝑠𝑠𝜙𝑠𝑠+𝛷𝑠𝑠
)[

𝑓𝑠𝑠(1−𝑄𝑠𝑠)+𝜆𝑠𝑠
]}[

𝑓𝑠𝑠(1−𝑄𝑠𝑠)+𝜆𝑠𝑠
]  where subscript 

𝑠𝑠 denotes steady state values.

Proof.  The proof follows the same structure as Appendix  A.6, and to 
save space, we here highlight only the differences. Fix productivity 𝑅
to be constant so that it is no longer an argument of any functions.

The first-order condition for the partial-commitment regulator (gen-
eralizing (A.16)) implies: 

𝜕𝑄𝐵
𝑠𝑠 − 𝜕𝑄𝑉

𝑠𝑠

[

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
]

𝐵𝑠𝑠𝜕𝑄𝐵
𝑠𝑠 +𝑄𝑠𝑠

[

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
]

𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠 +

1
𝑟

(

1 −𝛷𝑠𝑠
)

= 0. (B.4)

where subscript 𝑠𝑠 denotes steady state values; 𝜕𝑄𝐵 ≡ 𝜕𝑄(𝐵′ ,𝑉 𝑒′)
𝜕𝐵′  and 

𝜕𝑄𝑉 ≡ 𝜕𝑄(𝐵′ ,𝑉 𝑒′)
𝜕𝑉 𝑒′ .

We consider a regulator who chooses 𝐵′ and 𝐵′′ today at time 𝑡 and 
follows the optimal policy of a partial commitment regulator beyond 
𝑡+ 2. We would like to show the condition under which the first-order 
derivative of its objective with respect to 𝐵′′ is 0 when evaluated at the 
point implied by (B.4), that is (generalizing (A.21)),

(1 − 𝜆𝑠𝑠)𝐵𝑠𝑠
𝜕𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)

𝜕𝐵′′ 𝑠𝑠
= 0,

where 𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒) is the deposit price at time 𝑡 given the choice 
{𝐵′, 𝐵′′} and state variables 𝐵 and 𝑉 𝑒. Differentiating two promise 
keeping constraints and deposit pricing function, we get (generalizing 
(A.22)):

𝜕𝑄̃(𝐵′, 𝐵′′, 𝐵, 𝑉 𝑒)
𝜕𝐵′′ 𝑠𝑠

×
⎡

⎢

⎢

⎣

1 +
1 − 𝜆𝑠𝑠
1 −𝛷𝑠𝑠

𝑓𝑠𝑠(1−𝑄𝑠𝑠)+𝜆𝑠𝑠
1−𝛷𝑠𝑠

𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠

𝑓𝑠𝑠(1−𝑄𝑠𝑠)+𝜆𝑠𝑠
1−𝛷𝑠𝑠

𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠 +

1
𝑟

+ (𝜉𝐵𝑠𝑠𝜙𝑠𝑠 +𝛷𝑠𝑠)
𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠

1 −𝛷𝑠𝑠

]

= 1
𝑟
(

1 − 𝜆𝑠𝑠
)

{

𝜕𝑄𝐵
𝑠𝑠 − 𝜕𝑄𝑉

𝑠𝑠

[

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
]

𝐵𝑠𝑠𝜕𝑄𝐵
𝑠𝑠 +𝑄𝑠𝑠

[

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
]

𝐵𝑠𝑠𝜕𝑄𝑉
𝑠𝑠 +

1
𝑟

(

1 −𝛷𝑠𝑠
)

}

.

(B.5)

The right-hand side of (B.5) is 0 by (B.4). It is easy to verify using (B.4) 
that if
𝜕𝑄𝐵

𝑠𝑠

≠ −
𝑄𝑠𝑠

{

1 −𝛷𝑠𝑠 + (𝜉𝐵𝑠𝑠𝜙𝑠𝑠 +𝛷𝑠𝑠)
[

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
]}

𝐵𝑠𝑠
{

1 −𝛷𝑠𝑠 + 1 − 𝜆𝑠𝑠 +
(

𝜉𝐵𝑠𝑠𝜙𝑠𝑠 +𝛷𝑠𝑠
) [

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
]} [

𝑓𝑠𝑠(1 −𝑄𝑠𝑠) + 𝜆𝑠𝑠
] ,

the second term on the left-hand side of (B.5) is not 0. This implies that 
𝜕𝑄̃(𝐵′ ,𝐵′′ ,𝐵,𝑉 𝑒)

𝜕𝐵′′ 𝑠𝑠
= 0. □

Appendix C. Partial commitment to deposit prices

The problem of the regulator with partial commitment to deposit 
prices can be split into a continuation problem and an initial problem. 
The continuation problem is given by: 

𝐻(𝐵,𝑄) = max
𝐵′ ,𝑄′

𝑅+𝜇(𝐵)𝐵− 𝜉𝐵𝛷(−𝑉 𝑒(𝐵′, 𝑄′;𝐵,𝑄)) + 1
𝑟
𝐻(𝐵′, 𝑄′), (C.1)

subject to a promise keeping constraint on deposit price:

𝑄𝐵′ = 1
𝑟

{

∫

𝑧̄

−𝑉 𝑒(′)
𝑉 𝑏(𝐵′, 𝑄′)𝑑𝛷(𝑧′)+∫

−𝑉 𝑒(′)

−𝑧̄
[𝑧′+𝑉 𝑒(′)+𝑉 𝑏(𝐵′, 𝑄′)−𝜉𝐵′]𝑑𝛷(𝑧′)

}

,

given an equity value schedule:

𝑉 𝑒(𝐵′, 𝑄′;𝐵,𝑄) = 𝑅− 𝜆𝐵 +𝑄[𝐵′ − (1− 𝜆)𝐵] + 1
𝑟

{

∫

𝑧̄

−𝑉 𝑒(′)
[𝑉 𝑒(′) + 𝑧′]𝑑𝛷(𝑧′)

}

,

where 𝑉 𝑒(′) ≡ 𝑉 𝑒(ℎ𝐵(𝐵′, 𝑄′), ℎ𝑄(𝐵′, 𝑄′);𝐵′, 𝑄′) with ℎ𝐵(𝐵,𝑄) and 
ℎ𝑄(𝐵,𝑄) being optimal policies for deposits 𝐵′ and promised deposit 
price 𝑄′ from (C.1); depositors’ value is 𝑉 𝑏(𝐵,𝑄) = [𝜇(𝐵)+𝜆+(1−𝜆)𝑄]𝐵.

Initially, given 𝐵0, the regulator chooses:
max
𝑄0

𝐻(𝐵0, 𝑄0).
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