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 A B S T R A C T

We model the competition between digital forms of fiat money and private digital money. Countries digitize 
their currencies–by upgrading existing or launching new payment systems (including CBDCs)–to compete with 
foreign fiat currencies and private digital money. A pecking order emerges: less dominant currencies digitize 
earlier, reflecting a first-mover advantage; dominant currencies delay digitization until they face competition; 
the weakest currencies forgo digitization. However, delayed digitization allows private digital money to gain 
widespread adoption, eventually weakening fiat money’s role. We highlight how geopolitical considerations, 
stablecoins, and interoperability between fiat and private digital money shape the dynamics of currency 
competition.

As technology advances, economic transactions and interactions 
have become increasingly digital, with the value of digital payments 
globally being in the hundreds of trillions of U.S. dollars according 
to BIS data (BIS Statistics, 2023; Glowka et al., 2023).1 While bank-
centric and government-led payment systems (e.g., ACH, SWIFT, or 
credit cards) have traditionally dominated digital payments, non-bank 
providers like PayPal and M-Pesa, along with BigTech firms such as 
Apple and Alibaba, have gained prominence in recent decades. These 
non-bank payment services challenge traditional payment systems, for 
instance, by offering faster, more efficient payments with broader 
functionalities. Digitization has also enabled Hayek’s vision of private 
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currency issuance and competition with fiat money (Hayek, 1976). 
Indeed, cryptocurrencies, stablecoins, and decentralized finance have 
shown the potential to challenge traditional monetary systems (Brun-
nermeier et al., 2019; Adrian and Mancini-Griffoli, 2019). Such de-
velopments have prompted many countries to explore currency and 
payment system digitization, including upgrading existing or introduc-
ing new payment systems (e.g., Brazil’s Pix or India’s UPI), or launching 
Central Bank Digital Currencies (CBDCs, see, e.g., Auer et al., 2023).

Against this backdrop, we examine the evolving competition among 
currencies and forms of money amid the rise of private digital money 
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(PDM), the ongoing digitization of payments, and countries’ efforts to 
digitize their fiat payment systems. Among many new insights and 
predictions, we find that countries with less dominant, yet well-adopted 
currencies (e.g., China) digitize their fiat money earlier, showing a 
first-mover advantage. In contrast, countries with dominant currencies 
(e.g., the U.S.) exhibit a second-mover advantage and delay digitization 
until their dominance is challenged through the rise of PDM or the dig-
itization of other fiat currencies. Our analysis highlights how strategic 
considerations, the nature of currency competition — both among fiat 
currencies and between fiat and private digital money — as well as 
trends like the rise of U.S. dollar-backed stablecoins shape the evolution 
and digitization of money and payment.

In our model, national fiat monies (also referred to as ‘‘fiat cur-
rencies’’) and PDM compete for adoption in digital payments. Instead 
of modeling different forms of fiat money and PDM separately, we 
consider representative forms (i.e., monetary aggregates). Fiat money 
refers to digital means of payment and payment services directly tied to 
a country’s banking system, central bank, or government. Fiat money 
includes bank deposits with their associated payment rails, as well as 
government-led payment systems and CBDCs once introduced. The dig-
itization of fiat money may involve upgrading existing bank-centric or 
government-led payment systems, introducing new ones, or launching 
CBDCs, thereby enhancing the convenience of fiat money in digital 
payments. Private digital money (PDM) describes digital means of pay-
ment and payment services that largely bypass traditional bank-centric 
and government-led payment systems. PDM includes (C1) cryptocur-
rencies and tokens (e.g., Ether), (C2) currencies introduced by digital 
platforms (studied in Brunnermeier and Payne, 2024) (e.g., Libra, had 
it succeeded), (C3) stablecoins (e.g., Tether), and (C4) certain non-bank 
payment systems and services (e.g., Alipay).

Two fiat currencies, 𝐴 and 𝐵, issued by countries 𝐴 and 𝐵, re-
spectively, and a representative PDM 𝐶 provide convenience utility. 
We micro-found convenience utility by modeling payments subject to 
random search/matching between users and sellers of services and 
a cash-in-advance constraint. In this micro-foundation, the payment 
convenience of a currency depends on (i) the probability of users 
encountering sellers who accept it (reflecting the currency’s level of 
acceptance), (ii) the efficiency, speed, and cost of transactions involving 
the currency, and (iii) the bargaining power of users relative to sellers 
who accept it, which, as we argue, is influenced by the currency’s 
privacy features. While our micro-foundation highlights the medium-
of-exchange function of money, we acknowledge that convenience may 
also reflect its store-of-value and unit-of-account functions, comple-
menting its role as a medium of exchange. Thus, although our analysis 
focuses on payment competition, it may also apply more broadly to 
monetary competition in other dimensions.

Our micro-foundation suggests that transaction fees charged by 
payment intermediaries (e.g., credit card fees), inefficiencies in bank-
railed payments (e.g., slow settlement speeds), and the limited payment 
functionalities and usability (e.g., the inability to support blockchain, 
and some cross-border and digital platform payments) are key factors 
limiting the convenience of fiat money in digital payments. Some forms 
of PDM or the digitization of fiat money can address these frictions, 
for instance, by facilitating faster payments or expanding usability. Ad-
ditionally, factors such as payment privacy (e.g., in cryptocurrencies), 
unique functionalities (e.g., smart contracting), reduced reliance on 
costly payment intermediaries, and integration with digital platforms 
(e.g., Alipay’s integration with Alibaba) contribute to the convenience 
of PDM.

In general, PDM competes with fiat money by (i) facilitating transac-
tions traditionally settled with bank deposits, thereby reducing reliance 
on bank-centric and government-led payment systems, and (ii) enabling 
new types of transactions that fiat money cannot support without 
digitization (e.g., blockchain transactions). We assume increasing com-
petition from PDM and stipulate that its convenience grows over time at 
an endogenous rate that rises with PDM adoption. This reflects PDM’s 

ability to compete more effectively on margin (i) or an increasing 
share of transactions that can only be settled using PDM, raising the 
importance of margin (ii). This dynamic may be driven by the growing 
importance of digital platforms, technological advancements, or the 
introduction of new forms of PDM with unique functionalities.

Countries undertake costly efforts to enhance the convenience of 
their fiat money through digitization. This increased convenience may 
stem from enhanced payment technologies, broader usability, stronger 
privacy features, or reduced transaction costs. We model fiat digiti-
zation as a one-time stochastic event that occurs with an intensity 
proportional to a country’s efforts. Formally, we study a dynamic game 
in which two countries, acting as large strategic players, choose their 
digitization efforts to maximize a time average of their currencies’ 
adoption for payment, net of digitization costs. Price-taking users act 
as non-strategic players, and allocate their endowment (representing 
demand for digital payments) among three currencies, considering 
their payment convenience. As PDM convenience grows over time, 
users gradually adopt it, reducing their adoption of fiat currencies and 
influencing countries’ incentives to digitize their fiat currencies.

In our model, countries digitize fiat money to increase its adoption 
and relevance in digital payments. In line with this assumption, empir-
ical evidence from Berg et al. (2024) suggests that a key motive behind 
launching CBDCs is to enhance payment autonomy, which may involve 
ensuring the adoption of fiat money in digital payments and reducing 
reliance on non-bank payment providers. Similarly, Brunnermeier et al. 
(2019) argue that countries may need to digitize their currencies to 
preserve the relevance and adoption of fiat money in digital payment, 
a plausible concern for many countries. More generally, the objective 
function for countries also reflects that the wide adoption of a country’s 
currency as means of payment is a source of valuable geoeconomic 
power and autonomy (Clayton et al., 2023).

We focus on the relevant case of asymmetric currency competition 
and solve for a Markov equilibrium with two state variables: one 
capturing the competition from PDM and the other capturing the state 
of countries’ digitization processes. Country 𝐴 is considered ‘‘strong’’ 
relative to a ‘‘weaker" country 𝐵 due to the higher initial convenience 
and adoption of its currency. For example, the dominant currency 𝐴
could represent the U.S. dollar — which derives high convenience 
from its broad usability as means of payment — while 𝐵 represents 
a less dominant currency, such as the Euro or Renminbi. Although 
not included in the baseline model, we discuss, in an extension, very 
weak currencies, including the ones from small open economies, whose 
adoption remains low despite digitization, leading to negligible or no 
digitization efforts.

While countries’ total digitization efforts are initially strong, these 
efforts gradually diminish and may even cease altogether as PDM gains 
adoption over time. At the outset, the weaker country accounts for 
most of the digitization efforts, reflecting an endogenous first-mover 
advantage. The stronger country exhibits a second-mover advantage 
and undertakes significant efforts only after its currency’s dominance 
is challenged by PDM or the weaker currency. These findings align 
with the observation that less dominant currencies, like the Euro and 
Renminbi, are among the first to be digitized via CBDCs, while the 
United States is not actively pursuing CBDCs.

In our model, countries have strong incentives to digitize fiat cur-
rency before PDM achieves widespread adoption. However, failing to 
act sufficiently early creates a vacuum in the digital payment space, 
which PDM fills. As PDM gains dominance due to the absence of digi-
tized fiat money, countries’ incentives to digitize fiat money diminish or 
may disappear entirely, delaying or preventing digitization. This may 
lead to an equilibrium where fiat currencies play a diminished role and 
PDM dominates digital payments. Thus, our findings suggest that the 
relevance of fiat money in digital payments over the long run depends 
on whether countries act early in fiat digitization.

Intuitively, a country’s incentives to digitize its currency reflect both 
the potential increase in adoption and the persistence of this effect. 
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For the less dominant currency, 𝐵, digitization generates larger and 
more persistent adoption gains, especially when competition from PDM 
is weak or when country 𝐴 has not yet launched its CBDC — both 
of which are true at the beginning of the game. Thus, 𝐵 has strong 
incentives to move early in digitizing its currency, creating a first-
mover advantage. However, when 𝐵 fails to digitize its currency early 
on, the increasing competition from PDM or the digitization of currency 
𝐴 diminishes this first-mover advantage and so reduces 𝐵’s efforts over 
time. Specifically, the digitization of the dominant currency 𝐴 serves as 
a strategic substitute for 𝐵’s digitization efforts. Overall, 𝐵’s incentives 
to digitize are high initially, exceeding those of 𝐴, but, absent early 
success, they gradually decline and eventually fall below 𝐴’s.

In contrast, 𝐴’s incentives to digitize are low when competition 
from PDM is either weak or strong. That is, 𝐴’s digitization efforts 
initially rise and then fall as competition from PDM increases, resulting 
in an inverted U-shaped pattern. At first, 𝐴’s adoption level is high 
due to its dominance, limiting the gains it can achieve through digi-
tization. However, as competition from PDM intensifies or 𝐵 digitizes 
its currency, 𝐴’s adoption level decreases, which raises the gains from 
digitization. In particular, the digitization of currency 𝐵 acts as a 
strategic complement and increases 𝐴’s digitization efforts. Finally, 
when 𝐴’s adoption level is low and digitization offers limited benefits 
due to PDM’s dominance, 𝐴’s incentives to digitize diminish again. 
Overall, country 𝐴 has strong incentives to digitize its currency only 
when its dominance is challenged, and digitization enables it to restore 
dominance. Country 𝐴’s incentives respond earlier to rising competition 
from PDM when its growth is expected to accelerate. This reflects a 
dynamic strategic motive: early digitization curtails PDM adoption and 
its growth, limiting future competition.

We find that while increased competition from PDM hampers fiat 
currency digitization, increased competition among fiat currencies ac-
celerates it. These differential effects arise because the nature of in-
creased competition influences the endogenous growth of PDM, which 
rises with PDM adoption. Increased competition from PDM — driven 
by higher adoption or expected growth — may initially boost countries’ 
efforts to digitize, specifically by challenging the dominance of 𝐴 and 
raising 𝐴’s efforts. However, it gradually undermines these efforts as it 
accelerates PDM growth, ultimately allowing PDM to dominate and lim-
iting the gains from digitization for both countries. In contrast, stronger 
fiat currencies curb PDM adoption and growth, incentivizing countries 
to sustain their digitization efforts. Although not explicitly modeled, 
we consider regulation as a factor that reduces the convenience and 
competitiveness of PDM. Our model predicts that if regulation (by 
one or multiple countries) does indeed reduce PDM convenience, it 
accelerates fiat currency digitization, in that regulation complements 
countries’ digitization efforts.

We contrast the dynamics of currency digitization with the planner’s 
solution, where digitization efforts are chosen to maximize overall 
welfare or countries independently maximize the welfare (convenience 
utility) generated by their currencies. Since, in the baseline, countries 
maximize a time average of their currency’s adoption in the digital 
economy, net of digitization costs, they care about their currency’s 
convenience only insofar as it leads to higher adoption (i.e., shifts users’ 
investment toward their currency). However, they do not internalize 
that users’ utility increases with the convenience of currencies, holding 
investment fixed. As a result, countries’ baseline digitization efforts are 
inefficiently low compared to welfare-maximizing efforts, causing inef-
ficiently late digitization of fiat currency. Additionally, welfare would 
be maximized if the stronger country exerted higher efforts and moved 
first, since its currency is more widely held. This analysis suggests that, 
because the competitive outcome is inefficient, collaboration among 
countries and coordination of their digitization efforts — such as the 
BIS mBridge project — helps to achieve efficient outcomes in currency 
and payment digitization.

In an extension, we consider (i) interoperability between fiat money 
and PDM and (ii) public–private collaborations in payment digitization. 

For instance, payment systems like Alipay process their own trans-
actions but can also link to bank accounts, making them partially 
interoperable with bank payment rails. Regarding (ii), government-led 
digitization efforts often involve collaboration with the private sector, 
as exemplified by the Digital Euro Project, and also enhance interoper-
ability. We demonstrate that such public–private collaborations lead to 
more persistent digitization efforts by countries, thereby advancing the 
digitization of fiat money. However, countries begin collaborating only 
after PDM achieves widespread adoption and collaboration becomes 
inevitable, whereas low PDM adoption prompts them to digitize their 
fiat currencies to compete. That is, as PDM gains widespread adop-
tion, public–private collaborations and enhanced interoperability are 
necessary to ensure fiat money’s relevance in digital payments.

Our framework also applies to stablecoins (e.g., USDC), which are 
typically pegged to the U.S. dollar and partially backed by dollar-
denominated assets. Extending our model, we capture the interde-
pendence between fiat money and PDM by assuming that PDM is 
partially backed by currency 𝐴. In this setup, PDM adoption drives 
further adoption of currency 𝐴, reducing digitization efforts — both 
overall and for currency 𝐴 — and ultimately delaying digitization. 
This variant highlights how dollar-backed stablecoins can increase the 
U.S. dollar’s relevance in digital payments. It also suggests that the 
United States might benefit from pursuing crypto-friendly policies to 
encourage stablecoin growth while slowing its own digitization efforts, 
as a digitized U.S. dollar could displace stablecoins. Broadly, the pri-
vate sector, through stablecoins, effectively creates a digital dollar, 
substituting for government-led dollar digitization initiatives.

We extend our model to incorporate exchange rates determined 
in a frictionless bond market and nominal interest rates that accrue 
to currency holders subject to imperfect passthrough, reflecting that 
bank deposits typically earn interest below the policy rate. In this 
variant, we show that uncovered interest parity (UIP) holds, and our 
key findings remain robust. Since the passthrough of nominal interest 
to users is imperfect and UIP holds, a higher interest rate raises the 
cost of holding a specific currency, which reduces its ‘‘effective’’ con-
venience and adoption. We find that a higher nominal interest rate, 
potentially reflecting higher inflation, or worse passthrough for the 
weaker currency, 𝐵, reduces competition among fiat currencies and 
countries’ total digitization efforts. Conversely, a higher interest rate 
or worse passthrough for the dominant currency, 𝐴, increases total 
digitization efforts. We also show that our key findings hold when 
modeling the benefits of digitization solely as improved interest rate 
passthrough (Chiu et al., 2023). In this scenario, countries exert greater 
digitization efforts when interest rates are high.

The extension incorporating interest rates enables us to account 
for ‘‘very weak’’ currencies, specifically those characterized by very 
high nominal interest rates and high inflation. In our model, the store-
of-value and medium-of-exchange functions complement each other: 
very weak currencies perform poorly as stores of value, making their 
adoption for payment costly and leading to low adoption rates, even 
with digitization. The model predicts minimal or no digitization for 
such weak currencies, leading to a novel pecking order of currency 
digitization. In particular, less dominant but well-adopted currencies 
are digitized first, followed by more dominant currencies, while very 
weak currencies are digitized last or not at all.

We also show that countries, especially those with less dominant 
currencies, tend to intensify digitization efforts when they prioritize 
short-term objectives, exhibiting more myopic behavior. This is because 
they place less emphasis on how increasing competition from PDM 
erodes long-term digitization gains. Finally, while our baseline model 
reveals an endogenous first-mover advantage for weaker countries and 
a second-mover advantage for stronger ones, we introduce a variant 
where digitization costs decline after a competitor digitizes. This cost 
reduction, driven by learning or technological spillovers, incentivizes 
strategic delays in digitization.
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Literature. Our paper analyzes the competition between private dig-
ital money (PDM) and fiat currency, contributing to the literature on 
digital currencies (Schilling and Uhlig, 2019; Cong et al., 2021; Sockin 
and Xiong, 2021, 2022; Biais et al., 2023; Guennewig, 2024) and 
associated risks (Uhlig, 2022; Li and Mayer, 2021). It also connects 
to policy debates and the academic literature on central bank digital 
currencies (CBDCs, see Bech and Garratt, 2017; Duffie and Gleeson, 
2021; Fernández-Villaverde et al., 2020, 2021), with (Bai et al., 2025) 
analyzing the initial adoption of e-CNY in China. Studies have exam-
ined CBDC interactions with the banking sector, including deposits and 
lending (Brunnermeier and Niepelt, 2019; Andolfatto, 2021; Keister 
and Sanches, 2023; Garratt and Zhu, 2021; Chiu et al., 2023; Niepelt, 
2024). Whited et al. (2022) structurally estimate CBDCs’ impact on the 
banking system.

We also add to the broader field of digital payment studies (e.g., 
Cong et al., 2024). Sarkisyan (2023) analyzes the effects of Brazil’s 
Pix on banking competition. Duarte et al. (2022), Kahn (2024) also 
examine the effects of the government-led launch of fast payment 
systems. Parlour et al. (2022) and Bian et al. (2023) examine payment 
competition and how payments interact with credit provision. We 
contribute to these studies on digital payments and CBDCs by analyzing 
the competition among fiat currencies (captured by monetary aggre-
gates including both bank deposits and CBDCs) and PDMs. We focus 
on the endogenous digitization of money and dynamics of monetary 
competition, while abstracting from interactions between CBDCs and 
banks.

Benigno et al. (2022) analyze currency competition between fiat 
currencies and a global cryptocurrency, demonstrating that the latter’s 
adoption synchronizes monetary policy across countries. Our analysis 
differs by (i) modeling countries’ incentives to digitize their currencies 
and (ii) capturing the dynamics of competition between fiat currencies 
and PDM. This article also contributes to the literature on the inter-
national monetary system, focusing on reserve and safe assets, their 
determinants, and competition among them (e.g., Farhi and Maggiori, 
2018; Gopinath and Stein, 2021; He et al., 2019; Coppola et al., 
2023). Clayton et al. (2024a) examine the competition among cur-
rencies as stores of value. Although it could apply more broadly, our 
model emphasizes the medium-of-exchange function of money and the 
competition between various means of payment. More importantly, our 
theory adds to the literature on currency competition by capturing 
countries’ strategic digitization efforts and rich dynamics arising from 
the competition.

Our study is related to the growing literature on geoeconomics and 
how global hegemons extract benefits (Clayton et al., 2023; Pflueger 
and Yared, 2024). In our model, a country’s objective reflects the value 
of widespread adoption of its currency or payment system, particularly 
internationally — a source of geoeconomic power. Our findings suggest 
that while the United States initially has little incentive to pursue fiat 
digitization due to its status as a hegemon with a dominant currency, it 
responds by raising its digitization efforts once it faces competition and 
its dominance is challenged. In contrast, countries with widely adopted 
yet not dominant currencies, such as China, have the strongest incen-
tives to digitize fiat money to expand (international) currency adoption 
and geoeconomic influence. This prediction aligns with China’s efforts 
to digitize its currency, as seen in the launch of the e-CNY, and its 
broader initiatives to internationalize the renminbi (Clayton et al., 
2024b; Bahaj and Reis, 2024).

Finally, we set up and solve a dynamic game where fiat monies 
of varying strength (convenience) compete both among themselves 
and with PDM, with digitization as an innovation with endogenous 
effort and completed at a stochastic time (Aghion and Howitt, 1992).2 

2 The Markov equilibrium we study involves two state variables — one cap-
turing dynamic PDM competition and the other capturing currency digitization 
status — and is characterized by a system of coupled differential equations.

From a modeling perspective, this paper is also linked to studies on 
real options (McDonald and Siegel, 1986; Dixit and Pindyck, 1994). 
While the literature has explored firms’ real option exercises under 
(symmetric) competition (e.g., Fudenberg and Tirole, 1985; Grenadier, 
1996, 2002; Kogan, 2001; Novy-Marx, 2007; Dai et al., 2022), the 
application to currency competition is new and important given how 
monetary economics traditionally abstracts from (i) endogenous invest-
ments that enhance currencies’ monetary functions and (ii) aggregate 
time dynamics shaping currency competition.

1. A dynamic model of currency digitization and competition

We present a dynamic model in which national fiat monies (also 
referred to as ‘‘fiat currencies’’) and private digital (non-bank) money 
— abbreviated as PDM — compete for adoption for mediating digi-
tal payments. Our analysis studies the competition between different 
forms of money, with an emphasis on the medium-of-exchange func-
tion of money. While the model primarily focuses on retail payment 
activities and their digitization (e.g., retail CBDC or fast payment sys-
tem), it can also be applied to wholesale digital payments. Interpreted 
more broadly, despite its focus on payment, our theoretical model 
also applies to currency competition along other monetary functions, 
i.e., competition between stores of value and units of account. Before 
introducing the model, we provide a brief contextual description.
Digital Money. In our framework, a country’s fiat money refers to 
digital means of payment and payment services directly tied to this 
country’s banking system, central bank, or government. Fiat money 
includes (F1) bank deposits and the associated bank-centric payment 
rails and (F2) government-led payment systems (e.g., Brazil’s Pix or 
India’s UPI) and CBDCs, once introduced.3 Note that government-led 
payment systems are often also bank-centric or linked to banks, as they 
facilitate payments using bank deposits (e.g., Pix, which is linked to 
bank accounts); also, CBDCs are considered government-led payment 
systems.4 Rather than modeling these types of fiat money separately, 
we consider representative fiat money (i.e., a monetary aggregate) that 
encompasses (F1) and (F2). Thus, bank deposits and payment rails, 
CBDCs, and government-led payment systems collectively contribute to 
the digital payment convenience of representative fiat money. The dig-
itization of fiat money may involve upgrading existing bank-centric or 
government-led payment systems, introducing new ones, or launching 
CBDCs. Either way, digitization enhances the overall payment conve-
nience of representative fiat money. With some abuse, we refer to ‘‘fiat 
money’’ also as ‘‘fiat currency’’, and use these terms interchangeably.

Private digital money (in short, PDM) refers to digital means of pay-
ment and payment services that operate largely outside the traditional 
bank-centric and government-led payment systems. PDM includes (C1) 
cryptocurrencies and tokens (e.g., Ether and Bitcoin), (C2) digital cur-
rencies provided by digital platforms (as studied in Brunnermeier and 
Payne, 2024)) once launched (e.g., Libra, had it succeeded), (C3) stable-
coins (e.g., USDC and Tether), and (C4) non-bank payment services and 
systems that largely bypass traditional fiat payment rails. Rather than 
modeling these forms of PDM separately, we consider a representative 

3 Our notion of fiat money includes bank deposits, even though they are 
not direct liabilities of the central bank, as they are considered equivalent to 
public money for retail transactions (e.g., due to deposit insurance). While our 
analysis focuses on retail payments, fiat money could also encompass central 
bank reserves in the context of wholesale payments.

4 Thus, the notions of bank-centric and government-led payment systems 
may overlap; we do not strictly differentiate between bank-centric and 
government-led payment systems. Further, note that CBDCs share many simi-
larities with government-led payment systems layered on top of bank-centric 
payment systems, especially when implemented through banks. In many cases, 
such as the Digital Euro Project, CBDCs are effectively a form of government-
led payment system and are designed to serve as a means of payment, rather 
than acting as a new store of value.
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PDM — a monetary aggregate encompassing all categories (C1)–(C4) 
and representing technological disruptions to traditional payment sys-
tems that come from the private sector. Some non-bank payment 
services are partially integrated with or interoperable with the bank-
centric payment system, enabling them to process both transactions 
that use bank deposits and those that bypass banks. For instance, users 
can transact with Alipay by linking their bank account (to use bank 
deposits) or credit cards, or by using separate funds held in their Alipay 
e-wallet (Bian et al., 2023). Section 3.1 introduces a model variant that 
accounts for the interoperability between fiat money and PDM.

As detailed in our micro-foundation of the payment convenience 
in Appendix  E, frictions limiting the convenience of digital fiat money 
and bank-centric payment rails include high transaction costs (e.g., fees 
charged by payment intermediaries like credit card companies), slow 
settlement speeds, outdated payment technology, and limited payment 
functionalities and usability (e.g., the inability to support blockchain 
or certain cross-border or digital platform transactions). PDM may ad-
dress some of these limitations, offering payment convenience through 
unique functionalities, improved payment technology, an expanded 
scope of usability, or by reducing reliance on costly payment intermedi-
aries. In general, PDM competes with fiat money in digital payments in 
two ways: (i) by facilitating transactions traditionally settled using bank 
deposits, thereby reducing reliance on bank-centric and government-
led payment systems, and (ii) by enabling new types of transactions 
that fiat money cannot support without digitization (e.g., blockchain 
or certain digital platform transactions).

We assume that competition from PDM will intensify over time, re-
flecting its increasing ability to compete more effectively on margin (i) 
or by an increasing share of transactions that can only be settled using 
PDM, raising the importance of margin (ii). Digitizing fiat money can 
address these challenges by enhancing its competitiveness on margin 
(i) — such as through improved settlement efficiency/speed or lower 
transaction costs — or by broadening its usability to better compete on 
margin (ii) — for instance, digitized fiat money could better facilitate 
digital platform or cross-border payments, or transactions based on 
blockchains and smart contracts. 
Users and Money. Time (indexed by 𝑡) is infinite. To introduce users 
and money, we set up the model ‘‘as if’’ time runs discretely with time 
increments 𝑑𝑡 > 0, i.e., 𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, 3𝑑𝑡,…. We take the continuous 
time limit 𝑑𝑡 → 0 once we complete the model description. The 
economy is populated by one representative OLG user who takes prices 
as given and does not discount.5 Cohort 𝑡 is born at 𝑡 with lifespan 
𝑑𝑡 and exits at 𝑡 + 𝑑𝑡 when a new cohort is born. At birth, each 
cohort is endowed with one unit of the perishable generic consumption 
good, which serves as the numeraire that all prices are quoted in. 
Cohort 𝑡 derives utility from consumption only at time 𝑡 + 𝑑𝑡 and thus 
would like to store its users’ endowment (consumption good) from 𝑡
to 𝑡 + 𝑑𝑡, yet the consumption good cannot be stored. Thus, money 
(explained below) facilitates transactions across different cohorts and 
time, thereby functioning as an inter-temporal medium of exchange 
and store of value. In addition, money delivers convenience utility, 
reflecting its function as intra-temporal medium of exchange. The total 
demand for money from users is fixed to one unit of the consumption 
good; it is supposed to capture the specific demand for digital money 
(as opposed to money demand in general). The assumption of fixed 
currency demand and thus demand for digital payment is for simplicity; 
one could relax this assumption without altering the key economic 
insights of the model.

5 We model overlapping generations (‘‘OLG’’) users in a continuous 
time economy following the modeling approach of He and Krishnamurthy 
(2013). Biais et al. (2023) use OLG in discrete-time economy when modeling 
equilibrium Bitcoin pricing. In our OLG setting where users live for one instant, 
the assumption of no discounting is without loss of generality and one could 
easily introduce a discount rate without changing the model’s outcomes.

Different Forms of Money. Two countries, 𝐴 and 𝐵, have their rep-
resentative fiat currencies 𝐴 and 𝐵, respectively. Meanwhile, there is 
one representative PDM, 𝐶. Each currency 𝑥 ∈ {𝐴,𝐵, 𝐶} is in fixed 
unit supply and has an equilibrium value (equal to its adoption) 𝑃 𝑥

𝑡  in 
consumption goods.6 To consume at time 𝑡+𝑑𝑡, users in cohort 𝑡 spend 
their consumption good endowment to buy money from the previous 
cohort (i.e., cohort 𝑡−𝑑𝑡) at time 𝑡. At time 𝑡+𝑑𝑡, cohort 𝑡 users exchange 
money for the consumption good with cohort 𝑡 + 𝑑𝑡 users and so on.7

We denote by 𝑚𝑥
𝑡  cohort 𝑡’s holdings of currency 𝑥 in terms of the 

consumption good over its users’ lifetime [𝑡, 𝑡+𝑑𝑡]. As cohort 𝑡 does not 
derive any utility from consuming early at time 𝑡 and there are no other 
investment opportunities than money, cohort 𝑡 users invest their entire 
endowment of one consumption good into money, which implies: 
𝑚𝐴
𝑡 + 𝑚𝐵

𝑡 + 𝑚𝐶
𝑡 = 1. (1)

In our model, cohort 𝑡 users are the only holders of currencies. Thus, 
market clearing implies 𝑚𝐴

𝑡 = 𝑃𝐴
𝑡 , 𝑚𝐵

𝑡 = 𝑃𝐵
𝑡  and 𝑚𝐶

𝑡 = 𝑃𝐶
𝑡 , and 𝑃 𝑥

𝑡 = 𝑚𝑥
𝑡

is the endogenous level of adoption of currency 𝑥. In our baseline setup, 
the market clearing conditions (1) and 𝑚𝑥

𝑡 = 𝑃 𝑥
𝑡  uniquely pin down the 

exchange rate dynamics of different currencies. Section 3.3 presents a 
model variant where the exchange rates are determined according to 
arbitrageurs trading government bonds (which implies the uncovered 
interest parity); our key findings remain robust in this modified setting.
Money as a Medium of Exchange: Micro-Founded Convenience 
Utility. Our analysis focuses on the payment function of money. In 
addition to facilitating exchange across cohorts, the three currencies 
𝐴, 𝐵, and 𝐶 generate convenience utility, which is micro-founded in 
Appendix E (as discussed below) and captures the medium-of-exchange 
function of money related to digital payment. Specifically, the user’s 
expected utility over [𝑡, 𝑡 + 𝑑𝑡] reads 
𝑈𝑡 = E𝑡[𝑐𝑡+𝑑𝑡] +𝑍𝐴

𝑡 𝑣(𝑚
𝐴
𝑡 )𝑑𝑡 +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 )𝑑𝑡 + 𝑌𝑡𝑣(𝑚𝐶

𝑡 )𝑑𝑡. (2)

Here, 𝑐𝑡+𝑑𝑡 denotes cohort 𝑡’s consumption at time 𝑡 + 𝑑𝑡 and the 
remainder terms capture the convenience utility of money over [𝑡, 𝑡+𝑑𝑡]
(which, unlike consumption, is of order 𝑑𝑡). As in Cong et al. (2021) 
and Gryglewicz et al. (2021), convenience utility increases in 𝑚𝑥

𝑡 , 
i.e., the ‘‘real’’ money holdings in consumption goods, and increases 
with a convenience scale parameter 𝑍𝑥

𝑡  for 𝑥 = 𝐴,𝐵 and 𝑌𝑡 for 𝑥 = 𝐶, 
respectively. Further, it is characterized by a concave, smooth function 
𝑣(𝑚𝑥

𝑡 ) satisfying 𝑣(𝑚𝑥
𝑡 ) ≥ 0, 𝑣′(𝑚𝑥

𝑡 ) > 0, 𝑣′′(𝑚𝑥
𝑡 ) < 0, and lim𝑚→0 𝑣′(𝑚) =

+∞ — which implies imperfect currency substitutability and ensures 
that equilibrium money holdings satisfy 𝑚𝑥

𝑡 ∈ (0, 1).8 In what follows, 
we will take the CRRA functional form 𝑣(𝑚) = 𝑚1−𝜂

1−𝜂  for 𝜂 ∈ (0, 1)
which satisfies these properties — our results go through under other 
functional forms too. In the baseline model, currencies do not pay 
interest and differ only in their convenience. Section 3.3 introduces 
interest rates.

6 One could extend the model by allowing money supply to vary over time. 
Because we aim to model currency competition in the digital economy, we 
abstract from the money demand that is not directly related to the digital 
economy. In Section 3.3, we provide a model variant with interest rates 
and exchange rates determined in international bond markets. In this model 
variant, the exact money supply does not play any role, since the market for 
currency clears due to reasons outside of the model.

7 We assume that the first cohort born at 𝑡 = 0 is simply endowed with the 
currency supply.

8 The representative user’s demand for digital money of sums over the 
demand from many individual users (across different locations) with poten-
tially different demands for currencies 𝐴, 𝐵, and 𝐶. In particular, that the 
representative user buys currency 𝑥 should be interpreted as some but not 
necessarily all users buying currency 𝑥. Hence, our modeling is consistent with 
some users (e.g., users within a certain country) having high needs for one 
currency in digital usage while others have low or no needs for that currency.

Journal of Financial Economics 168 (2025) 104055 

5 



L.W. Cong and S. Mayer

Appendix  E models payments subject to random search and match-
ing with bargaining and a cash-in-advance constraint, thereby micro-
founding the convenience utility in (2), specifically the quantities 𝑍𝑥

𝑡
and 𝑌𝑡. In this micro-foundation, over an instant [𝑡, 𝑡 + 𝑑𝑡], the user 
randomly encounters a seller of a service and holds money in advance 
to transact. At the beginning of the period [𝑡, 𝑡+ 𝑑𝑡] — before knowing 
whether a meeting will occur — the user chooses its currency hold-
ings, considering the likelihood of meeting a seller who accepts the 
currency for payment, as well as the transaction costs and service prices 
involved. When such a meeting takes place, the user and the seller 
engage in bargaining over the service price. The seller then delivers 
the service in exchange for payment, and the user derives utility from 
the service.

In this micro-foundation, the medium-of-exchange and store-of-
value functions of money complement each other. If a currency offers 
higher expected returns and serves as a better store of value, it becomes 
less costly for users to hold this currency ‘‘in advance’’ for payments, 
thereby reinforcing its role as a medium of exchange.9 Likewise, as 
shown in Doepke and Schneider (2017) and Gopinath and Stein (2021), 
the unit-of-account function of money can be viewed as complementary 
to the medium-of-exchange and store-of-value functions.10 Thus, while 
we link the convenience of money to its medium-of-exchange function, 
this convenience may also reflect other monetary functions. Thus, 
although our analysis focuses on payment competition, it could also 
apply more broadly to monetary competition across other dimensions.
Determinants of Convenience. As we show in Appendix  E, par-
ticularly in Eq.  (E.60), the convenience parameters 𝑍𝑥

𝑡  and 𝑌𝑡 are 
determined by several factors: (i) the probability that a buyer en-
counters a seller who accepts the respective currency (reflecting the 
currency’s level of acceptance), (ii) transaction costs — both mone-
tary (e.g., fees charged by payment intermediaries) and utility costs 
(e.g., settlement delays) — and (iii) the user’s bargaining power relative 
to sellers. We discuss each of these factors below and argue how they 
drive the convenience of fiat monies and PDM. Appendix  E.5 presents 
a more detailed discussion.

First, (i) reflects a currency’s payment technology (e.g., settlement 
speed), payment functionalities, and the scope of its payment ap-
plications and usability (i.e., the ability to handle specific types of 
payments, including digital platform or cross-border payments). Slow 
settlement speeds, as well as limited payment functionalities and us-
ability (e.g., the inability to handle blockchain or digital platform 
transactions) reduce the ‘‘digital’’ convenience of fiat money, frictions 
that digitization can address. Note that (i) also captures the currency’s 
overall level of acceptance and usage, which is subject to network 
effects. This implies that widely accepted currencies, such as the U.S. 
dollar, inherently provide high convenience; due to network effects, 
even minor improvements in payment technology or costs can amplify 
and significantly boost payment convenience.

Regarding (i), the digital payment convenience of representative 
PDM stems from technological factors such as settlement speed (e.g., 
fast payments using Alipay) and unique functionalities (e.g., smart 
contracting features in cryptocurrencies). Additionally, it arises from 
PDM’s integration with digital platforms and ecosystems, where trans-
actions often require PDM for settlement — for example, Alipay on 

9 Our micro-foundation of payment convenience relies on random 
search/matching subject to a ‘‘cash-in-advance constraint’’ (money-in-advance 
constraint) — under these assumptions, the store-of-value and medium-of-
exchange functions of money arise as complements. In contrast, abstracting 
away from search but instead focusing on coordination, Goldstein et al. 
(2023) establish a conflict between the store-of-value and medium-of-exchange 
functions of money.
10 An example of the complementarity between medium-of-exchange and 
unit-of-account functions of money can be found in the U.S. dollar. The U.S. 
dollar is widely accepted as a means of payment because it is also widely 
adopted as a unit of account internationally, and vice versa.

the Alibaba platform or Ether on the Ethereum platform. Due to this 
integration, PDM offers unique payment convenience by enabling a 
wide range of digital platform transactions, including some that fiat 
money may not support. Moreover, adopting PDM for payments on a 
digital platform may provide benefits related to product bundling.11

Second, transaction costs (ii) charged by payment intermediaries, 
such as credit card fees or cross-border payment fees, and settlement 
delays, causing a utility cost of transacting, are likely key frictions 
that limit the convenience of fiat money. Fiat digitization can mitigate 
these frictions and transaction costs by reducing reliance on costly 
payment intermediaries, exerting competitive pressure on them (Duarte 
et al., 2022), and enabling faster payments. Certain features of cryp-
tocurrencies and tokens (e.g., smart contracting or decentralization) 
and non-bank payment systems can also reduce dependence on costly 
payment intermediaries by bypassing traditional bank payment rails. 
These factors enhance the convenience of PDM relative to fiat money.

Third, regarding (iii), we argue that, following the findings in Gar-
ratt and Van Oordt (2021), enhanced payment privacy features can 
strengthen users’ bargaining power relative to sellers.12 As such, privacy 
features contribute to the convenience of cryptocurrencies and tokens. 
The digitization of fiat currency can also enhance privacy features, as, 
e.g., highlighted in Ahnert et al. (2022b) and Garratt et al. (2022).
Currency Digitization and CBDC. We model currency digitization 
in a technology-neutral manner, recognizing that it can take various 
forms: It may involve an upgrade of bank-centric payment rails or 
the government-led introduction of new payment systems (e.g., Brazil’s 
Pix), the launch of CBDCs, or other measures.13 We interpret currency 
digitization as technological innovations that enhance the digital pay-
ment convenience of representative fiat currency. As discussed, fiat 
digitization can enable faster, more efficient transactions; broaden the 
scope of transactions (e.g., by enabling digital platform or cross-border 
payments) and payment functionalities; reduce reliance on costly in-
termediaries; and enhance privacy features. Digitization of currency 
𝑥 = 𝐴,𝐵 is a one-time stochastic event at endogenous time 𝑇 𝑥. When 
country 𝑥 = 𝐴,𝐵 digitizes its currency at time 𝑇 𝑥, convenience scale 
𝑍𝑥

𝑡  increases: 

𝑍𝑥
𝑡 =

{

𝑍𝑥
𝐿  for 𝑡 < 𝑇 𝑥

𝑍𝑥
𝐻  for 𝑡 ≥ 𝑇 𝑥,

(3)

where 𝑍𝑥
𝐻 ≥ 𝑍𝑥

𝐿 > 0. 𝑍𝑥
𝑡  is public knowledge.

The digitization of fiat currency requires time, effort, investment, 
and incurs significant costs. To capture these features, we assume that 
the (stochastic) time 𝑇 𝑥 of currency digitization arrives according to 
an observable jump process 𝑑𝐽𝑥

𝑡 ∈ {0, 1}, with intensity E𝑡[𝑑𝐽𝑥
𝑡 ]

𝑑𝑡 = 𝑒𝑥𝑡 . 
That is, the probability of successful digitization by country 𝑥 (if it 
has not occurred yet) over [𝑡, 𝑡 + 𝑑𝑡] is 𝑒𝑥𝑡 𝑑𝑡. Here, 𝑒𝑥𝑡 ≥ 0 is the 
endogenous, unobservable digitization effort/investment of country 𝑥, 
which entails a flow cost 𝑔𝑥(𝑒𝑥𝑡 ) for country 𝑥 in consumption goods. 
Hence, we model the digitization process similar to an innovation 
project in Aghion and Howitt (1992) and related papers, which implies 

11 For example, using Alipay generates valuable data that enhances a user’s 
access to loans offered on the Alibaba platform (Ouyang, 2021).
12 In Garratt and Van Oordt (2021), firms use data collected through 
payments to price discriminate future consumers. Such price discrimination is 
akin to assuming a lower bargaining power that users have vis-a-vis sellers 
in our micro-foundation — this lower bargaining power translates into a 
lower currency convenience scale 𝑍𝑥

𝑡 , 𝑌𝑡. In contrast, enhanced privacy features 
strengthen bargaining power and increase a currency’s convenience scale. See 
Appendix  E for additional discussion.
13 We model currency digitization and, specifically, CBDCs, as technology-
neutral and are agnostic of the (technical) details on the design and 
implementation. See, e.g., Auer and Böhme (2020) and Duffie et al. (2021) 
regarding the technical implementation of CBDCs, which is beyond the scope 
of the paper.
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that currency digitization requires time: For instance, a constant effort 
level 𝑒𝑥 > 0 would imply an expected time to successful digitization 
of 1∕𝑒𝑥 for 𝑥. In what follows, we take the following linear–quadratic 
cost function: 𝑔𝑥(𝑒𝑥𝑡 ) = 𝜙𝑒𝑥𝑡 +

𝜆(𝑒𝑥𝑡 )
2

2  for parameters 𝜙, 𝜆 ≥ 0; our results 
would go through under different (convex) cost functions too. We 
assume symmetry in costs across the two countries, while the benefits 
of digitization — captured by convenience scale parameters — differ 
across the two countries. The cost broadly captures the direct monetary 
expenses of digitization (e.g., implementation and development) as well 
as the indirect costs arising from disruptions to existing structures, such 
as the banking system (Whited et al., 2022).
Dominant versus Less Dominant Currencies. We refer to the country 
with the initially more convenient and more adopted currency as the 
‘‘strong’’ country, and to the other country as the ‘‘weak’’ one. Without 
loss of generality, we set country 𝐴 to be strong, in that 𝑍𝐴

𝐿 ≥ 𝑍𝐵
𝐿 . 

One can think of the ‘‘dominant’’ currency 𝐴 as the U.S. dollar, whose 
convenience also reflects its wide use internationally, while 𝐵 is a 
relatively weaker, less dominant currency (e.g., Euro or RMB). We 
study the asymmetric competition between a dominant and a less 
dominant (but still widely used) fiat currency. Our baseline abstracts 
from ‘‘very weak‘‘ currencies, often of small, open economies, whose 
adoption remains low regardless of digitization, leading to negligible 
or no digitization efforts. See Section 3.3 for a study of very weak 
currencies. 
Private Digital Money (PDM). As will become clear, 𝑌𝑡 is linked 
to PDM adoption and captures the competition from PDM that fiat 
money faces. Therefore, we may refer to high (low) 𝑌𝑡 as strong (weak) 
PDM competition. We model the growing competition from PDM by 
assuming that 𝑌𝑡 grows endogenously according to: 
𝑑𝑌𝑡
𝑌𝑡

= 𝜇𝑚𝐶
𝑡 𝑑𝑡, (4)

for 𝜇 > 0.14 As detailed in our micro-foundation of convenience utility 
in Appendix  E, the gradual increase in PDM convenience may reflect 
technological advancements, the expansion of digital platforms and 
ecosystems (broadening PDM use cases), or the launch of new forms 
of PDM offering unique payment functionalities and convenience.

Importantly, according to (4), the growth rate of 𝑌𝑡 increases with 
PDM’s adoption level 𝑚𝐶

𝑡 , so that higher PDM adoption in the present 
boosts PDM adoption in the future. In particular, convenience of and 
competition from PDM increase more rapidly when PDM adoption 𝑚𝐶

𝑡
is high and so fiat adoption 1 − 𝑚𝐶

𝑡  is low. This implies that PDM 
emerges primarily when fiat currencies provide limited digital payment 
convenience, thereby leaving a gap in the digital payment space that 
PDM fills by offering superior convenience, driving its adoption for 
payments.

Unlike the convenience of fiat money (𝑍𝑥
𝑡 ), which follows a jump 

process, the convenience of PDM changes according to (4). This is 
because the digitization of fiat money — such as through the launch or 
upgrade of payment systems or the introduction of a CBDC — occurs 
infrequently and represents significant disruptions to existing structures 
and payment systems. In contrast, PDM encompasses various payment 
systems and digital currencies, each evolving over time, with some 
achieving breakthroughs. When aggregated, the convenience of PDM 
evolves more gradually than that of fiat money. See Appendix  E.7 for 
further discussion.

We assume that the potential convenience of PDM is bounded, in 
that 𝑌𝑡 ≤ 𝑌  for some exogenous constant 𝑌 > 0. This assumption 

14 Eq. (4) should capture the average, long-run growth of PDM, which may 
be interrupted by crashes or setbacks. Our results are robust to the specific 
growth path of 𝑌𝑡, as long as 𝑌𝑡 grows over time on average. We could allow 
for occasional setbacks/crashes that arrive according to a Poisson process, or 
add a Brownian component or a negative drift component to the law of motion 
in (4) (which can also generate crashes and setbacks).

ensures that PDM convenience cannot fully outgrow the convenience 
of fiat currencies and so cannot gain full dominance; it is also helpful 
for solving the model, as it yields a well-defined boundary condition for 
the ODE system characterizing the Markov equilibrium; one can take 
𝑌  arbitrarily large. Formally, the drift of 𝑑𝑌𝑡 vanishes as it reaches 𝑌
(i.e., 𝑑𝑌𝑡 = 0 if 𝑌𝑡 = 𝑌 ) while (4) holds for 𝑌𝑡 < 𝑌 . We set 𝑌0 > 0. Both 
the assumptions of a time-increasing yet bounded 𝑌𝑡 and that 𝑍𝑥

𝑡  jumps 
up only once are made for simplicity and tractability, but they could 
be relaxed.

In practice, the usability, convenience, and growth rate of PDM may 
depend on whether it is banned or regulated by governments; however, 
such regulation might not be feasible because PDM operates outside the 
banking system. Although not modeled, regulation (by one or multiple 
countries) could be interpreted as a factor that reduces 𝑌  or 𝜇, so 𝑌  and 
𝜇 should be understood as net of the effects of regulation or a ban.15 
Section 2.4.1 studies comparative statics in 𝜇, 𝑌 . 
Objective Function and Optimization. At any time 𝑡, country 𝑥 = 𝐴,𝐵
chooses its effort (taking the effort of the other country as given) to 
maximize: 

𝑉 𝑥
𝑡 = max

(𝑒𝑥𝑠 )𝑠≥𝑡
E𝑥
𝑡

[

∫

∞

𝑡
𝑒−𝛿(𝑠−𝑡)

[

𝛿𝑓𝑥
𝑠 − 𝑔(𝑒𝑥𝑠 )

]

𝑑𝑠
]

, (5)

where E𝑥
𝑡 [⋅] denotes the time-𝑡 expectation from the perspective of 

country 𝑥 (which is conditional on time-𝑡 public information and effort 
(𝑒𝑥𝑠 )𝑠≥𝑡). In (5), 𝑓𝑥

𝑠  is a flow payoff that may depend on state variables 
or currency adoption levels. In what follows, we take 𝑓𝑥

𝑡 = 𝑃 𝑥
𝑡 ; we also 

scale this flow payoff by 𝛿 in the objective, which has no bearing on 
our key findings. See Section 3.4 for an analysis of the effects of 𝛿.

Thus, country 𝑥 maximizes a time average of its currency’s adoption 
and usage in digital payment, net of the costs of digitization.16 We 
abstract from monetary policy, other governmental or central bank con-
siderations, and broader macroeconomic factors. Instead, we stipulate 
that countries digitize their currencies to obtain a stake, influence, and 
control in the digital payment space by promoting the adoption and rel-
evance of their currency. Our modeling of countries’ objective functions 
aligns with recent empirical evidence from Berg et al. (2024), which 
suggests that a key benefit — and potential motive — for launching 
CBDCs is to enhance payment autonomy. This includes maintaining the 
relevance of fiat currency in digital payments and reducing reliance on 
foreign or non-bank payment providers. Similarly, Brunnermeier et al. 
(2019) argues that digitizing currencies may be necessary to preserve 
the adoption of fiat money (e.g., bank deposits) in the digital economy, 
a concern for many nations. Public fiat money anchors the monetary 
system, but this role depends on its widespread adoption. Ensuring the 
use of fiat money in digital payments (see, e.g., Ahnert et al., 2022a) 
is a key concern driving CBDC initiatives. Thus, countries’ efforts to 
maximize currency adoption reflect their goal to preserve the relevance 
and anchoring role of fiat money.

Our modeling aligns with the growing literature on geoeconomics
(Clayton et al., 2023, 2024c; Pflueger and Yared, 2024), which ex-
amine the sources, value, and privileges of geoeconomic power and 
hegemony. Consistent with this literature, our framework captures 
countries’ strategic pursuit of influence through the widespread adop-
tion of their currencies in digital and international payments. A widely 
adopted currency and its digital payment system confer geoeconomic 
power, enabling a country to influence others and extract economic 

15 PDM may also offer unique convenience, therefore, compete with fiat 
money in digital payment even when regulated or banned. As such, countries 
might need to react to PDM competition through digitization rather than bans 
and regulation.
16 While it is natural to take the linear specification 𝑓 𝑥

𝑡 = 𝑃 𝑥
𝑡 , the results 

would remain similar under a monotonic transformation of 𝑃 𝑥
𝑡  as flow payoff. 

Likewise, not scaling the flow payoff by 𝛿, for instance, by setting 𝑓 𝑥
𝑡 = 1∕𝛿𝑃 𝑥

𝑡
would lead to similar results.
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benefits. For instance, the United States derives significant power from 
the dollar-based payment system.

Taken together, our baseline objective function is consistent with 
the aforementioned intuitive arguments, studies, empirical observa-
tions, as well as policy debates. Section 2.5 contrasts the baseline to the 
planner solution as an alternative objective, where a planner maximizes 
overall welfare as we define next. 
Welfare. Overall welfare derives from consumption utility and cur-
rency convenience net of the costs of digitization. We note that any 
cohort’s consumption is fixed and determined by the exogenous endow-
ment. Instead, the currency convenience and the costs of digitization 
are endogenous. When analyzing welfare, we solely focus on the en-
dogenous part, i.e., on total convenience utility net of digitization costs 
(discounted over time), which reads 

𝑊𝑡 = E𝑡

[

∫

∞

𝑡
𝑒−𝛾(𝑠−𝑡)

[

𝛾
(

𝑍𝐴
𝑠 𝑣(𝑚

𝐴
𝑠 ) +𝑍𝐵

𝑠 𝑣(𝑚
𝐵
𝑠 ) + 𝑌𝑠𝑣(𝑚𝐶

𝑠 )
)

− 𝑔𝐴(𝑒𝐴𝑠 ) − 𝑔𝐵 (𝑒𝐵𝑠 )
]

𝑑𝑠
]

,

(6)

where 𝛾 > 0 is the exogenous discount rate in the welfare function. In 
line with the stipulation of (5), we scale the convenience utility flow 
by 𝛾, but this has no bearing on the model implications. Note that 
𝛾 captures how much welfare weight is put on current versus future 
convenience utilities. Observe that because we assume 𝑓𝑥

𝑡 = 𝑃 𝑥
𝑡  in 

the objective (5), countries maximize a time average of their curren-
cies’ digital adoption instead of the convenience utility generated by 
their currencies. As such, equilibrium digitization efforts are generally 
not welfare-maximizing, as we also show in Section 2.5, where we 
characterize welfare-maximizing efforts. 
Equilibrium Concept. We study a dynamic game with two large, 
strategic players, that is, countries 𝐴 and 𝐵, and a non-strategic player, 
that is, the price-taking OLG user, which can equivalently be inter-
preted as a mass of atomistic players. The key difference between fiat 
money and PDM is that the countries, issuing fiat money, strategi-
cally act to increase their currency’s convenience through digitization, 
whereas the convenience of PDM evolves endogenously according to 
the pre-determined law of motion (4). Importantly, due to the convex 
cost of effort, countries cannot launch CBDC immediately by setting 
𝑒𝑥𝑡 = +∞, for instance, to react to a competitor’s launch, as this would 
lead to infinite costs.

We solve for a Markov equilibrium of this dynamic game in the 
continuous time limit 𝑑𝑡 → 0. Let 𝑧 ∈ {0, 𝐴, 𝐵, 𝐴𝐵} denote which 
countries have digitized their currencies up to date. Specifically, 𝑧 = 0
means that no country has digitized its currency, 𝑧 = 𝑥 ∈ {𝐴,𝐵}
means that only country 𝑥 has digitized, and 𝑧 = 𝐴𝐵 means that both 
countries have digitized. We characterize a Markov equilibrium with 
state variables (𝑌 , 𝑧), so that all equilibrium quantities can be expressed 
as functions of (𝑌 , 𝑧). In a Markov equilibrium, at any time 𝑡 ≥ 0, 
cohort 𝑡 users choose the holdings of currencies 𝐴,𝐵, 𝐶 to maximize the 
expected utility 𝑈𝑡 from (2), given prices (𝑃𝐴

𝑡 , 𝑃𝐵
𝑡 , 𝑃𝐶

𝑡 ). The markets for 
all currencies clear, i.e., 𝑚𝑥

𝑡 = 𝑃 𝑥
𝑡  for 𝑥 = 𝐴,𝐵, 𝐶. And, both countries 

𝐴 and 𝐵 choose their efforts according to (5), taking the effort of the 
other country as given, while 𝑌𝑡 evolves according to (4).

2. Model solution and analysis

2.1. Solving for the Markov equilibrium

We define expected returns of currency 𝑥 in terms of the consump-
tion good as: 

𝑟𝑥𝑡 =
E𝑡[𝑑𝑃 𝑥

𝑡 ]
𝑃 𝑥
𝑡 𝑑𝑡

, (7)

where E𝑡[⋅] denotes the time-𝑡 expectation, which is conditional on all 
public information that is available at time 𝑡. Notice that 𝑟𝑥𝑡  is the 
expected rate of appreciation of currency 𝑥 in terms of consumption 

good. That is, if 𝑟𝑥𝑡 > 0, currency 𝑥 is expected to appreciate and, if 
𝑟𝑥𝑡 < 0, currency 𝑥 is expected to depreciate relative to the consumption 
good. In the Markov equilibrium, 𝑟𝑥𝑡  is endogenous and a function of 
(𝑌 , 𝑧), i.e., 𝑟𝑥𝑡 = 𝑟𝑥(𝑌 , 𝑧).

Next, we can write cohort 𝑡’s consumption 𝑐𝑡+𝑑𝑡 at 𝑡 + 𝑑𝑡 as: 

𝑐𝑡+𝑑𝑡 =
∑

𝑥∈{𝐴,𝐵,𝐶}

𝑚𝑥
𝑡 𝑃

𝑥
𝑡+𝑑𝑡

𝑃 𝑥
𝑡

. (8)

Basically, cohort 𝑡’s consumption consists of the proceeds from selling 
their nominal holdings of currency 𝑥, 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡 , at price 𝑃 𝑥

𝑡+𝑑𝑡 to cohort 
𝑡 + 𝑑𝑡. We can write 𝑃 𝑥

𝑡+𝑑𝑡 = 𝑃 𝑥
𝑡 + 𝑑𝑃 𝑥

𝑡  and, inserting this relation into 
(8), we obtain: 

𝑐𝑡+𝑑𝑡 =
∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 +

∑

𝑥∈{𝐴,𝐵,𝐶}

𝑚𝑥
𝑡 𝑑𝑃

𝑥
𝑡

𝑃 𝑥
𝑡

. (9)

Because cohort 𝑡 only derives utility from consuming at time 𝑡+𝑑𝑡, it is 
optimal to use the entire endowment of one unit of consumption good 
to purchase money at time 𝑡, so that ∑𝑥∈{𝐴,𝐵,𝐶} 𝑚

𝑥
𝑡 = 1 must hold for 

given prices (𝑃𝐴
𝑡 , 𝑃𝐵

𝑡 , 𝑃𝐶
𝑡 ) (see (1)). As a result, cohort 𝑡 maximizes: 

max
𝑚𝐴
𝑡 ,𝑚

𝐵
𝑡 ,𝑚

𝐶
𝑡 ≥0

𝑈𝑡  s.t. 
∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 = 1, (10)

taking (𝑃𝐴
𝑡 , 𝑃𝐵

𝑡 , 𝑃𝐶
𝑡 ) as given. With (2), (9), and ∑𝑥∈{𝐴,𝐵,𝐶} 𝑚

𝑥
𝑡 = 1, the 

objective in (10) becomes: 
𝑈𝑡 = 1 +

∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 𝑟

𝑥
𝑡 𝑑𝑡 +𝑍𝐴

𝑡 𝑣(𝑚
𝐴
𝑡 )𝑑𝑡 +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 )𝑑𝑡 + 𝑌𝑡𝑣(𝑚𝐶

𝑡 )𝑑𝑡. (11)

The first two terms represent cohort 𝑡’s expected consumption at time 
𝑡+𝑑𝑡. Observe that in equilibrium, consumption equals the fixed endow-
ment of cohort 𝑡 + 𝑑𝑡, in that, as we show, ∑𝑥∈{𝐴,𝐵,𝐶} 𝑚

𝑥
𝑡 𝑟

𝑥
𝑡 𝑑𝑡 = 0. The 

last three terms represent the convenience utility to holding currencies. 
Recall that a micro-foundation of (11) is provided in Appendix  E where 
we model payments and link convenience to the medium-of-exchange 
function of money. In light of ∑𝑥∈{𝐴,𝐵,𝐶} 𝑚

𝑥
𝑡 = 1, it must hold at any 

optimum that: 
𝜕𝑈𝑡

𝜕𝑚𝐴
𝑡

=
𝜕𝑈𝑡

𝜕𝑚𝐵
𝑡

=
𝜕𝑈𝑡

𝜕𝑚𝐶
𝑡
, (12)

provided 𝑚𝑥
𝑡 ∈ (0, 1). That is, in equilibrium, the user (which takes 

prices as given) is on the margin indifferent between substituting a unit 
of currency 𝑥 towards another currency −𝑥. This relationship implies 
the following equilibrium pricing equations: 
𝑌𝑡𝑣

′(𝑚𝐶
𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐴

𝑡 𝑣
′(𝑚𝐴

𝑡 ) + 𝑟𝐴𝑡 = 𝑍𝐵
𝑡 𝑣

′(𝑚𝐵
𝑡 ) + 𝑟𝐵𝑡 . (13)

Condition (13) states that in equilibrium, the sum of the marginal 
convenience utility and expected appreciation must be equal across 
currencies. Due to lim𝑚𝑥

𝑡 →0 𝑣′(𝑚𝑥
𝑡 ) = ∞, optimal currency holdings 𝑚𝑥

𝑡 =
𝑃 𝑥
𝑡  satisfy 𝑚𝑥

𝑡 , 𝑃
𝑥
𝑡 ∈ (0, 1) for 𝑥 = 𝐴,𝐵, 𝐶. In a Markov equilibrium with 

state variables (𝑌 , 𝑧), we can write 𝑚𝑥
𝑡 = 𝑃 𝑥

𝑡 = 𝑚𝑥(𝑌 , 𝑧) = 𝑃 𝑥(𝑌 , 𝑧) for 
𝑥 = 𝐴,𝐵, 𝐶 as well as 𝑟𝑥𝑡 = 𝑟𝑥(𝑌 , 𝑧), so that (13) will depend on (𝑌 , 𝑧)
only.

Next, we characterize countries’ time-𝑡 value function from (5) as 
well as the optimal levels of efforts. By the dynamic programming 
principle, the governments’ value function 𝑉 𝑥

𝑡  from (5) satisfies the HJB 
equation (for 𝑥 = 𝐴,𝐵): 

𝛿𝑉 𝑥
𝑡 = max

𝑒𝑥𝑡 ≥0

(

𝛿𝑓𝑥
𝑡 −

𝜆(𝑒𝑥𝑡 )
2

2
− 𝜙𝑒𝑥𝑡 +

E𝑥
𝑡 [𝑑𝑉

𝑥
𝑡 ]

𝑑𝑡

)

, (14)

where 𝑓𝑥
𝑡  is the flow payoff that countries derive — set to 𝑓𝑥

𝑡 = 𝑃 𝑥
𝑡

in our baseline. Again, in a Markov equilibrium with state variables 
(𝑌 , 𝑧), we can express 𝑉 𝑥

𝑡  as a function of (𝑌 , 𝑧) only, i.e., 𝑉 𝑥
𝑡 = 𝑉 𝑥(𝑌 , 𝑧)

for 𝑥 = 𝐴,𝐵. As optimal effort 𝑒𝑥𝑡  is determined according to the HJB 
Eq. (14), it depends on the government’s value function 𝑉 𝑥

𝑡 = 𝑉 𝑥(𝑌 , 𝑧)
and adoption 𝑃 𝑥

𝑡 = 𝑃 𝑥(𝑌 , 𝑧). Since 𝑉 𝑥
𝑡  and 𝑃 𝑥

𝑡  are functions of (𝑌 , 𝑧)
only, the optimal effort is a function of (𝑌 , 𝑧) too, in that 𝑒𝑥𝑡 = 𝑒𝑥(𝑌 , 𝑧). 
Indeed, as shown in Appendix  A, one solves for the Markov equilibrium 
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by conjecturing and then verifying that equilibrium quantities are 
functions of (𝑌 , 𝑧) only.

As shown in Appendix  A, effort satisfies for 𝑥 = 𝐴,𝐵 (correspond-
ingly −𝑥 = 𝐵,𝐴):

𝑒𝑥(𝑌 , 0) =

[

𝑉 𝑥(𝑌 , 𝑥) − 𝑉 𝑥(𝑌 , 0) − 𝜙
]+

𝜆
 and 

𝑒𝑥(𝑌 ,−𝑥) =

[

𝑉 𝑥(𝑌 ,𝐴𝐵) − 𝑉 𝑥(𝑌 ,−𝑥) − 𝜙
]+

𝜆
. (15)

where [⋅]+ = max{⋅, 0}. In addition, 𝑒𝑥(𝑌 ,𝐴𝐵) = 𝑒𝑥(𝑌 , 𝑥) = 0, i.e., efforts 
become zero after successful digitization. Because countries maximize 
a time average of their currency’s adoption net of digitization costs, 
optimal digitization efforts reflect the potential gain in adoption, as 
well as the persistence of this effect — all of which are captured by 
𝑉 𝑥(𝑌 , 𝑥) −𝑉 𝑥(𝑌 , 0) in state 𝑧 = 0 and by 𝑉 𝑥(𝑌 ,𝐴𝐵) −𝑉 𝑥(𝑌 ,−𝑥) in state 
𝑧 = 𝑥. In particular, when current adoption is low (high) in 𝑧 = 0, then 
𝑉 𝑥(𝑌 , 0) tends to be low (high), boosting the incentives and, therefore, 
efforts to digitize. Also note that optimal digitization efforts can be zero 
(even in state 𝑧 = 0), in which case countries abandon their initiatives 
to digitize currency.

Finally, welfare 𝑊𝑡 can be written as 𝑊𝑡 = 𝑊 (𝑌 , 𝑧) satisfying the 
HJB equation 

𝛾𝑊𝑡 =
∑

𝑥=𝐴,𝐵

(

𝛾𝑍𝑥
𝑡 𝑣(𝑚

𝑥
𝑡 ) − 𝑔𝑥(𝑒𝑥𝑡 )

)

+ 𝛾𝑌𝑡𝑣(𝑚𝐶
𝑡 ) +

E𝑡[𝑑𝑊𝑡]
𝑑𝑡

, (16)

given 𝑚𝑥
𝑡  and efforts 𝑒𝐴𝑡  and 𝑒𝐵𝑡  chosen by countries. Section 2.5 later 

characterizes the solution when efforts are chosen to maximize welfare. 
We summarize our findings: 

Proposition 1.  In the Markov equilibrium with state variables (𝑌 , 𝑧), the 
following holds:

1. Users invest their entire endowment in currencies, i.e., (1) holds. 
The markets for all currencies clear, so that 𝑚𝐴

𝑡 = 𝑃𝐴
𝑡 , 𝑚𝐵

𝑡 = 𝑃𝐵
𝑡 , 

𝑚𝐶
𝑡 = 𝑃𝐶

𝑡 .
2. Optimal currency adoption levels 𝑚𝑥

𝑡 , 𝑃
𝑥
𝑡  for 𝑥 = 𝐴,𝐵, 𝐶 satisfy 

𝑚𝑥
𝑡 , 𝑃

𝑥
𝑡 ∈ (0, 1). The equilibrium pricing condition (13) holds, and 

government value functions 𝑉 𝐴
𝑡  and 𝑉 𝐵

𝑡  solve the HJB Eq. (14). 
Welfare 𝑊𝑡 solves the HJB Eq. (16).

3. For 𝑥 = 𝐴,𝐵, 𝐶 and (𝑌𝑡, 𝑧𝑡) = (𝑌 , 𝑧), currency adoption satisfies 
𝑃 𝑥
𝑡 = 𝑚𝑥

𝑡 = 𝑃 𝑥(𝑌 , 𝑧) = 𝑚𝑥(𝑌 , 𝑧), expected returns satisfy 𝑟𝑥𝑡 =
𝑟𝑥(𝑌 , 𝑧), value functions satisfy 𝑉 𝑥

𝑡 = 𝑉 𝑥(𝑌 , 𝑧) for 𝑥 = 𝐴,𝐵, welfare 
satisfies 𝑊𝑡 = 𝑊 (𝑌 , 𝑧), and efforts satisfy 𝑒𝐴𝑡 = 𝑒𝐴(𝑌 , 𝑧) and 
𝑒𝐵𝑡 = 𝑒𝐵(𝑌 , 𝑧) according to (15).

4. The Markov equilibrium is characterized by a system of coupled first 
order ODEs and non-linear equations, all of which are presented in 
Appendix  A.5.

Appendix  A provides a detailed characterization of the model so-
lution and the Markov equilibrium in terms of a system of coupled 
ODEs that describe the dynamics of the currency adoption 𝑃 𝑥(𝑌 , 𝑥) =
𝑚𝑥(𝑌 , 𝑥), governments’ value functions 𝑉 𝐴(𝑌 , 𝑧) and 𝑉 𝐵(𝑌 , 𝑧), digiti-
zation efforts 𝑒𝐴(𝑌 , 𝑧) and 𝑒𝐵(𝑌 , 𝑧), and welfare 𝑊 (𝑌 , 𝑧). Note that 
because our dynamic game features two state variables and asymmetric 
competition among currencies, there is no analytical solution and we do 
not provide formal existence and uniqueness arguments. The Markov 
equilibrium needs to be solved numerically.

2.2. Numerical solution and parameter choice

Similar to Krishnamurthy and Vissing-Jorgensen (2012), Cong et al. 
(2021), or Gryglewicz et al. (2021), we pick for the convenience utility 
the functional form 𝑣(𝑚) = 𝑚1−𝜂

1−𝜂 , where 𝜂 ∈ (0, 1) ensures 𝑣(𝑚) > 0
for 𝑚 > 0; we pick 𝜂 = 0.9. We set 𝛿 = 𝛾 = 0.1, and normalize 
𝑍𝐴

𝐿 = 1. Further, we choose 𝑍𝐵
𝐿 = 0.2, i.e., currency 𝐵 is initially 

less convenient than the dominant currency 𝐴. The dynamics of PDM 

competition are characterized through 𝑌0 = 0.025, 𝑌 = 5, and 𝜇 = 0.2.17 
Digitization improves the convenience of currency 𝑥 = 𝐴,𝐵 according 
to 𝑍𝑥

𝐻 = 𝛥𝐹 𝑖𝑥𝑒𝑑 + (1 + 𝛥𝑃𝑟𝑜𝑝)𝑍𝑥
𝐿 where we stipulate 𝛥𝐹 𝑖𝑥𝑒𝑑 = 𝛥𝑃𝑟𝑜𝑝 = 1. 

That is, currency digitization increases the convenience 𝑍𝑥
𝑡  both by 

a fixed amount and proportionally relative to the base level 𝑍𝑥
𝐿. The 

flow cost of digitization satisfies 𝑔𝑥(𝑒𝑥) = 𝜙𝑒𝑥 + 𝜆(𝑒𝑥)2
2  for 𝜙 = 0.15 and 

𝜆 = 1. Importantly, the model’s implications, which are qualitative in 
nature, are robust to the choice of these parameters, as we verify and 
the following analysis also highlights.18

Fig.  1 illustrates the dynamics of currency adoption (values) by 
plotting 𝑃 𝑥(𝑌 , 𝑧) = 𝑚𝑥(𝑌 , 𝑧) as a function of ln(𝑌 ) — which is a mono-
tonic transformation of 𝑌  (we use it for the sake of illustration, simply 
because 𝑌  grows exponentially) — over the entire range [ln(𝑌0), ln(𝑌 )]
in states 𝑧 = 0, 𝐴, 𝐵. Recall that 𝑌  and, therefore, ln(𝑌 ) increase over 
time. Naturally, the adoption of currencies 𝐴 and 𝐵 declines with PDM 
convenience 𝑌 , while PDM adoption increases in 𝑌 . As such, 𝑌  or, 
equivalently, ln(𝑌 ) quantifies PDM adoption and dominance, as well 
as the competition that fiat currencies face from PDM.

Panel C shows that digitization by country 𝑥, representing a shift 
from 𝑧 = 0 to 𝑧 = 𝑥, spurs the adoption of currency 𝑥 but reduces 
the adoption of currency −𝑥 and PDM. Since 𝐶 ’s adoption is always 
higher in state 𝑧 = 𝐵 than in state 𝑧 = 𝐴, the digitization of the 
dominant currency 𝐴 harms 𝐶 relatively more. Interestingly, as can be 
seen on Panel A, digitization of the less dominant currency 𝐵 has a 
relatively large, negative effect on the adoption of currency 𝐴 when 𝑌
is small, but this effect diminishes for larger values of 𝑌 . Indeed, when 
𝑌  is low, currency 𝐴’s primary competitor is 𝐵, especially so after 𝐵 is 
digitized. When 𝑌  is large, PDM competes away market share from 𝐴
and 𝐵, limiting the effects of 𝐵’s digitization and making 𝐶 the main 
competitor of 𝐴. Panel B shows that currency 𝐵’s adoption increases 
the most from digitization when 𝑌  is small, whereas, for 𝐴, digitization 
yields larger adoption gains for larger values of 𝑌 . As discussed next, 
these patterns shape countries’ incentives to digitize their currencies or 
upgrade payment systems.

2.3. The dynamics of currency digitization

We investigate the dynamics of currency digitization initiatives 
against the backdrop of growing competition from PDM. To this end, 
Fig.  2 plots outcomes as a function of ln(𝑌 ), both in state 𝑧 = 0
(solid black line) and in states 𝑧 = 𝐵,𝐴, respectively (dotted red 
line). According to (4), 𝑌  increases over time and PDM gradually gains 
adoption. Therefore, Fig.  2 also depicts the time dynamics of currency 
digitization, highlighting how efforts change as fiat currencies face 
more competition from PDM over time.

2.3.1. Effort dynamics and strategic interactions
To begin with, observe from Panels A and B of Fig.  2 that in state 

𝑧 = 0, the efforts (i.e., digitization incentives) of the strong country 
𝐴 follow an inverted U shape in ln(𝑌 ), while the efforts of country 𝐵
decrease in ln(𝑌 ). Panel A shows that digitization by 𝐵, i.e., a move 
from 𝑧 = 0 to 𝑧 = 𝐵, increases 𝐴’s efforts for low 𝑌 , while decreasing 
them for high 𝑌 . In contrast, the digitization of 𝐴 always reduces 𝐵’s 

17 Since the drift of 𝑌  in (4) is always positive, the lower bound of the state 
space, 𝑌0, does not imply relevant boundary conditions for the ODE system, 
characterizing the equilibrium. Consequently, the value of 𝑌0 has no impact 
on the equilibrium values of model quantities in states 𝑌 > 𝑌0. We just picked 
‘‘relatively low’’ 𝑌0 for illustrating the equilibrium over a large state space.
18 Due to the lack of closely related quantitative studies and extensive his-
torical data on CBDC issuance and currency digitization and, more generally, 
due to the forward-looking nature of our analysis, there is no straightforward 
way to rigorously calibrate the model and to make quantitative predictions. 
However, the model’s outcomes, which are qualitative in nature, are robust 
across various parameter configurations.
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Fig. 1. The dynamics of adoption. This figure plots the adoption levels of currencies 𝐴, 𝐵, and 𝐶 in Panels A, B, and C, respectively against ln(𝑌 ) in states 𝑧 = 0, 𝐴, 𝐵. The solid 
black line depicts 𝑧 = 0, the dotted red line depicts state 𝑧 = 𝐴, and the dashed yellow line depicts 𝑧 = 𝐵. We use our baseline parameters from Section 2.2. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The dynamics of digitization efforts. Panel A depicts 𝐴’s effort as a function of ln(𝑌 ) in states 𝑧 = 0 (solid black line) and 𝑧 = 𝐵 (dotted red line). Panel B depicts 𝐵’s 
effort as a function of ln(𝑌 ) in states 𝑧 = 0 (solid black line) and 𝑧 = 𝐴 (dotted red line). Panel C plots the sum of efforts in states 𝑧 = 0 (solid black line), 𝑧 = 𝐵 (dotted red line), 
and 𝑧 = 𝐴 (dashed yellow line), while Panel D plots their difference in state 𝑧 = 0. We use our baseline parameters from Section 2.2. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

efforts, as shown in Panel B. Panel C shows that countries’ total efforts 
in state 𝑧 = 0, that is, the sum of individual efforts, tend to decrease in 
ln(𝑌 ). In addition, Panel D reveals that country 𝐵’s incentives to digitize 
its currency are highest and exceed those of 𝐴 at the beginning of the 
game, i.e., for low levels of 𝑌  when competition from PDM is weak. In 
contrast, later in the game, i.e., for higher levels of 𝑌 , 𝐴 has stronger 
incentives than 𝐵.

To gain intuition, recall from (5) that countries maximize the time 
average of their currencies’ adoption, net of the cost of digitization. As 
such, the incentives to digitize currency reflect the potential increase 
in adoption upon digitization, as well as the persistence of this effect. 
Digitization increases currency 𝐵’s convenience and adoption in the 
future. This effect is relatively larger and more persistent when compe-
tition from PDM is weak (i.e., 𝑌  is small) and currency 𝐴 has not been 
digitized yet (i.e., in state 𝑧 = 0). At the same time, in state 𝑧 = 0 and 
for low levels of 𝑌 , the current level of adoption of 𝐵 is low compared 
to that of 𝐴, implying higher adoption gains upon digitization relative 
to the status quo. Therefore, 𝐵’s digitization efforts are highest for 

low levels of 𝑌  in state 𝑧 = 0 and exceed those of 𝐴. However, 𝐵’s 
efforts taper off as 𝑌  increases and the gains of digitization diminish 
due to PDM’s strength and wider adoption. Notably, under our baseline 
parameters, 𝐵 sets 𝑒𝐵(𝑌 , 0) = 0 and even stops the digitization process 
for large 𝑌 . Likewise, the digitization of currency 𝐴 limits the adoption 
gains from digitizing currency 𝐵, reducing 𝐵’s incentives in state 𝑧 = 𝐴
relative to 𝑧 = 0 for any 𝑌  (see Panel B).

In state 𝑧 = 0, country 𝐴’s digitization efforts are highest for 
intermediate levels of PDM competition and 𝑌 . For low levels of 𝑌 , 
currency 𝐴’s adoption is high reflecting its dominance, which limits 
the additional adoption that 𝐴 can gain upon digitization. However, as 
competition from PDM intensifies, 𝐴’s adoption decreases and, there-
fore, the gains from digitization rise, increasing 𝐴’s effort incentives. 
Finally, when 𝑌  becomes sufficiently large, 𝐴’s current level of adoption 
is low, but digitization yields low benefits due to PDM’s dominance, 
which again limits 𝐴’s incentives to digitize. As a result, 𝐴’s incentives 
to digitize first increase and then decrease in 𝑌 , resulting in the inverted 
U-shaped pattern. In sum, country A’s incentives peak when PDM 
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Fig. 3. The dynamics and timing of digitization. This Figure depicts time dynamics, conditional on remaining in state 𝑧 = 0. Panel A plots countries total efforts, 𝑒𝐴𝑡 + 𝑒𝐵𝑡 =
𝑒𝐴(𝑌𝑡 , 0) + 𝑒𝐵 (𝑌𝑡 , 0) against calendar time 𝑡, conditional on remaining in state 𝑧 = 0, for 𝜇 = 0.2 (solid black line) and 𝜇 = 0.65 (dotted red line). Panel B plots the probability 
density function of 𝑇 ∗ = min{𝑇 𝐴 , 𝑇 𝐵}, i.e., the first time of digitization, against 𝑡, for 𝜇 = 0.2 (solid black line) and 𝜇 = 0.65 (dotted red line). Panel C depicts the expected time to 
digitization, being in 𝑧 = 0 and at time 𝑡. We use our baseline parameters from Section 2.2, but set 𝑌0 = 1. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

threatens dominance but is not yet entrenched. As discussed in the next 
Section, 𝐴’s incentives to digitize also reflect the dynamic component 
that digitization hampers the further growth in PDM convenience 𝑌 . 
This effect generates a motive to respond early to competition from 
PDM, especially when this competition is expected to grow fast. More 
generally, country 𝐴 has high incentives to digitize its currency, when 
its dominance is challenged by PDM or a competing fiat currency and 
digitization allows to reassert its dominance.

Taken together, country 𝐵, with the less dominant currency, enjoys 
an endogenous first-mover advantage in currency digitization, while 
country 𝐴 with the dominant currency has a second-mover advantage. 
In particular, 𝐵 possesses strong incentives to move first or early in 
digitizing its currency. Indeed, Panel D shows that initially, i.e., for 
low levels of 𝑌  and 𝑧 = 0, the digitization efforts of 𝐵 exceed those 
of 𝐴. However, both the increasing competition from PDM and the 
digitization of currency 𝐴 effectively remove this first-mover advan-
tage, thereby reducing 𝐵’s digitization incentives and effort. In contrast, 
𝐴’s incentives to digitize are initially low, but increase over time 
with the growing competition from PDM or with the digitization of 
currency 𝐵. When 𝐵 is being digitized and 𝑌  is low, 𝐴’s incentives 
to digitize increase, meaning that 𝐴 has incentives to move second in 
currency digitization. Indeed, as 𝐵 challenges 𝐴 through digitization, 
𝐴’s adoption and dominance decline, boosting 𝐴’s incentives to digitize 
its currency as well. This effect vanishes, however, when competition 
from PDM is strong, limiting gains from digitization.

Importantly, fiat currency digitization efforts can endogenously 
emerge as either strategic complements or substitutes. For country 𝐵, 
digitization by the dominant country 𝐴 acts as a strategic substitute, 
consistently reducing 𝐵’s incentives to digitize. This occurs because 
𝐵’s incentives are driven by a first-mover advantage, which vanishes 
once 𝐴 digitizes. In contrast, for country 𝐴, digitization by 𝐵 initially 
serves as a strategic complement, increasing 𝐴’s incentives to digitize 
when 𝑌  is small, reflecting a second-mover advantage. However, when 
𝑌  is large and PDM competition intensifies, the digitization of 𝐵
becomes a strategic substitute, reducing 𝐴’s efforts because the growing 
dominance of PDM erodes the second-mover advantage.

2.3.2. When do countries digitize fiat currencies?
Although countries’ digitization efforts are initially high (see Panel 

C of Fig.  2), they tend to decrease over time and may even cease 
altogether if early success is not achieved and PDM gains widespread 
adoption. In the beginning, the weaker country accounts for most of 
the digitization efforts, reflecting an endogenous first-mover advantage, 
whereas the stronger country generally reacts later by increasing its 
effort, reflecting a second-mover advantage. This finding aligns with 

the observation that relatively less dominant currencies (such as the 
Renminbi) are being digitized first through CBDC, while the United 
States is delaying or halting CBDC development.

Fig.  3 illustrates the dynamics of currency digitization over time 
𝑡, starting from 𝑌0 = 1 for two different levels of 𝜇.19 Panel A shows 
that countries’ total efforts 𝑒𝐴𝑡 + 𝑒𝐵𝑡  in state 𝑧 = 0 decline over time. 
This finding is consistent with the dynamics of CBDC initiatives around 
globe, many of which have been slowed down, stalled, or stopped 
despite initial enthusiasm.

Next, Panel B of Fig.  3 plots the probability density function of 
𝑇 ∗ = min{𝑇𝐴, 𝑇 𝐵}, representing the first time of currency digitization, 
over time in state 𝑧 = 0. Panel C plots in state 𝑧 = 0 the expected 
time to first digitization against time 𝑡, measuring the average time it 
takes for currency digitization to occur (being in state 𝑧 = 0 at time 𝑡). 
Appendix  D shows how to calculate the expected time to digitization 
and the probability density function of 𝑇 ∗. Observe that the density 
of 𝑇 ∗ is unimodal and decreases in 𝑡, while the expected time to 
digitization increases in 𝑡.20 Intuitively, Panel A illustrates the time-𝑡
conditional probability of digitization over [𝑡, 𝑡 + 𝑑𝑡), i.e., 𝑃𝑟𝑜𝑏𝑡{𝑇 ∗ ∈
[𝑡, 𝑡 + 𝑑𝑡)} = (𝑒𝐴𝑡 + 𝑒𝐵𝑡 )𝑑𝑡, while Panel 𝐵 shows the unconditional 
probability 𝑃𝑟𝑜𝑏0{𝑇 ∗ ∈ [𝑡, 𝑡 + 𝑑𝑡)}. The solid black (dotted red) line 
depicts 𝜇 = 0.2 (𝜇 = 0.65).21

Because overall efforts tend to decrease over time (Panel A), the 
model predicts relatively early digitization. If it indeed occurs early, 
digitization, especially by the dominant currency, hampers PDM adop-
tion and its future growth. However, if digitization is not achieved early 
on, it is delayed significantly or may never occur, as digitization efforts 
decline over time. Consequently, the density features a large probability 
mass close to 𝑡 = 0 (including a maximum at 𝑡 = 0), and decreases 
with 𝑡. In addition, the time-𝑡 expected time to digitization in Panel 
C increases in 𝑡. Thus, initial failures or setbacks in the digitization 
process increase, rather than decrease, the expected time to successful 
digitization.

19 For the sake of illustration, we pick higher 𝑌0 than in other figures to 
obtain more meaningful time dynamics, since the growth of 𝑌  is very slow 
for low levels of 𝑌0 (according to (4)) and the illustration of the results would 
require many periods of time.
20 There is still a probability mass of about 10% that 𝑇 ∗ > 20, which is 
not depicted here. For larger values of 𝜙, countries’ effort(s) may become zero 
and the digitization is stalled altogether. In this case, the distribution (density) 
features an atom of probability at +∞, i.e., 𝑃𝑟𝑜𝑏{𝑇 ∗ = +∞} > 0. Under these 
circumstances, digitization occurs either relatively early or never.
21 We note the patterns are robust to changes in 𝜇; we discuss the effects of 

𝜇 in greater detail in the next Section.
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Fig. 4. Effort dynamics and PDM competition. This Figure presents comparative statics in 𝜇. Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 ) for three 
different levels of 𝜇. Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). Panel D plots total efforts against time, 𝑡, being state 𝑧 = 0. We use our baseline 
parameters from Section 2.2 (including 𝑍𝐴

𝐿 = 1), but set 𝑌0 = 0.5 for Panel D.

In particular, failure to digitize fiat money early creates a vacuum 
in the digital payment space, which PDM fills. As PDM adoption grows 
due to a lack of digitization, countries’ digitization efforts diminish or 
may cease altogether, delaying or preventing digitization. This can lead 
to a long-run equilibrium where fiat currencies play a diminished role 
and PDM dominates digital payments. Therefore, our model suggests 
that the long-term relevance of fiat money in digital payments depends 
on whether countries act early to digitize it.

2.4. Does currency competition spur digitization?

We now analyze how the competition from PDM and among fiat cur-
rencies shape the dynamics of currency and payment digitization, the 
timing of CBDC issuance, and overall welfare. Our findings suggest that 
while competition from PDM slows digitization, competition among fiat 
currencies accelerates it. Notably, both forms of competition contribute 
to overall welfare by enhancing convenience utility over time. These 
differential effects reflect that the nature of increased competition has 
distinct effects on the endogenous growth of PDM, which accelerates 
as PDM adoption rises. Stronger fiat currencies curb PDM adoption 
and growth, encouraging countries to sustain their digitization efforts 
and ultimately boosting digitization. In contrast, increased competition 
from PDM — both in the short term (due to higher current adoption) 
and over time (due to faster growth in PDM convenience) — may 
initially boost digitization efforts but gradually undermines them, as it 
accelerates PDM growth and its path to dominance, ultimately limiting 
the benefits of digitization for both countries.

2.4.1. The effects of competition from private digital money and regulation
The level of 𝑌  quantifies the competition that fiat currencies face 

from PDM in the present, thereby affecting countries’ incentives to 
digitize their currency. The law of motion (4) implies that higher PDM 
adoption today increases 𝑌  and PDM adoption in the future, adding 
a dynamic component to currency digitization considerations. When 
countries digitize their currencies, they reduce PDM adoption in the 
present, reducing growth of PDM convenience, competition, and adop-
tion in the future. The incentives arising from this dynamic channel 
depend on the parameter 𝜇, governing growth of PDM convenience and 
thus fiat currencies’ (dynamic) competition from PDM.

As can be seen from Fig.  2, an increase in competition from PDM 
through higher 𝑌  reduces 𝐵’s digitization efforts, while having an 
ambiguous effect on 𝐴’s incentives, which follow an inverted U-shaped 
pattern in ln(𝑌 ). Recall that overall, an increase in PDM competition 
through higher 𝑌  reduces total digitization efforts. To analyze how the 
growing competition from PDM affects the dynamics of digitization, we 
perform comparative statics in 𝜇. Fig.  4 plots country 𝐴’s efforts (Panel 
A), country 𝐵’s efforts (Panel B), and their sum against ln(𝑌 ) in Panel 
C and over time in Panel D, for 𝜇 = 0.05, 𝜇 = 0.35, and 𝜇 = 0.65. Panel 
A shows that as 𝜇 increases, 𝐴’s digitization efforts increase for low 𝑌 , 
peaking at a lower level of 𝑌 .

When PDM competition grows faster and 𝜇 is larger, 𝐴 responds 
more strongly and earlier to the rising competition from PDM, i.e., its 
incentives become more forward-looking. Indeed, when 𝜇 is larger, 
country 𝐴 is incentivized to digitize its currency early to slow PDM 
growth and prepare for increased future competition. This effect re-
flects the endogenous nature of PDM competition, which grows at a rate 
that accelerates with PDM adoption. By digitizing its currency, country 
𝐴 curbs PDM growth, thereby mitigating future competition.

In contrast, the concern of slowing future growth of PDM adoption 
has a much smaller effect on 𝐵’s incentives to digitize (see Panel B). 
Loosely speaking, 𝐵 mostly cares about the additional adoption it can 
gain through digitization, as its effect on the dynamics of 𝑌  is relatively 
small. Panel C shows that when 𝜇 is larger, total digitization efforts 
respond more strongly and earlier to the rising competition from PDM, 
in that they are higher for low 𝑌  and peak earlier.

Panel D plots countries’ total digitization efforts over time, starting 
from 𝑌0 = 0.5. When 𝜇 is larger, countries’ total efforts are higher 
initially but decline more quickly, resulting in less persistence. That is, 
countries abandon the digitization of their currency more rapidly, when 
PDM competition grows faster. As discussed before, the model predicts 
that digitization occurs relatively early on in the game. However, if 
countries do not succeed early on, digitization is delayed significantly 
or never occurs. Notably, this pattern is more pronounced for larger 
values of 𝜇, as shown in Fig.  3. Panel B of Fig.  3 shows that an 
increase in 𝜇 reduces the probability that digitization occurs early, 
while increasing the probability that it occurs later. Panel C of Fig.  3 
shows that an increase in 𝜇 delays digitization, i.e., raises the expected 
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Fig. 5. Effort dynamics and fiat currency competition. This Figure presents comparative statics in 𝑍𝐵
𝐿 . Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 )

for three different levels of 𝑍𝐵
𝐿 . Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). Panel D plots total efforts against time, 𝑡, being state 𝑧 = 0. We use 

our baseline parameters from Section 2.2 (including 𝑍𝐴
𝐿 = 1), but set 𝑌0 = 0.5 for Panel C.

time to digitization for all 𝑡. Likewise, Panel C of Fig.  3 shows that the 
expected time to digitization increases with 𝑌 . Both findings indicate 
that competition from PDM delays fiat currency digitization.

Finally, the convenience of PDM and its growth rate may reflect 
whether they are banned or regulated by governments. Although not 
explicitly modeled, we consider regulation as a factor that reduces 
the convenience and competitiveness of PDM. Our model predicts that 
if regulation (by one or multiple countries) does indeed reduce PDM 
convenience and adoption, it accelerates the digitization of fiat curren-
cies, but hampers overall welfare by reducing payment convenience. 
Interpreted differently, the regulation of PDM and the digitization of 
fiat money complement each other in maintaining the relevance and 
adoption of their currency in digital payments.

2.4.2. Competition among fiat currencies
To examine the effects of competition among fiat currencies, we 

perform comparative statics in their relative convenience. For this sake, 
we hold fixed 𝑍𝐴

𝐿  at one (a normalization), and vary 𝑍𝐵
𝐿 , whereby 

an increase in 𝑍𝐵
𝐿  corresponds to increased competition among fiat 

currencies. To this end, Fig.  5 plots country 𝐴’s efforts (Panel A), 
country 𝐵’s efforts (Panel B), and total efforts (Panel C) against ln(𝑌 )
and, in Panel D, total efforts against time 𝑡 starting at 𝑌0 = 0.5, for 
𝑍𝐵

𝐿 = 0.1 (solid black line), 𝑍𝐵
𝐿 = 0.5 (dotted red line), and 𝑍𝐵

𝐿 = 0.9
(dashed yellow line).

Note that increased competition from currency 𝐵, i.e., an increase 
in 𝑍𝐵

𝐿 , boosts 𝐴’s digitization incentives for low levels of 𝑌 , while 
curbing them for higher levels of 𝑌 . Indeed, higher 𝑍𝐵

𝐿  implies lower 
adoption of currency 𝐴, raising 𝐴’s adoption gain upon digitization. 
At the same time, higher 𝑍𝐵

𝐿  raises adoption for currency 𝐵, thereby 
reducing 𝐵’s incentives for low levels of 𝑌 . When 𝐵’s adoption is 
relatively low (because 𝑍𝐵

𝐿  is low), country 𝐵 has strong incentives to 
move first in currency competition, resulting in high efforts by 𝐵 for 
low 𝑌 . In contrast, 𝐴’s incentives to move early are diminished. In other 
words, more asymmetric competition among fiat currencies implies a 
relatively larger first-mover advantage for 𝐵, and greater incentives to 
move second for 𝐴. Interestingly, as shown in Panel C, the level of 
competition among fiat currencies hardly affects the total digitization 
efforts for a given level of 𝑌 , i.e., the effects more or less cancel out.

Because currency 𝐵 also competes with 𝐶 for adoption, a higher 
level of 𝑍𝐵

𝐿  reduces PDM adoption and, by (4), slows the growth of 
PDM competition. Recall that countries’ digitization efforts tend to 
decrease over time and in particular reach low levels when PDM has 
gained widespread adoption (i.e., 𝑌  is large). Consequently, as shown in 
Panel D, higher 𝑍𝐵

𝐿  implies that countries’ digitization efforts are more 
persistent, which raises the likelihood that digitization occurs relatively 
early, rather than very late or never. In other words, increased competi-
tion among fiat currencies accelerates currency digitization and digital 
upgrades of traditional payment systems.

2.4.3. The welfare effects of competition
We examine how currency competition affects the timing of digi-

tization and welfare. Panel A of Fig.  6 shows that the expected time 
to digitization increases in 𝑌  and in 𝜇 for given ln(𝑌 ), which, in line 
with previous findings, indicates that PDM competition delays the 
digitization of fiat currencies. Next, Panel C shows that the expected 
time to digitization in state 𝑌  decreases in 𝑍𝐵

𝐿 , so fiat currency compe-
tition accelerates digitization. Regarding welfare, Panel B displays that 
welfare increases in 𝑌  and 𝜇 for given ln(𝑌 ), in that PDM competition 
benefits welfare. Likewise, Panel D shows that welfare increases in 𝑍𝐵

𝐿 , 
i.e., increased fiat currency competition boosts welfare.

The intuition behind these findings is that because users benefit 
from increased convenience, any type of competition increases their 
welfare. However, while increased competition among fiat curren-
cies accelerates digitization, increased competition from PDM delays 
or slows digitization. The reason is that increased competition from 
PDM (i.e., larger 𝜇 or 𝑌 ) limits fiat currencies’ adoption gain upon 
digitization, which dynamically reduces countries’ efforts and delays 
digitization. Differently, increased competition among national cur-
rencies, i.e., higher 𝑍𝐵

𝐿 , raises countries’ digitization efforts and their 
persistence, which accelerates digitization.

2.5. Welfare maximization and planner solution

In our baseline specification, countries maximize the time average 
of their currency’s adoption in the digital economy, net of the costs of 
digitization. As a consequence, countries care about the convenience of 
their currencies only insofar as it leads to higher adoption (i.e., shifts 
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Fig. 6. Time to digitization and welfare. This Figure plots the expected time to digitization (in Panels A and C) and welfare against ln(𝑌 ) (Panels B and D) in state 𝑧 = 0. The 
upper Panels A and B depict comparative statics in 𝜇, while the lower Panels C and D present comparative statics in 𝑍𝐵

𝐿 . We use our baseline parameters from Section 2.2.

users’ investment toward their currency). However, countries do not in-
ternalize that user utility and, therefore, welfare increase in currencies’ 
convenience, holding the investment decision fixed. That is, countries 
only focus on the users’ investment on the margin, while they do not 
internalize that digitization improves convenience on infra-marginal 
investments. These effects harm total welfare and lead to ‘‘inefficiently 
low’’ digitization efforts, especially by the dominant currencies, as we 
illustrate below.

We compare the dynamics of countries’ digitization efforts to two 
those that would obtain in two benchmarks. First, we consider that a 
planner chooses efforts to maximize the welfare from (6), subject to 
𝑚𝑥
𝑡 = 𝑃 𝑥

𝑡  satisfying the pricing relationship (13). That is, the planner 
only decides on digitization efforts, but cannot control users’ choice 
among currencies. Appendix  B characterizes the planner solution in 
greater detail, specifically optimal efforts and the ODE system charac-
terizing the Markov equilibrium. Second, we consider that countries 𝑥 =
𝐴,𝐵 separately maximize the welfare (convenience utility) generated 
by their own currencies 𝑥, net of digitization costs. Specifically, we set 
𝑓𝑥
𝑡 = 𝑍𝑥

𝑡 𝑣(𝑚
𝑥
𝑡 ) for the flow utility in the objective (5). Further, set 𝛿 = 𝛾

(i.e., planner and countries discount at the same rate), so countries 
internalize the full welfare generated by their currencies. The solution 
is formally analogous to the baseline.

Fig.  7 plots welfare-maximizing effort levels against ln(𝑌 ), both 
when countries maximize their currencies’ welfare independently (solid 
black line) and the planner maximizes welfare (dotted red line). Panels 
A and B depict 𝐴’s and 𝐵’s welfare-maximizing effort levels in state 
𝑧 = 0, while Panel C plots their sum and Panel D their difference. 
Comparing effort levels from Figs.  2 and 7, it is evident that the baseline 
effort levels lie below the welfare-maximizing levels of all 𝑌  in both 
benchmarks. We highlight countries’ failure to fully internalize the 
convenience utility generated by digitization as an economic mecha-
nism leading to this under-investment. However, we acknowledge that 
the magnitude of baseline effort levels (and whether they fall below 
welfare-maximizing levels) also depends on the specific functional 
forms we assumed (e.g., in the baseline).

Panels A, B, and C show that welfare-maximizing levels exhibit a 
U-shaped pattern in ln(𝑌 ) under the planner solution, i.e., they first 
increase and then decrease in 𝑌 . In contrast, efforts tend to decrease in 
𝑌 , when countries maximize their currencies’ welfare independently. 
This U-shaped pattern reflects that for intermediate levels of 𝑌 , users 
benefit from the growth of PDM convenience. The digitization of fiat 
currency in this region would slow down the growth of 𝑌 , which would 
harm welfare, curbing the planner’s digitization efforts.

Interestingly, when countries maximize their currencies’ welfare 
separately, their individual and joint efforts exceed those that would 
prevail under the planner solution. The intuition is that when max-
imizing their currencies’ welfare only, countries do not internalize 
the reduction in the adoption of other currencies caused by their 
digitization. This effect leads them to over-invest in digitization, and 
causes efforts to decline in 𝑌 , rather than to follow a U-shaped pattern. 
In the baseline, with countries only focusing on the adoption of their 
own currency, country 𝐴’s efforts follow an inverted U shape in 𝑌 , and 
country 𝐵’s efforts decrease in 𝑌 .

Finally, as shown in Panel D, it is welfare maximizing to have 
country 𝐴 exert higher efforts than country 𝐵 and thus to move first in 
currency digitization, because currency 𝐴 is held more widely and thus 
benefits more from digitization. In contrast, in the baseline, country 
𝐴’s incentives lie below those of 𝐵 for low 𝑌 , showing a first-mover 
advantage for the weaker country 𝐵 and a second-mover advantage for 
the strong country 𝐴. In other words, country 𝐵’s first-mover advantage 
and country 𝐴’s second-mover advantage are not welfare-maximizing.

3. Discussion and model extensions

Our baseline setting omits many realistic and relevant features of 
currency competition and digitization. We now present several model 
variants and extensions to demonstrate the flexibility and robustness of 
our theory.
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Fig. 7. Welfare-optimizing efforts. This figure plots welfare-maximizing efforts in Panels A and B (for countries 𝐴 and 𝐵, respectively) against ln(𝑌 ) in state 𝑧 = 0, both under the 
planner solution (dotted red line) and currency-specific welfare maximization (solid black line). Panel C plots the sum of these efforts and Panel D their difference against ln(𝑌 ). 
We use our baseline parameters from Section 2.2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1. Interoperability and public–private collaborations

In practice, fiat money and PDM may be interconnected through 
(i) interoperability or (ii) public–private collaborations in payment 
digitization. Some private payment systems, for instance, can facilitate 
transactions that bypass traditional banks while also linking to bank 
accounts or credit cards, enabling bank deposit-based transactions. A 
notable example is Alipay, which allows users to transact using Alipay 
credit or wallet balances without having each transaction go through 
banks. At the same time, Alipay can connect to credit cards and bank 
accounts, making it interoperable with bank payment rails. Govern-
ments and central banks may also collaborate with private payment 
firms to digitize their currencies and bank-based payment systems. The 
benefits of currency digitization depend on the state of the payment 
technology underlying PDM. For example, Brazil’s Pix system was 
developed by the Brazilian central bank in partnership with industry 
experts. Similarly, the Digital Euro Project is a collaboration between 
the ECB and European payment firms (Berg et al., 2024). Alipay and 
WeChat Pay also promote the usage of e-CNY (Xia et al., 2023; Bai 
et al., 2025). Such public–private collaborations can further enhance 
the interoperability between government-led or bank-centric payment 
rails and PDM (e.g., Duarte et al., 2022).

To capture the interdependence of fiat money and PMD as well as 
to allow for public–private collaborations in currency digitization, we 
stipulate that payment convenience satisfies: 

𝑍𝑥
𝑡 =

{

𝜁𝑥𝐿 + 𝜔𝑥
𝐿𝑌𝑡  for 𝑡 < 𝑇 𝑥

𝜁𝑥𝐻 + 𝜔𝑥
𝐻𝑌𝑡  for 𝑡 ≥ 𝑇 𝑥,

(17)

where 𝜔𝑥
𝐿 ≤ 𝜔𝑥

𝐻 . We define 𝑍𝑥
𝐿 = 𝜁𝑥𝐿 +𝜔𝑥

𝐿𝑌𝑡 and 𝑍𝑥
𝐻 = 𝜁𝑥𝐻 +𝜔𝑥

𝐻𝑌 . Note 
that the convenience of fiat money, 𝑍𝑥

𝑡 , increases with the convenience 
of PDM, 𝑌𝑡, reflecting the partial interoperability and linkage of PDM 
payment technologies with bank-centric or government-led payment 
systems.

We next model public–private collaborations in fiat currency digi-
tization by assuming 𝜔𝑥

𝐻 > 𝜔𝑥
𝐿. Under this assumption: (i) the relative 

convenience gain from digitization, 𝑍𝑥
𝐻 −𝑍𝑥

𝐿, increases with 𝑌 ; and (ii) 
digitization strengthens the link between the convenience of fiat money 

and that of PDM. These two features, (i) and (ii), are intrinsic to public–
private digitization initiatives, where payment firms collaborate with 
central banks or the government to leverage private-sector payment 
technologies in digitizing fiat money or bank-centric payment systems. 
First, the gains from such collaborations are greater when private-sector 
payment technology is more advanced, as reflected by a higher 𝑌 . 
Second, digitizing fiat currency with private-sector technology typically 
involves linking these solutions to bank-centric or government-led pay-
ment systems, enhancing interoperability (as captured by 𝜔𝑥

𝐻 > 𝜔𝑥
𝐿) 

and the convenience of fiat money.

3.1.1. Public–private collaborations and fiat digitization
We now investigate how currency digitization efforts change, when 

digitization is structured as a public–private collaboration. For this 
sake, we perform comparative statics in the parameter 𝜔𝑥

𝐻 , assuming, 
for symmetry, 𝜔𝐴

𝐻 = 𝜔𝐵
𝐻  as well as 𝜔𝐴

𝐿 = 𝜔𝐵
𝐿 = 0. Further, we adopt our 

baseline parameters and, specifically and analogously to the baseline, 
set 𝜁𝐴𝐿 = 1, 𝜁𝐵𝐿 = 0.2, as well as 𝜁𝑥𝐻 = 𝛥𝐹 𝑖𝑥𝑒𝑑 + (1 + 𝛥𝑃𝑟𝑜𝑝)𝜁𝑥𝐿; we stipulate 
𝛥𝐹 𝑖𝑥𝑒𝑑 = 𝛥𝑃𝑟𝑜𝑝 = 1.

Fig.  8 presents the results, with Panel A showing 𝐴’s effort, Panel B 
showing 𝐵’s effort, and Panel C showing total digitization effort. The 
figure illustrates that an increase in 𝜔𝑥

𝐻  not only raises the overall level 
of digitization efforts but also alters their timing. Naturally, a higher 
𝜔𝑥
𝐻  — indicating more intense public–private collaboration — increases 
the gains from digitization, thereby boosting digitization efforts. More 
intriguingly, the model predicts that public–private collaborations in 
currency digitization are associated with backloaded and more per-
sistent digitization efforts. Specifically, countries exert relatively low 
efforts when PDM adoption is limited, gradually increasing their efforts 
as PDM adoption and convenience grow.

As such, when currency digitization involves relatively little public–
private collaboration, as in our baseline scenario, digitization efforts 
are initially high at low levels of PDM adoption but gradually taper 
off. In this case, countries might even discontinue digitization as PDM 
becomes widely adopted, with the model predicting relatively early 
digitization. In contrast, when currency digitization involves a high 
degree of collaboration, digitization efforts are higher at elevated levels 
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Fig. 8. Public–private collaborations and digitization efforts. This Figure presents comparative statics in 𝜔𝑥
𝐻 . Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against 

ln(𝑌 ) for three different levels of 𝜔𝐴
𝐻 = 𝜔𝐵

𝐻 , where 𝜔𝐴
𝐿 = 𝜔𝐵

𝐿 = 0. Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). We use our baseline parameters from 
Section 2.2.

of 𝑌  and, crucially, increase over time. This makes digitization efforts 
more persistent and increases the likelihood of eventual digitization. 
Nevertheless, several findings hold regardless of the level of collabo-
ration, and the key patterns remain robust to this modification. For 
instance, in both scenarios, the relatively weaker currency has a first-
mover advantage and stronger incentives to digitize early compared to 
the stronger currency.

3.1.2. When to compete and when to collaborate?
To analyze the choice between collaboration and competition in 

currency digitization, we now allow countries to choose the level of 
𝜔𝑥
𝐻  at starting state 𝑌0 = 𝑌  — after that, the choice 𝜔𝑥

𝐻  remains fixed 
at future dates for simplicity. Specifically, country 𝑥 chooses in state 
(𝑌 , 0) the level of 𝜔𝑥

𝐻 ∈ {0, 𝜔𝐻} against a linear cost:22

max
𝜔𝑥
𝐻∈{0,𝜔𝐻 }

𝑉 𝑥(𝑌 , 0) − 𝜔𝑥
𝐻 , (18)

where 𝜔𝐻 ≥ 0 and  ≥ 0 are constants. The cost  may reflect 
payments required by private-sector participants, the coordination costs 
of involving multiple parties, or (in reduced form) the loss of pay-
ment autonomy when engaging the private sector. Countries 𝑥 =
𝐴,𝐵 choose 𝜔𝑥

𝐻  simultaneously, taking the other country’s choice as 
given. This choice induces a static game, for which we characterize 
the pure-strategy Nash equilibria at a given level of 𝑌 . Let (𝑌 ) ⊆
{(0, 0), (0, 𝜔𝐻 ), (𝜔𝐻 , 0), (𝜔𝐻 , 𝜔𝐻 )} denote the set of pure-strategy Nash 
equilibria, represented as tuples of the form (𝜔𝐴

𝐻 , 𝜔𝐵
𝐻 ).

It is clear that for sufficiently low values of 𝑌 , the unique Nash 
equilibrium is to compete, i.e., 𝜔𝑥

𝐻 = 0 for 𝑥 = 𝐴,𝐵 and (0, 0) =
(𝑌 ). Likewise, sufficiently high cost  preclude digitization and yield 
our baseline. Such high cost may capture that the private sector is 
unwilling to collaborate with government entities or collaboration is 
not feasible.23 In contrast, when 𝑌  is sufficiently large (relative to ), a 

22 One could also allow countries to choose dynamically the value of 𝜔𝑥
𝐻

at any point in time. However, this modeling would complicate the model 
analysis, while likely generating similar insights.
23 For instance, many cryptocurrencies and blockchain-based payment sys-
tems were designed to establish a decentralized financial system free from 
government oversight, which allows for privacy in payments. This feature 
is crucial to the convenience and adoption of cryptocurrency as PDM, as 
discussed in Appendix  E, where we link payment privacy to PDM convenience. 
Collaboration with government entities would undermine the core purpose and 
appeal of cryptocurrency, leading to reluctance among crypto practitioners to 
collaborate.

Nash equilibrium features at least one country collaborating, e.g., 𝜔𝑥
𝐻 =

𝜔𝐻  for 𝑥 = 𝐴 or 𝑥 = 𝐵; that is, (0, 0) ∉ (𝑌 ).
To illustrate this outcome, we consider a numerical example where 

 = 0.05 and 𝜔𝐻 = 1, and solve for the pure-strategy Nash equilibria. In 
this example, the pure-strategy Nash equilibrium exists and is unique. 
For low levels of 𝑌  (i.e., 𝑌 ≤ 0.703), the unique equilibrium is 
where both countries set 𝜔𝑥

𝐻 = 0, meaning they do not collaborate in 
currency digitization and instead compete. For intermediate values of 
𝑌  (i.e., 0.704 ≤ 𝑌 ≤ 1.042), the unique equilibrium entails country 𝐴
choosing 𝜔𝐴

𝐻 = 0 and country 𝐵 choosing 𝜔𝐵
𝐻 = 𝜔𝐻 , indicating that the 

weaker country collaborates while the stronger one does not. Finally, 
for high values of 𝑌  (i.e., 𝑌 ≥ 1.042), the unique equilibrium features 
𝜔𝑥
𝐻 = 𝜔𝐻 , meaning both countries collaborate with the private sector 
to digitize fiat currency.

In summary, when PDM adoption is low, countries digitize their fiat 
currencies to compete with PDM and with each other, with country 𝐵
exerting higher efforts due to a first-mover advantage. As PDM adoption 
increases, countries transition to collaborating with the private sector 
to digitize their currencies. Thus, the paradigm in currency digitization 
shifts over time from competition to collaboration. Initially, countries 
focus on competing with PDM, but as PDM becomes widely adopted, 
collaboration becomes both inevitable and optimal.

Finally, we investigate in Fig.  9 how countries’ propensity to col-
laborate with the private sector in currency digitization depends on the 
growth of PDM convenience 𝜇 (see Panel A) and the cost of digitization 
𝜆 (see Panel B). For this sake, we plot 

𝑌𝐶𝑜𝑙 = inf{𝑌 ∈ (0, 𝑌 ) ∶ (0, 0) ∉ (𝑌 ) ∧ (𝑌 ) ≠ ∅}. (19)

against 𝜇 in Panel A and against 𝜆 in Panel B. Observe that for 𝑌 ≥
𝑌𝐶𝑜𝑙, any pure-strategy Nash equilibrium involves at least one country 
engaging in public–private collaboration. Therefore, a lower value of 
𝑌𝐶𝑜𝑙 indicates a higher propensity for countries to engage in such 
collaborations.

Panel A shows that 𝑌𝐶𝑜𝑙 decreases with 𝜇. This implies that when 
the convenience or adoption of PDM is expected to grow faster, and 
PDM poses greater competition to fiat money over time, the gains 
and necessity for collaboration increase, leading to more public–private 
collaboration.

Panel B shows that 𝑌𝐶𝑜𝑙 increases with countries’ digitization cost, 
as captured by 𝜆. This suggests that countries are more likely to engage 
in public–private collaborations when the cost of achieving digitization 
is low. The intuition is that when 𝜆 is high and digitization is more 
challenging, digitization efforts and the likelihood of digitization are 

Journal of Financial Economics 168 (2025) 104055 

16 



L.W. Cong and S. Mayer

Fig. 9. When to collaborate or to compete? This Figure presents comparative statics in 𝑌𝐶𝑜𝑙 defined in (19). Panel A presents comparative statics with respect to 𝜇 and Panel B 
presents comparative statics with respect to 𝜆. We use our baseline parameters from Section 2.2, and set 𝜔𝑥

𝐻 = 𝜔𝐻 = 1, 𝜔𝑥
𝐿 = 0, and  = 0.05.

low to begin with, making it suboptimal to incur the additional costs 
associated with public–private collaborations.

3.2. Stablecoins and dollar-backed cryptocurrencies

In our model, the representative PDM encompasses the broader 
cryptocurrency market, including stablecoins — cryptocurrencies
pegged to a reference unit. Many of the largest stablecoins (e.g., USDC 
or Tether) are pegged to the U.S. dollar and are (partially) backed by 
U.S. dollar reserve assets, such as deposits or cash equivalents.24 To 
model the interdependence between the dominant fiat currency 𝐴 and 
PDM 𝐶 related to stablecoins, we extend our baseline by assuming 
that a fraction 𝜃 ∈ [0, 1) of the PDM adoption value (i.e., market 
capitalization) 𝑃𝐶

𝑡  is backed by currency 𝐴. An increase in 𝜃 could 
reflect regulatory reserve requirements on stablecoins, mandating that 
a greater portion be backed by U.S. dollar assets. Similarly, a higher 𝜃
could represent the growing significance of stablecoins — both within 
the cryptocurrency ecosystem and globally.

The introduction of the parameter 𝜃 changes the model as follows. 
At time 𝑡, the total reserves backing PDM are worth 𝜃𝑃 𝐶

𝑡  units of the 
consumption good, i.e., they consist of 𝜃𝑃 𝐶

𝑡 ∕𝑃𝐴
𝑡  units of currency 𝐴. 

The total value of currency 𝐴 in goods becomes 𝑃𝐴
𝑡 = 𝑚𝐴

𝑡 + 𝜃𝑃 𝐶
𝑡  while 

𝑚𝐵
𝑡 = 𝑃𝐵

𝑡  and 𝑚𝐶
𝑡 = 𝑃𝐶

𝑡 . The market clearing condition 
∑

𝑥′=𝐴,𝐵,𝐶 𝑚𝑥′
𝑡 =

1 implies 

𝑃𝐴
𝑡 + 𝑃𝐵

𝑡 + 𝑃𝐶
𝑡 (1 − 𝜃) = 1. (20)

All other elements remain unchanged.25 The arguments in Appendix  A 
already allow for 𝜃 > 0, which nests the baseline upon setting 𝜃 = 0.

24 While stablecoins can also be backed by fiat currencies other than the 
U.S. dollar, this is rare in practice. The fraction of cryptocurrency market 
capitalization backed by non-dollar fiat currencies is negligible. Therefore, 
we focus on the case where currency 𝐶 is backed exclusively by currency 𝐴, 
although our framework is flexible enough to accommodate backing with 𝐵
as well.
25 Because fraction 𝜃 of total PDM holdings 𝑚𝐶

𝑡 = 𝑃 𝐶
𝑡  (in terms of consump-

tion good) are backed by currency 𝐴, an additional capital gain of 𝜃𝑟𝐴𝑡 𝑑𝑡, which 
arises because part of the PDM value is invested in currency, accrues to PDM 
as a whole over [𝑡, 𝑡 + 𝑑𝑡). For simplicity and to enhance the comparability 
with the baseline, we assume that the capital gain from investing in reserves 
consisting of currency 𝐴 is fully captured by the PDM developers (who are 
outside of the model), so that (13) still applies. If fraction 𝜔̂ of this capital 
gain accrued to the PDM investors, equilibrium pricing conditions (13) would 
change to
𝑌𝑡𝑣

′(𝑚𝐶
𝑡 ) + 𝑟𝐶𝑡 + 𝜔̂𝜃𝑟𝐴𝑡 = 𝑍𝐴

𝑡 𝑣
′(𝑚𝐴

𝑡 ) + 𝑟𝐴𝑡 = 𝑍𝐵
𝑡 𝑣

′(𝑚𝐵
𝑡 ) + 𝑟𝐵𝑡 ,

Fig.  10 illustrates how 𝜃 affects digitization incentives. As shown in 
Panel A, an increase in 𝜃 reduces 𝐴’s digitization efforts. This occurs 
because, when 𝜃 > 0, currency 𝐴 gains additional adoption from 
its role as a reserve asset for PDM. More intuitively, the adoption 
of stablecoins pegged to currency 𝐴 in digital payments effectively 
increases the adoption of currency 𝐴, thereby strengthening its role 
and importance in digital payments. As a result, country 𝐴 partially 
benefits from the rise of PDM, which provides additional adoption 
for its currency. This effect reinforces the dominance of currency 𝐴
and reduces its incentive to compete with PDM through digitization, 
thereby delaying the digitization of currency 𝐴. Panel B shows that 
changes in 𝜃 have little to no effect on 𝐵’s incentives, leading to a 
decline in total digitization efforts as 𝜃 increases (see Panel C). In other 
words, higher 𝜃 reduces countries’ efforts to digitize their currencies 
and delays digitization.

Our analysis highlights that the increasing adoption of dollar-
backed stablecoins in digital payments enhances the relevance and 
influence of the U.S. dollar, thereby strengthening the geoeconomic 
power of the United States. This dynamic incentivizes the United States 
to adopt crypto-friendly policies and regulations to support the growth 
of stablecoins. Additionally, it reduces the incentive to digitize the 
U.S. dollar, as doing so could undermine stablecoin usage. Broadly 
interpreted, the private sector effectively creates a form of digital dollar 
through stablecoins, substituting for the U.S. government’s efforts to 
digitize the dollar. In a way, U.S. crypto-friendly policies have offered 
a strategic substitute for CBDCs.

3.3. Interest rates, uncovered interest parity, and a pecking order of adop-
tion

In our baseline, the exchange rate dynamics (in terms of the con-
sumption good and across currencies) are pinned down through market 
clearing (i.e., 𝑚𝑥

𝑡 = 𝑃 𝑥
𝑡 ) and the user’s allocation of endowment across 

currencies. This modeling implicitly assumes that the adoption and 
usage of a currency in the digital economy is relevant enough to 
influence exchange rates.26 We now consider that exchange rates are 
determined outside of the model in a frictionless bond market, and 
show that our key findings remain robust in this model variant (see 

which would lead to qualitatively similar outcomes. Moreover, if the dollar 
reserves are interest-bearing, there would be another capital gains term 
accruing to PDM.
26 In fact, in the baseline, the extreme case obtains that exchange rates are 
solely pinned down through the currency adoption in the digital space, which 
is extreme.
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Fig. 10. The role of dollar-backed stablecoins. This Figure presents comparative statics in 𝜃. Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 ) for three 
different levels of 𝜃. Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). We use our baseline parameters from Section 2.2.

Section 3.3.3). Consider 𝜃 = 0, as in the baseline. We assume that 
the expected return (in consumption goods) 𝑟𝑥𝑡 + 𝑖𝑥 from investing in 
currency 𝑥 = 𝐴,𝐵 through risk-free short-term bonds, which pay a 
nominal interest rate 𝑖𝑥, must equal an exogenous required rate of 
return 𝜌:27

𝜌 = 𝑟𝑥𝑡 + 𝑖𝑥𝑡 . (21)

Using (21) for 𝑥 = 𝐴,𝐵, we obtain the uncovered interest parity, 
i.e., 𝑟𝐴𝑡 −𝑟𝐵𝑡 = 𝑖𝐵− 𝑖𝐴. We assume that the (constant) interest rates 𝑖𝑥 are 
exogenous, i.e., determined outside of the model. the user cannot invest 
in the newly introduced bonds and allocates its entire endowment 
across the three monies 𝐴, 𝐵, and 𝐶, as in the baseline.

We now make the following assumptions as to how users, holding 
currencies for their needs in the digital economy, can benefit from 
the currencies’ interest rate. Specifically, we assume that only fraction 
1 − 𝛼𝑥 of the interest rate is passed-through to the user, potentially 
reflecting imperfect deposit rate passthrough. Crucially, 𝛼𝑥 = 𝛼𝑥𝑡 = 𝛼𝑥(𝑧)
is a parameter that may change with digitization, for instance, because 
the launch of CBDC may improve the interest rate passthrough on 
deposits (Chiu et al., 2023). Likewise, Sarkisyan (2023), who studies 
the introduction of Brazil’s Pix payment system, shows how currency 
digitization can influence banking competition and deposit rates. As 

27 For a micro-foundation, consider that each country 𝑥 = 𝐴,𝐵 has short-
term government bonds with maturity 𝑑𝑡 outstanding. For simplicity, these 
bonds are risk-free and pay a nominal interest at rate 𝑖𝑥 — which is fixed 
and exogenous. Let 𝑃 𝑥

𝑡  the value of one unit of currency 𝑥 in terms of 
the consumption good, and let 𝑟𝑥𝑡 = E[𝑑𝑃 𝑥

𝑡 ]∕(𝑃
𝑥
𝑡 𝑑𝑡) the expected rate of 

appreciation of currency 𝑥 in terms of the consumption good, as in the 
baseline. One bond has a face value of one unit of currency 𝑥. Investing 
one unit of the consumption good in 𝑥’s bond at time 𝑡, i.e., buying 1∕𝑃 𝑥

𝑡
units of the bond, and holding this bond up to maturity at time 𝑡 + 𝑑𝑡 yields 
(undiscounted) payoff

−1 + 1
𝑃 𝑥
𝑡

(

𝑖𝑥𝑡 𝑃
𝑥
𝑡+𝑑𝑡𝑑𝑡 + 𝑃 𝑥

𝑡+𝑑𝑡
)

= 𝑟𝑥𝑡 𝑑𝑡 + 𝑖𝑥𝑡 𝑑𝑡,

where we used that 𝑃 𝑥
𝑡+𝑑𝑡 = 𝑃 𝑥

𝑡 +𝑑𝑃 𝑥
𝑡  and ignored terms of order (𝑑𝑡)2 or higher 

(which are negligible in the continuous time limit). Government bonds are 
bought by international bond investors with deep pockets, who can short-sell 
and buy bonds, are risk-neutral, and require a return at rate 𝜌 in terms of the 
consumption good. Thus, for the bond market to clear, the payoff to buying 
bonds, 𝑟𝑥𝑡 𝑑𝑡 + 𝑖𝑥𝑡 𝑑𝑡, must equal bond investors’ required rate of return, 𝜌𝑑𝑡, so 
that (21) must hold after canceling out 𝑑𝑡.

shown in Appendix  C, the pricing Eq. (13) then changes to 

𝑌𝑡𝑣
′(𝑚𝐶

𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐴
𝑡 𝑣

′(𝑚𝐴
𝑡 ) + 𝜌 − 𝛼𝐴𝑡 𝑖

𝐴 = 𝑍𝐵
𝑡 𝑣

′(𝑚𝐵
𝑡 ) + 𝑟𝐵𝑡 + 𝜌 − 𝛼𝐵𝑡 𝑖

𝐵 . (22)

Eq. (22) illustrates that when interest rate passthrough is not perfect 
and 𝛼𝑥 > 0, users effectively incur a cost of holding currency 𝑥, ham-
pering this currency’s effective convenience and adoption in the digital 
economy. That is, a higher interest rate 𝑖𝑥 or a worse passthrough 𝛼𝑥
renders currency 𝑥 effectively less convenient, i.e., has similar effects as 
a decrease in 𝑍𝑥

𝑡 .
All other model elements remain unchanged. Appendix  C presents 

further solution details and characterizes the ODE system of the Markov 
equilibrium.

3.3.1. The effects of interest rates and passthrough
We apply this model variant to examine how changes in the interest 

earnings 𝛼𝑥𝑖𝑥 — which may stem from changes in interest passthrough 
1 − 𝛼𝑥 or monetary policy (i.e., changes in the nominal rate 𝑖𝑥) — 
affect currency digitization. To this end, Fig.  11 performs comparative 
statics in 𝛼𝐵𝑖𝐵 by plotting 𝐴’s efforts (Panel A), 𝐵’s efforts (Panel B), 
and total efforts (Panel C) against ln(𝑌 ), for three different levels of 
𝛼𝐵𝑖𝐵 , holding fixed 𝛼𝐴𝑖𝐴. To be able to better highlight the effects of 
interest rates and to ensure they have reasonable quantitative effects 
on currency digitization (without stipulating unrealistic interest rates), 
we divide all baseline parameters from Section 2.2, which are related 
to currency convenience, by 15. This leads to 𝑍𝐴

𝐿 = 1∕15, 𝑍𝐵
𝐿 = 0.2∕15, 

𝛥𝐹 𝑖𝑥𝑒𝑑 = 1∕15, 𝑌 = 5∕15, and 𝑌0 = 0.1∕15 while all other parameters 
remain unchanged relative to the baseline.

Higher 𝛼𝐵𝑖𝐵 could capture increased inflation in country 𝐵, precip-
itating a rise in the nominal rate, or worsened interest passthrough, 
for instance, because 𝐵’s banking or financial system is less digitized 
or competitive. Both features make currency 𝐵 less convenient, which, 
all else equal, reduces the competition among fiat currencies. In line 
with the findings of Section 2.4.2, Fig.  11 illustrates that such reduced 
fiat currency competition due to higher 𝛼𝐵𝑖𝐵 reduces both countries’ 
digitization efforts and, hence, slows the digitization of fiat currencies. 
Notably, higher 𝛼𝐵𝑖𝐵 reduces both countries’ digitization efforts, and 
thus total efforts. For country 𝐵, higher 𝛼𝐵𝑖𝐵 raises the cost of hold-
ing currency 𝐵 hampers adoption, both before and after digitization, 
thereby limiting the gains from digitization. For country 𝐴, higher 
𝛼𝐵𝑖𝐵 implies weaker competition from 𝐵 and thus weaker incentives 
to invest in currency digitization.

Appendix Fig.  F.3 presents comparative statics in 𝛼𝐴𝑖𝐴. Interest-
ingly, we find that higher 𝛼𝐴𝑖𝐴, resulting in more competition among 
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Fig. 11. Interest rates and digitization. This Figure presents comparative statics in 𝛼𝐵 𝑖𝐵 . Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 ) for three 
different levels of 𝛼𝐵 𝑖𝐵 . Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). We divide all baseline parameters from Section 2.2, which are related to 
currency convenience, by 15, leading to 𝑍𝐴

𝐿 = 1∕15, 𝑍𝐵
𝐿 = 0.2∕15, 𝛥𝐹 𝑖𝑥𝑒𝑑 = 1∕15, 𝑌 = 5∕15, and 𝑌0 = 0.1∕15 while all other parameters remain unchanged. We set 𝛼𝐴𝑖𝐴 = 0.01, and 

𝜌 = 𝜃 = 0.

Fig. 12. Interest rate passthrough and digitization. This Figure presents comparative statics in 𝛥𝐼 . Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 ) for 
three different levels of 𝛥𝐼 . Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). We divide all baseline parameters from Section 2.2, which are related to 
currency convenience, by 15, leading to 𝑍𝐴

𝐿 = 1∕15, 𝑍𝐵
𝐿 = 0.2∕15, 𝛥𝐹 𝑖𝑥𝑒𝑑 = 1∕15, 𝑌 = 5∕15, and 𝑌0 = 0.1∕15 while all other parameters remain unchanged. We set 𝑖𝐴 = 0.01 and 

𝑖𝐵 = 0.1, and 𝜌 = 𝜃 = 0.

fiat currencies, has the opposite effect and increases total digitization 
efforts, thereby accelerating digitization.

Our model can also capture that CBDCs improve interest
passthrough, for instance, via 𝛼𝑥(0) = 𝛼𝑥(−𝑥) > 𝛼𝑥(𝑥) = 𝛼𝑥(𝐴𝐵), 
as micro-founded in Chiu et al. (2023). Naturally, when currency 
digitization improves the interest passthrough (while all else remains 
equal), countries have stronger incentives to digitize their currency, 
especially when interest rates are high. Fig.  12 illustrates this outcome 
by plotting country 𝐴’s efforts in Panel A, country 𝐵’s efforts in Panel 
B, and total efforts in Panel C against ln(𝑌 ). It uses 𝛼𝑥(0) = 1, while 
𝛼𝑥(𝑥) = 𝛼𝑥(𝐴𝐵) = 1 − 𝛥𝐼 . When 𝛥𝐼  is larger, digitization improves the 
interest passthrough more significantly, thereby stimulating efforts by 
both countries. Since country 𝐵 starts with a higher interest rate 𝑖𝐵 =
0.1 (while 𝑖𝐴 = 0.01), its incentives react more strongly to an increase in 
𝛥𝐼 . This outcome highlights that insofar currency digitization enhances 
the interest rate passthrough, countries with higher interest rates have 
stronger incentives to digitize their currencies.

3.3.2. Very weak currencies and pecking order

The model variant incorporating interest rates allows us to capture 
‘‘very weak’’ currencies, characterized by excessively high nominal 
interest rates (e.g., due to hyperinflation). Examples include the Turkish 
Lira, with a nominal interest rate of about 50% and inflation around 
70%, and the Argentine Peso, with an interest rate near 40% and 
inflation around 240%, as of October 2024. One can show that as 
𝑖𝐵 → ∞ while 𝛼𝐵 > 0, both 𝑃𝐵(𝑌 , 𝑧) → 0 and 𝑉 𝐵(𝑌 , 𝑧) → 0 for 
any 𝑧 and 𝑌 . This implies lim𝑖𝐵→∞ 𝑒𝐵(𝑌 , 𝑧) = 0. Loosely speaking, as 
𝑖𝐵 → ∞, it becomes infinitely costly to adopt currency 𝐵 (due to 
imperfect interest passthrough), causing the adoption level of 𝐵 to 
approach zero in all states. The reason is that in our model and unlike 
in Goldstein et al. (2023), the store-of-value and medium-of-exchange 
functions complement each other: when a currency is a better store-of-
value and thus offers higher returns, it becomes less costly to adopt it 
for payment, reinforcing the medium-of-exchange function. Very weak 
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currencies perform poorly as stores of value, making their adoption for 
payment costly and, therefore, low, even with digitization.

In other words, countries with very weak currencies exhibit low 
adoption, regardless of digitization efforts, thereby limiting the in-
centives for digitization. In unreported results, we verify numerically 
that as 𝑖𝐵 becomes sufficiently large, country 𝐵’s efforts, 𝑒𝐵(𝑌 , 𝑧), 
indeed approach zero. Consequently, the model predicts minimal or no 
digitization for very weak currencies with high nominal interest rates, 
leading to a pecking order in fiat currency digitization. Specifically, less 
dominant but not overly weak currencies are digitized first, followed 
by more dominant currencies, while very weak currencies are digitized 
last, if at all.

3.3.3. Robustness checks
Notably, our key findings from the baseline remain unchanged 

in this model variant and, consequently, are robust to incorporating 
interest rates and international finance elements. First, Appendix Fig. 
F.1 replicates the key Fig.  2 in this model variant (assuming 𝛼𝐴𝑖𝐴 = 0.01
and 𝛼𝐵𝑖𝐵 = 0.03 and otherwise using baseline parameters). Comparing 
Figs.  2 and F.1, we note that our findings remain unchanged relative to 
the baseline, both qualitatively and quantitatively. In particular, note 
that the effort dynamics remain similar, with 𝐴’s effort being inverted 
U-shaped and 𝐵’s effort declining in ln(𝑌 ). In addition, 𝐵 exerts higher 
efforts than 𝐴 for low 𝑌 , showing a first-mover advantage, while 𝐴’s 
efforts exceed those of 𝐵 for high 𝑌 .

Second, Appendix Fig.  F.2 shows that one obtains similar effort 
patterns as in the baseline, when modeling the benefits of digitization
solely as improved interest passthrough, that is, without stipulating 
any changes and differences in the convenience parameters 𝑍𝑥

𝐿, 𝑍
𝑥
𝐻 . 

In particular, Fig.  F.2 sets 𝑍𝐴
𝐿 = 𝑍𝐵

𝐿 = 𝑍𝐴
𝐻 = 𝑍𝐵

𝐻 = 1∕15, while 
𝛼𝐴(0)𝑖𝐴 = 0.01 and 𝛼𝐴(𝐴)𝑖𝐴 = 𝛼𝐴(𝐴𝐵)𝑖𝐴 = 0.001 as well as 𝛼𝐵(0)𝑖𝐵 = 0.1
and 𝛼𝐵(𝐵)𝑖𝐵 = 𝛼𝐵(𝐴𝐵)𝑖𝐵 = 0.01.28 Indeed, observe that 𝐴’s effort is 
inverted U-shaped in ln(𝑌 ), while effort of 𝐵 decreases in ln(𝑌 ). Total 
efforts decrease in ln(𝑌 ) too. Qualitatively, the effort dynamics resemble 
those of Fig.  2.

3.4. Discounting and myopia

Our baseline specification allows us to examine how government 
myopia affects the dynamics of currency digitization. We now show 
that myopia accelerates currency digitization. In particular, in the gov-
ernment objective (5), the parameter 𝛿 captures how present-focused a 
government is. Indeed, an increase in 𝛿 increases i the weight that the 
country puts on current adoption while reducing the weight of future 
adoption in its objective function.

Appendix Fig.  F.4 presents comparative statics in 𝛿 for different 
levels of ln(𝑌 ). Panel A shows that as 𝛿 increases, country 𝐴’s efforts 
tend to decline for low values of ln(𝑌 ), while they increase for larger 
values of ln(𝑌 ). Notably, Panel B shows that country 𝐵’s efforts increase 
strongly in 𝛿 for any level of ln(𝑌 ). Panel C illustrates that countries’ 
total digitization efforts unambiguously increase in 𝛿 for any ln(𝑌 ). In 
particular, larger 𝛿 implies both higher and more persistent digitiza-
tion efforts, which accelerates digitization and reduces 𝑇 ∗ (not shown 
explicitly).

Thus, when countries are more myopic, placing greater emphasis on 
the current adoption of their currency rather than future adoption, they 
exert overall higher digitization efforts, which accelerates digitization. 
This occurs because they give less consideration to the fact that growing 
competition from PDM erodes the long-term adoption gains from digiti-
zation. Especially the weaker country 𝐵, which has strong incentives to 

28 Following earlier practices, we again divide convenience-related parame-
ters by 15 (relative to the baseline) to get meaningful effects from interest rates 
only. This is important because the benefits of digitization are solely modeled 
through interest rates and improvements in the passthrough.

move early in currency digitization, exerts higher digitization efforts, 
when 𝛿 is larger. The reason is that an increase in 𝛿 shifts the countries’ 
focus toward the presence, thereby making the first-mover advantage 
from digitization in state 𝑧 = 0 more appealing. This effect strengthens 
the first-mover advantage in currency digitization for relatively less 
dominant currencies.

3.5. Learning from others and second-mover advantage

We now allow the cost function 𝑔(𝑒𝑥𝑡 ) = 𝑔𝑧(𝑒𝑥𝑡 ) to depend on 
the state 𝑧 to capture that currency digitization by one country may 
generate technological spillovers, effectively reducing the cost of CBDC 
issuance for the other country. Specifically, we assume that in state 
𝑧 = 0, the cost of launching CBDC (i.e., effort) follows 𝑔0(𝑒𝑥𝑡 ) =

𝜙𝑒𝑥𝑡 + 𝜆(𝑒𝑥𝑡 )
2

2 , while, in states 𝑧 = 𝐴,𝐵, the cost is reduced by fraction 
𝛼, i.e., the cost becomes 𝑔𝑧(𝑒𝑥𝑡 ) = (1 − 𝛼)𝑔0(𝑒𝑥𝑡 ). Formally, this model 
variant is a straightforward extension of the baseline and can be solved 
numerically.

Appendix Fig.  F.5 presents comparative statics in 𝛼. Panels A and B 
show that when the spillover effect, captured by 𝛼, is larger, both coun-
tries exert lower digitization efforts in state 𝑧 = 0. Moreover, higher 𝛼
lowers the cost of digitization when moving second, which increases 
digitization efforts in states 𝑧 = 𝐴 and 𝑧 = 𝐵, as shown in Panels 
C and D. In other words, countries strategically delay digitization to 
benefit from positive spillovers from another currency’s digitization 
— they wait for the other country to act first, thereby postponing 
the initial time of digitization, 𝑇 ∗. However, as spillovers reduce the 
cost of digitization in states 𝑧 = 𝐴 and 𝑧 = 𝐵, the interval between 
individual currencies’ digitization shortens. For sufficiently large 𝛼 ≈ 1, 
the digitization of one currency would be followed almost immediately 
by that of other currencies.

Alternatively, spillovers could also affect the convenience of digi-
tized fiat money and thus the benefits of digitization. To account for 
such effects, we now stipulate that
𝑍𝑥

𝐻 = 𝑍𝑥
𝐿(1 + 𝛥𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙) + 𝛥𝐹 𝑖𝑥𝑒𝑑 + 𝛼𝐶 I{𝑧 = 𝐴𝐵}.

Thus, the convenience of currency 𝑥 upon digitization increases by 
𝛼𝐶 ≥ 0 when the other currency has been digitized too, i.e., in state 
𝑧 = 𝐴𝐵. Similar to Appendix Fig.  F.5, Appendix Fig.  F.6 presents 
comparative statics in 𝛼𝐶 .

One would expect that higher 𝛼𝐶 should boost countries’ digiti-
zation efforts. This is indeed true for the less dominant currency, 𝐵. 
As shown in Panels B and D of Fig.  F.6, a higher 𝛼𝐶 increases 𝐵’s 
efforts across all levels of 𝑌  in states 𝑧 = 0 and 𝑧 = 𝐴. Interestingly, 
the effect of 𝛼𝐶 on 𝐴’s incentives can be either positive or negative. 
Specifically, when 𝑌  is low, 𝐴’s main concern is competition from 𝐵. 
If 𝐴 digitizes its currency in state 𝑧 = 0, this action either accelerates 
𝐵’s digitization (in state 𝑧 = 0) or enhances 𝐵’s convenience (in state 
𝑧 = 𝐵). Both effects reduce 𝐴’s incentives to digitize when 𝑌  is low. 
This pattern reverses when 𝑌  is high, and 𝐴’s primary concern shifts 
to competition from PDM. In this case, spillovers from 𝐵’s digitization 
strengthen 𝐴’s incentives, as they make digitization a more effective 
tool for competing with 𝐶.

4. Conclusions

We develop a novel framework to study the competition among fiat 
currencies and private digital money (PDM) in digital payments, set 
against the backdrop of rising PDM adoption and countries’ initiatives 
to digitize fiat money. We micro-found different currencies’ digital 
payment convenience by modeling payments subject to random search 
and matching. To enhance the adoption of their currencies in digital 
payments or to counter growing competition from PDM, countries 
invest in increasing payment convenience through digitization. Fiat 
digitization includes launching central bank digital currencies (CBDCs), 
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upgrading existing payment systems, or introducing government-led 
payment innovations. Our analysis reveals an endogenous pecking 
order: less dominant fiat currencies tend to digitize earlier, exhibiting 
a first-mover advantage, while more dominant currencies digitize later 
with greater effort, showing a second-mover advantage. The weakest 
currencies forgo digitization altogether.

Interestingly, total digitization efforts by countries are highest when 
PDM competition is weak but decline as PDM gains traction in digital 
transactions. A failure to digitize fiat currencies early creates a vacuum 
that PDM fills, potentially leading to a tipping point where PDM 
becomes dominant. As PDM gains market share, countries’ incentives to 
digitize fiat money diminish, potentially delaying or halting digitization 
efforts. This dynamic can result in an equilibrium where fiat currencies 
play a diminished role, leaving PDM to dominate digital payments. 
Our findings suggest that the long-term relevance of fiat money in 
digital payments hinges on early action by countries to digitize their 
currencies. Finally, we explore model variants and extensions, shedding 
light on the roles of interoperability, public–private collaboration in 
payment digitization, and the influence of stablecoins in shaping digital 
currency competition and adoption.

To maintain tractability midst complex economic trade-offs, we 
have abstracted from other realistic elements such as monetary policy 
implications, the impact of digitization on the banking system, and 
broader macroeconomic dynamics. Incorporating these features and 
extending the analysis would be an interesting direction for future 
research. Moreover, while our micro-foundation links convenience to 
the medium-of-exchange function of money, in practice, convenience 
may also reflect the store-of-value and unit-of-account functions of 
money, often complementing its role as a medium of exchange. Thus, 
although our analysis focuses on payment competition, our theory 
could also apply more broadly to currencies competing in multiple 
functionalities.
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Appendix A. Solving the Markov equilibrium and proof of Propo-
sition  1

To avoid repetition, we provide the model solution for the gen-
eralized version presented in Section 3.2. In particular, relative to 
the baseline, we assume that fraction 𝜃 of the representative private 
digital money (in short, PDM) is backed by currency 𝐴, changing the 
market clearing condition for currency 𝐴 from 𝑚𝐴

𝑡 = 𝑃𝐴
𝑡  in the baseline 

to 𝑚𝐴
𝑡 = 𝑃𝐴

𝑡 − 𝜃𝑃𝐶
𝑡 , i.e., 𝑃𝐴

𝑡 = 𝑚𝐴
𝑡 + 𝜃𝑃𝐶

𝑡 . Clearly, the baseline is 
nested and obtains for 𝜃 = 0. This is the only place where 𝜃 enters 
(i.e., all other parts remain as in the baseline from the main text), 
and the introduction of 𝜃 does not change the flow of argument. 
Part I of the argument (presented below) shows in greater detail how 
the introduction 𝜃 affects the market clearing conditions and related 
relationships. Again, Proposition  1 and the baseline solution can be 
obtained by simply setting 𝜃 = 0 in what follows.

To begin with, we introduce the ‘‘CBDC state variable’’ or ‘‘digiti-
zation state variable:’’ 𝑧𝑡 = 𝑧 = 0 denotes that no country has digitized 
its currency by time 𝑡 (i.e., prior to and including time 𝑡); 𝑧𝑡 = 𝑧 = 𝐴
(𝑧𝑡 = 𝑧 = 𝐵) denotes that only country 𝐴 (𝐵) has digitized its currency 
by time 𝑡; and, 𝑧𝑡 = 𝑧 = 𝐴𝐵 means that both countries have digitized 
their currencies by time 𝑡. We solve for a Markov equilibrium with state 
variables (𝑌 , 𝑧) so that all equilibrium quantities can be expressed as 
functions of (𝑌 , 𝑧), as we show.

In this Markov equilibrium, at any time 𝑡 ≥ 0, the following 
must hold. First, cohort 𝑡 chooses the holdings of currencies 𝐴,𝐵, 𝐶
to maximize the expected utility 𝑈𝑡 (with 𝑈𝑡 from (2)), given prices 
(𝑃𝐴

𝑡 , 𝑃𝐵
𝑡 , 𝑃𝐶

𝑡 ) subject to 𝑚𝐴
𝑡 + 𝑚𝐵

𝑡 + 𝑚𝐶
𝑡 = 1 (i.e., it is optimal to invest 

the entire endowment since there is no consumption utility at birth at 
time 𝑡). Second, the markets for all currencies clear, that is,
𝑚𝐴
𝑡 = 𝑃𝐴

𝑡 − 𝜃𝑃𝐶
𝑡 , 𝑚𝐵

𝑡 = 𝑃𝐵
𝑡 ,  and 𝑚𝐶

𝑡 = 𝑃𝐶
𝑡 .

Third, both countries 𝐴 and 𝐵 choose their efforts according to (5), 
taking the choice of the other country as given. Finally, 𝑌𝑡 evolves 
according to (4), while the dynamics of 𝑧𝑡 are governed by countries’ 
endogenous digitization efforts.

We solve for the equilibrium in several steps, i.e., the proof has 
several parts. Part I further characterizes and rewrites the market 
clearing conditions. Part II characterizes the user optimization. Part 
III characterizes currency values and adoption as functions of (𝑌 , 𝑧). 
Part IV characterizes the government value function as a function 
(𝑌 , 𝑧). Part V summarizes the systems of coupled ODEs and associated 
boundary conditions that describe the Markov equilibrium. Overall, to 
solve for the equilibrium, we conjecture and verify that all quantities 
can be expressed as functions of (𝑌 , 𝑧). Finally, we solve this system 
of coupled ODEs and boundary conditions numerically for the Markov 
equilibrium.

We do not provide a formal uniqueness and existence proof for 
our equilibrium. The numerical solution suggests that the Markov 
equilibrium we derive exists and is unique among the class of Markov 
equilibria with states (𝑌 , 𝑧).

In what follows, we denote by 𝑥 the respective currency; unless 
otherwise mentioned, 𝑥 ∈ {𝐴,𝐵, 𝐶}.

A.1. Part I — Market clearing conditions with 𝜃 > 0

To begin with, recall the market clearing conditions, 𝑚𝐵
𝑡 = 𝑃𝐵

𝑡  and 
𝑚𝐶
𝑡 = 𝑃𝐶

𝑡 , for currencies 𝐵 and 𝐶, respectively, while 𝑃𝐴
𝑡 = 𝑚𝐴

𝑡 + 𝜃𝑚𝐶
𝑡

Recall that fraction 𝜃 of PDM value 𝑃𝐶
𝑡  is backed by currency 𝐴

reserves, where 𝜃 ∈ [0, 1) is an exogenous constant.
As a result, total reserves backing PDM are worth 𝜃𝑃𝐶

𝑡  units of the 
consumption good. Thus, the reserves backing PDM consist of 𝜃𝑃𝐶

𝑡 ∕𝑃𝐴
𝑡

units of currency 𝐴, leaving the circulating supply of currency 𝐴 at 
(1 − 𝜃𝑃𝐶

𝑡 ∕𝑃𝐴
𝑡 ) units. For the market for currency 𝐴 to clear, the user 

holds this circulating supply, i.e.,
𝑚𝐴
𝑡 ∕𝑃

𝐴
𝑡 = 1 − 𝜃𝑃𝐶

𝑡 ∕𝑃𝐴
𝑡

units of currency 𝐴. Therefore, the user’s holdings of currency 𝐴 in units 
of the consumption good is: 
𝑚𝐴
𝑡 = 𝑃𝐴

𝑡 − 𝜃𝑃𝐶
𝑡 . (A.1)

The condition (1), i.e., 𝑚𝐴
𝑡 + 𝑚𝐵

𝑡 + 𝑚𝐶
𝑡 = 1, then becomes: 

𝑃𝐴
𝑡 + 𝑃𝐵

𝑡 + 𝑃𝐶
𝑡 (1 − 𝜃) = 1 ⟹ 𝑃𝐶

𝑡 =
1 − 𝑃𝐴

𝑡 − 𝑃𝐵
𝑡

1 − 𝜃
(A.2)

and, inserting 𝑃𝐶
𝑡  from (A.2) into (A.1), we obtain 

𝑚𝐴
𝑡 = 𝑃𝐴

𝑡 − 𝜃𝑃𝐶
𝑡 = 𝑃𝐴

𝑡 −
𝜃(1 − 𝑃𝐴

𝑡 − 𝑃𝐵
𝑡 )

1 − 𝜃
=

𝑃𝐴
𝑡 − 𝜃(1 − 𝑃𝐵

𝑡 )
1 − 𝜃

, (A.3)

which is the rewritten market clearing condition for currency 𝐴.

A.2. Part II — User optimization

For digitization state 𝑧𝑡 = 𝑧, we denote the set of possible next-
period state transitions by (𝑧). That is, when 𝑧𝑡 = 𝑧, then 𝑧𝑡+𝑑𝑡 = 𝑧′

is possible for all 𝑧′ = (𝑧) with 𝑧′ ≠ 𝑧; we explicitly exclude 𝑧 itself 
from the set (𝑧). In particular, (0) = {𝐴,𝐵}, (𝐴) = (𝐵) = {𝐴𝐵}, 
and (𝐴𝐵) = ∅. Thus, when 𝑧 = 0, the digitization state may transition 
toward 𝐴 or 𝐵. When 𝑧 = 𝐴 or 𝑧 = 𝐵, the transition state may only 
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transition toward 𝐴𝐵 — in state 𝑧 = 𝐴𝐵, no more state transitions are 
possible.

We postulate that equilibrium currency values (i.e., prices) 𝑃 𝑥
𝑡 =

𝑃 𝑥(𝑌 , 𝑧) for (𝑌 , 𝑧) = (𝑌𝑡, 𝑧𝑡) follow the law of motion: 
𝑑𝑃 𝑥

𝑡
𝑃 𝑥
𝑡

= 𝜇𝑥(𝑌 , 𝑧)𝑑𝑡 +
∑

𝑧′∈(𝑧)
𝛥𝑥(𝑌 , 𝑧; 𝑧′)𝑑𝐽 𝑧,𝑧′

𝑡 , (A.4)

where 𝜇𝑥(𝑌 , 𝑧) is the endogenous price drift in state (𝑌𝑡, 𝑧𝑡) = (𝑌 , 𝑧). 
In (A.4), 𝛥𝑥(𝑌 , 𝑧; 𝑧′) is the endogenous (percentage) value change of 
currency 𝑥 if the digitization state changes from 𝑧 to 𝑧′. The jump 
process 𝑑𝐽 𝑧,𝑧′

𝑡 ∈ {0, 1} equals one if and only if the digitization state 
changes from 𝑧 to 𝑧′ at time 𝑡; otherwise, 𝑑𝐽 𝑧,𝑧′

𝑡 = 0. Note that the 
arrival rate E𝑡[𝑑𝐽

𝑧,𝑧′
𝑡 ]∕𝑑𝑡 is endogenous and depends on efforts and state 

(𝑌 , 𝑧).
Recall the definition of expected currency returns in terms of the 

consumption good, that is,

𝑟𝑥𝑡 ∶=
E𝑡[𝑑𝑃 𝑥

𝑡 ]
𝑃 𝑥
𝑡 𝑑𝑡

,

which will be a function of the state variables in the Markov equilib-
rium. We can then write cohort 𝑡’s consumption 𝑐𝑡+𝑑𝑡 at 𝑡 + 𝑑𝑡 as

𝑐𝑡+𝑑𝑡 =
∑

𝑥∈{𝐴,𝐵,𝐶}

𝑚𝑥
𝑡 𝑃

𝑥
𝑡+𝑑𝑡

𝑃 𝑥
𝑡

. (A.5)

Observe that 𝑃 𝑥
𝑡+𝑑𝑡 = 𝑃 𝑥

𝑡 + 𝑑𝑃 𝑥
𝑡 . Because the representative user invests 

its entire endowment one to buy currencies at time 𝑡, it follows that 
∑

𝑥∈{𝐴,𝐵,𝐶} 𝑚
𝑥
𝑡 = 1. We can therefore rewrite (A.5) as follows: 

𝑐𝑡+𝑑𝑡 = 1 +
∑

𝑥∈{𝐴,𝐵,𝐶}

𝑚𝑥
𝑡 𝑑𝑃

𝑥
𝑡

𝑃 𝑥
𝑡

. (A.6)

Now, note that the representative user maximizes her expected lifetime 
utility/payoff, i.e., 

max
𝑚𝑥
𝑡 ≥0

𝑈𝑡  s.t. 
∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 = 1, (A.7)

taking prices 𝑃 𝑥
𝑡  as given. Here, the expected lifetime utility/payoff 𝑈𝑡

reads:

𝑈𝑡 = E𝑡[𝑐𝑡+𝑑𝑡] +𝑍𝐴
𝑡 𝑣(𝑚

𝐴
𝑡 )𝑑𝑡 +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 )𝑑𝑡 + 𝑌𝑡𝑣(𝑚𝐶

𝑡 )𝑑𝑡,

so that 
𝑈𝑡 = 1 +

∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 𝑟

𝑥
𝑡 𝑑𝑡 +𝑍𝐴

𝑡 𝑣(𝑚
𝐴
𝑡 )𝑑𝑡 +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 )𝑑𝑡 + 𝑌𝑡𝑣(𝑚𝐶

𝑡 )𝑑𝑡. (A.8)

Thus, in light of ∑𝑥∈{𝐴,𝐵,𝐶} 𝑚
𝑥
𝑡 = 1 and (A.8), the solution (𝑚𝐴

𝑡 , 𝑚
𝐵
𝑡 , 𝑚

𝐶
𝑡 )

to (A.7) satisfies
(𝑚𝐴

𝑡 , 𝑚
𝐵
𝑡 , 𝑚

𝐶
𝑡 ) = arg max

𝑚𝑥
𝑡 ≥0

𝛺(𝑚𝐴
𝑡 , 𝑚

𝐵
𝑡 , 𝑚

𝐶
𝑡 )  s.t. 

∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 = 1,

with

𝛺(𝑚𝐴
𝑡 , 𝑚

𝐵
𝑡 , 𝑚

𝐶
𝑡 ) ∶=

∑

𝑥∈{𝐴,𝐵,𝐶}
𝑚𝑥
𝑡 𝑟

𝑥
𝑡 +𝑍𝐴

𝑡 𝑣(𝑚
𝐴
𝑡 ) +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 ) + 𝑌𝑡𝑣(𝑚𝐶

𝑡 ).

Due to ∑𝑥∈{𝐴,𝐵,𝐶} 𝑚
𝑥
𝑡 = 1, it must hold in optimum that the user is 

indifferent between substituting a marginal unit of any currency for 
another one, i.e., 
𝜕𝛺(𝑚𝐴

𝑡 , 𝑚
𝐵
𝑡 , 𝑚

𝐶
𝑡 )

𝜕𝑚𝐴
𝑡

=
𝜕𝛺(𝑚𝐴

𝑡 , 𝑚
𝐵
𝑡 , 𝑚

𝐶
𝑡 )

𝜕𝑚𝐵
𝑡

=
𝜕𝛺(𝑚𝐴

𝑡 , 𝑚
𝐵
𝑡 , 𝑚

𝐶
𝑡 )

𝜕𝑚𝐶
𝑡

, (A.9)

provided 𝑚𝑥
𝑡 ∈ (0, 1). Note that condition (A.9) becomes equivalent to 

(12) from the main text, as desired.
Taking the derivative in (A.9) and using the definition of

𝛺(𝑚𝐴
𝑡 , 𝑚

𝐵
𝑡 , 𝑚

𝐶
𝑡 ), we get: 

𝑌𝑡𝑣
′(𝑚𝐶

𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐴
𝑡 𝑣

′ (𝑚𝐴
𝑡
)

+ 𝑟𝐴𝑡  and 𝑌𝑡𝑣
′(𝑚𝐶

𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐵
𝑡 𝑣

′(𝑚𝐵
𝑡 ) + 𝑟𝐵𝑡 .

(A.10)

Inserting the market clearing condition 𝑚𝐴
𝑡 = 𝑃𝐴

𝑡 −𝜃(1−𝑃𝐵
𝑡 )

1−𝜃  from (A.3), 
𝑚𝐵
𝑡 = 𝑃𝐵

𝑡 , and 𝑚𝐶
𝑡 = 𝑃𝐶

𝑡  into (A.10), we obtain

𝑌𝑡𝑣
′(𝑃𝐶

𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐴
𝑡 𝑣

′

(

𝑃𝐴
𝑡 − 𝜃(1 − 𝑃𝐵

𝑡 )
1 − 𝜃

)

+ 𝑟𝐴𝑡

𝑌𝑡𝑣
′(𝑃𝐶

𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐵
𝑡 𝑣

′(𝑃𝐵
𝑡 ) + 𝑟𝐵𝑡 . (A.11)

Notice that (A.10) is equivalent to (13) upon setting 𝜃 = 0. Because 
lim𝑚𝑥

𝑡 →0 𝑣′(𝑚𝑥
𝑡 ) = ∞, any solution to (13) or (A.11) must satisfy 𝑚𝑥

𝑡 , 𝑃
𝑥
𝑡 ∈

(0, 1).

A.3. Part III — Solving for currency values and adoption, and equilibrium 
conditions

We now express the currency values 𝑃 𝑥
𝑡 , adoption levels 𝑚𝑥

𝑡 , and 
currency returns 𝑟𝑥𝑡 , as well as the countries’ digitiation efforts 𝑒𝑥𝑡
as functions of 𝑌  and state 𝑧 ∈ {0, 𝐴, 𝐵, 𝐴𝐵}, and we omit time 
subscripts unless necessary. In doing so, we also derive useful equi-
librium relations and conditions that we invoke later on. Unless oth-
erwise mentioned, we denote by 𝑥 the respective currency, where 𝑥 ∈
{𝐴,𝐵, 𝐶}.

We conjecture and verify that 𝑃 𝑥
𝑡 = 𝑃 (𝑌𝑡, 𝑧𝑡), 𝑚𝑥

𝑡 = 𝑚𝑥(𝑌𝑡, 𝑧𝑡), and 
𝑒𝑥′𝑡 = 𝑒𝑥′ (𝑌𝑡, 𝑧𝑡) for 𝑥 = 𝐴,𝐵, 𝐶 and 𝑥′ = 𝐴,𝐵, for functions 𝑃 𝑥(⋅), 
𝑚𝑥(⋅), and 𝑒𝑥′ (⋅). It then follows that 𝑟𝑥𝑡  is a function of (𝑌 , 𝑧) too, in 
that 𝑟𝑥𝑡 = 𝑟𝑥(𝑌 , 𝑧). Also write 𝑑𝑌 = 𝜇𝑌 (𝑌 , 𝑧)𝑑𝑡 whereby the drift of 𝑑𝑌
reads according to (4): 

𝜇𝑌 (𝑌 , 𝑧) =

{

𝜇𝑌 𝑚𝐶 (𝑌 , 𝑧)  if 𝑌 < 𝑌
0  if 𝑌 = 𝑌 .

(A.12)

Next, market clearing in equilibrium implies 𝑃 𝑥
𝑡 = 𝑃 𝑥(𝑌 , 𝑧) = 𝑚𝑥

𝑡 =
𝑚𝑥(𝑌 , 𝑧) for 𝑥 ∈ {𝐴,𝐵, 𝐶}, and, according to (A.3):

𝑚𝐴
𝑡 = 𝑚𝐴(𝑌 , 𝑧) =

𝑃𝐴(𝑌 , 𝑧) − 𝜃(1 − 𝑃𝐵(𝑌 , 𝑧))
1 − 𝜃

.

Also, we get from (A.2):
𝑃𝐴(𝑌 , 𝑧) + 𝑃𝐵(𝑌 , 𝑧) + 𝑃𝐶 (𝑌 , 𝑧)(1 − 𝜃) = 1 ⟺

𝑃𝐶 (𝑌 , 𝑧) =
1 − 𝑃𝐴(𝑌 , 𝑧) − 𝑃𝐵(𝑌 , 𝑧)

1 − 𝜃
. (A.13)

Recall (A.4), and observe that: 

𝛥𝑥(𝑌 , 𝑧; 𝑧′) =
𝑃 𝑥(𝑌 , 𝑧′)
𝑃 𝑥(𝑌 , 𝑧)

− 1. (A.14)

Thus, we obtain 𝛥𝑥(𝑌 , 𝑧; 𝑧′)𝑃 𝑥(𝑌 , 𝑧) = 𝑃 𝑥(𝑌 , 𝑧′) − 𝑃 𝑥(𝑌 , 𝑧).
Denote (𝑃 𝑥)′(𝑌 , 𝑧) = 𝜕

𝜕𝑌 𝑃
𝑥(𝑌 , 𝑧). By Ito’s Lemma, the drift of 

currency value 𝑥, that is, 𝜇𝑥(𝑌 , 𝑧), becomes 

𝜇𝑥(𝑌 , 𝑧) =
(

(𝑃 𝑥)′(𝑌 , 𝑧)
𝑃 𝑥(𝑌 , 𝑧)

)

𝜇𝑌 (𝑌 , 𝑧), (A.15)

where 𝜇𝑌 (𝑌 , 𝑧) is the drift of 𝑑𝑌  from (A.12) (which vanishes for 𝑌 =
𝑌 ). Thus, for 𝑌 = 𝑌 , the price drifts 𝜇𝑥

𝑡 = 𝜇𝑥(𝑌 , 𝑧) from (A.4) equals 
zero.

Also note that because 𝑃𝐴
𝑡 + 𝑃𝐵

𝑡 + 𝑃𝐶
𝑡 (1 − 𝜃) = 1 — that is, 

𝑃𝐴(𝑌 , 𝑧) + 𝑃𝐵(𝑌 , 𝑧) + 𝑃𝐶 (𝑌 , 𝑧)(1 − 𝜃) = 1 from (A.13) — we have 
𝑑𝑃𝐴

𝑡 + 𝑑𝑃𝐵
𝑡 + 𝑑𝑃 𝐶

𝑡 (1 − 𝜃) = 0. This implies by means of (A.4)

𝜇𝐴(𝑌 , 𝑧)𝑃𝐴(𝑌 , 𝑧) + 𝜇𝐵(𝑌 , 𝑧)𝑃𝐵(𝑌 , 𝑧) + 𝜇𝐶 (𝑌 , 𝑧)𝑃𝐶 (𝑌 , 𝑧)(1 − 𝜃) = 0 (A.16)

as well as 

𝛥𝐴(𝑌 , 𝑧, 𝑧′)𝑃𝐴(𝑌 , 𝑧)+𝛥𝐵(𝑌 , 𝑧, 𝑧′)𝑃𝐵(𝑌 , 𝑧)+𝛥𝐶 (𝑌 , 𝑧, 𝑧′)𝑃𝐶 (𝑌 , 𝑧)(1−𝜃) = 0

(A.17)

for all 𝑧′ ∈ (𝑧), i.e., for all states 𝑧′ that can be reached from state 𝑧.
In light of (A.16), (A.17), and 𝑃𝐴

𝑡 + 𝑃𝐵
𝑡 + 𝑃𝐶

𝑡 (1 − 𝜃) = 1, it suffices 
to characterize the currency values and dynamics for currencies 𝐴
and 𝐵, and the value and the dynamics for currency 𝐶 follow as the 
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residual, and can be backed out knowing 𝑃𝐴(𝑌 , 𝑧) and 𝑃𝐵(𝑌 , 𝑧) (and 
their dynamics).

Next, we can characterize expected returns 𝑟𝑥𝑡 , and write 𝑟𝑥𝑡 =
𝑟𝑥(𝑌 , 𝑧). We start by analyzing the arrival rates of the process 𝑑𝐽 𝑧,𝑧′  for 
𝑧, 𝑧′ ∈ {0, 𝐴, 𝐵, 𝐴𝐵}. Note that the only possible transitions from state 
𝑧 = 0 are 𝑧′ = 𝐴,𝐵. The only possible transition from states 𝑧 = 𝐴,𝐵
is 𝑧′ = 𝐴𝐵. We can calculate the transition probabilities in these cases 
over a short period of time [𝑡, 𝑡 + 𝑑𝑡):

E[𝑑𝐽 0,𝐴] = 𝑒𝐴(𝑌 , 0)𝑑𝑡  and E[𝑑𝐽 0,𝐵] = 𝑒𝐵(𝑌 , 0)𝑑𝑡 (A.18)
E[𝑑𝐽𝐴,𝐴𝐵] = 𝑒𝐵(𝑌 ,𝐴)𝑑𝑡  and E[𝑑𝐽𝐵,𝐴𝐵] = 𝑒𝐴(𝑌 , 𝐵)𝑑𝑡.

In all other cases, 𝑑𝐽 𝑧,𝑧′  equals zero with certainty, so that 𝑑𝐽𝐴𝐵,𝑧′ = 0, 
𝑑𝐽 0,𝐴𝐵 = 0, 𝑑𝐽𝐴,𝐵 = 𝑑𝐽𝐵,𝐴 = 𝑑𝐽𝐴,0 = 𝑑𝐽𝐵,0 = 0. Likewise, we also 
obtain that 𝑒𝑥′ (𝑌 , 𝑥) = 𝑒𝑥′ (𝑌 , 𝐴𝐵) = 0 for 𝑥′ = 𝐴,𝐵, i.e., there is no 
more effort after successful digitization.

Taking the expectation in (A.4) and using (A.14) and (A.18), we can 
calculate for 𝑥 = 𝐴,𝐵, 𝐶:

𝑟𝑥(𝑌 , 0) = 𝜇𝑥(𝑌 , 0) + 𝑒𝐴(𝑌 , 0)
(

𝑃 𝑥(𝑌 , 𝐴)
𝑃 𝑥(𝑌 , 0)

− 1
)

+ 𝑒𝐵 (𝑌 , 0)
(

𝑃 𝑥(𝑌 , 𝐵)
𝑃 𝑥(𝑌 , 0)

− 1
)

,

𝑟𝑥(𝑌 , 𝐴) = 𝜇𝑥(𝑌 ,𝐴) + 𝑒𝐵 (𝑌 ,𝐴)
(

𝑃 𝑥(𝑌 ,𝐴𝐵)
𝑃 𝑥(𝑌 ,𝐴)

− 1
)

, (A.19)

𝑟𝑥(𝑌 , 𝐵) = 𝜇𝑥(𝑌 , 𝐵) + 𝑒𝐴(𝑌 , 𝐵)
(

𝑃 𝑥(𝑌 ,𝐴𝐵)
𝑃 𝑥(𝑌 , 𝐵)

− 1
)

,

𝑟𝑥(𝑌 ,𝐴𝐵) = 𝜇𝑥(𝑌 ,𝐴𝐵).

Combining (A.16), (A.17), and (A.19) as well as (A.14), we also obtain 

𝑟𝐴(𝑌 , 𝑧)𝑃𝐴(𝑌 , 𝑧) + 𝑟𝐵(𝑌 , 𝑧)𝑃𝐵(𝑌 , 𝑧) + 𝑟𝐶 (𝑌 , 𝑧)𝑃𝐶 (𝑌 , 𝑧)(1 − 𝜃) = 0. (A.20)

The equilibrium condition (A.11) yields for 𝑥′ = 𝐴,𝐵: 
𝑌 𝑣′

(

𝑃𝐶 (𝑌 , 𝑧)
)

+ 𝑟𝐶 (𝑌 , 𝑧) = 𝑍𝑥′ (𝑌 , 𝑧)𝑣′
(

𝑚𝑥′ (𝑌 , 𝑧)
)

+ 𝑟𝑥
′
(𝑌 , 𝑧), (A.21)

where 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴
𝐿  for 𝑧 = 0, 𝐵 and 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴

𝐻  for 𝑧 =
𝐴,𝐴𝐵. Likewise, 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵

𝐿  for 𝑧 = 0, 𝐴 and 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵
𝐻

for 𝑧 = 𝐵,𝐴𝐵. Note that by (A.3), 𝑚𝐴(𝑌 , 𝑧) = 𝑃𝐴(𝑌 ,𝑧)−𝜃(1−𝑃𝐵 (𝑌 ,𝑧))
1−𝜃 , and 

𝑚𝐵(𝑌 , 𝑧) = 𝑃𝐵(𝑌 , 𝑧). It was also used that 𝑚𝐶 (𝑌 , 𝑧) = 𝑃𝐶 (𝑌 , 𝑧).
As a result, under the assumption that optimal effort 𝑒𝑥𝑡  is a function 

of (𝑌 , 𝑧) (i.e., 𝑒𝑥𝑡 = 𝑒𝑥(𝑌 , 𝑧)), we have verified that the equilibrium 
pricing condition (A.11) depends only on state variables (𝑌 , 𝑧). As such, 
currency values can be expressed in terms of (𝑌 , 𝑧). The next Part IV 
shows that indeed, optimal effort 𝑒𝑥𝑡  is a function of (𝑌 , 𝑧).

A.4. Part IV: Solving government objective

We characterize the government/country value function as a func-
tion of (𝑌 , 𝑧) for both countries 𝑥 = 𝐴,𝐵. In this part, 𝑥 refers to a 
country and, unless otherwise mentioned, takes the values 𝑥 = 𝐴,𝐵.

At a given time 𝑡, the government 𝑥 = 𝐴,𝐵 chooses effort (𝑒𝑥𝑠 )𝑠≥𝑡 to 
maximize the objective function 𝑉 𝑥

𝑡  as follows: 

𝑉 𝑥
𝑡 = max

(𝑒𝑥𝑠 )𝑠≥𝑡
E𝑥
𝑡

[

∫

∞

𝑡
𝑒−𝛿(𝑠−𝑡)

(

𝛿𝑓𝑥
𝑠 −

𝜆(𝑒𝑥𝑠 )
2

2
− 𝜙𝑒𝑥𝑠

)

𝑑𝑠

]

, (A.22)

where we set 𝑓𝑥
𝑠 = 𝑃 𝑥

𝑠  in the baseline.
By the dynamic programming principle, the government’s value 

function solves the following HJB equation: 

𝛿𝑉 𝑥
𝑡 = max

𝑒𝑥𝑡 ≥0

(

𝛿𝑓𝑥
𝑡 −

𝜆(𝑒𝑥𝑡 )
2

2
− 𝜙𝑒𝑥𝑡 +

E𝑥
𝑡 [𝑑𝑉

𝑥
𝑡 ]

𝑑𝑡

)

, (A.23)

which is (14). Notice that the expectation E𝑥
𝑡 [𝑑𝑉

𝑥
𝑡 ] depends on the 

levels of (𝑒𝐴, 𝑒𝐵) and is conditional on country 𝑥’s time-𝑡 information 
(which includes time-𝑡 public information and 𝑒𝑥); country 𝑥 takes the 
effort of the other country −𝑥 as given. Effort 𝑒𝑥𝑡  is not observable for 
the user or the competing country, and countries cannot commit to 
effort levels. As such, the choice of effort 𝑒𝑥𝑡  at any time 𝑡 is privately 
optimal for 𝑥. Clearly, effort 𝑒𝑥𝑡  is redundant after time 𝑇 𝑥, i.e., after 

country 𝑥 has digitized. As such, we set 𝑒𝑥(𝑌 , 𝑥) = 𝑒𝑥(𝑌 , 𝐴𝐵) = 0 for 
𝑥 = 𝐴,𝐵.

Likewise, by the dynamic programming principle and the integral 
expression (6), welfare satisfies

𝛾𝑊𝑡 =
∑

𝑥=𝐴,𝐵

[

𝛾𝑍𝑥
𝑡 𝑣(𝑚

𝑥
𝑡 ) − 𝑔𝑥(𝑒𝑥𝑡 )

]

+ 𝛾𝑌𝑡𝑣(𝑚𝑥
𝑡 ) +

E𝑡[𝑑𝑊𝑡]
𝑑𝑡

,

which coincides with (16) from the main text.
Next, we can express 𝑉 𝑥

𝑡  and time-𝑡 welfare 𝑊𝑡 as functions of (𝑌 , 𝑧)
only, i.e., 𝑉 𝑥

𝑡 = 𝑉 𝑥(𝑌𝑡, 𝑧𝑡) and 𝑊𝑡 = 𝑊 (𝑌 , 𝑧). Further, we solve for 
efforts 𝑒𝑥𝑡 = 𝑒𝑥(𝑌 , 𝑧) and derive eight first order ODEs that characterize 
the functions 𝑉 𝑥(𝑌 , 𝑧) for 𝑥 = 𝐴,𝐵. To do so, we now consider all 
states 𝑧 = 0, 𝐴, 𝐵, 𝐴𝐵 separately. In what follows, 𝑥 is either 𝐴 or 𝐵. 
When 𝑥 = 𝐴, then −𝑥 = 𝐵 and vice versa (i.e., when 𝑥 = 𝐵, then 
−𝑥 = 𝐴). In what follows, we suppress the dependence of E𝑥

𝑡  on (𝑥, 𝑡)
and simply write E for the expectation. Likewise, we suppress time 
subscripts, unless confusion arises. Last, to simplify notation, we define 
(𝑉 𝑥)′(𝑌 , 𝑧) ∶= 𝜕𝑉 𝑥(𝑌 ,𝑧)

𝜕𝑌 , where 𝑥 = 𝐴,𝐵, as well as 𝑊 ′(𝑌 , 𝑧) = 𝜕𝑊 (𝑌 ,𝑧)
𝜕𝑌 .

In what follows, we consider Markovian flow payoff functions 𝑓𝑥
𝑡 , 

satisfying 𝑓𝑥
𝑡 = 𝑓𝑥(𝑌 , 𝑧). Again, this is the case in our baseline, where 

we assume that 𝑓𝑥
𝑡 = 𝑃 𝑥

𝑡 , which implies in the Markov equilibrium that 
𝑓𝑥
𝑡 = 𝑃 𝑥(𝑌 , 𝑧) ≡ 𝑓𝑥(𝑌 , 𝑧).
Finally, we note that below ordinary differential equations hold for 

𝑌 ∈ (0, 𝑌 ), where, given 𝑌0 > 0, 𝑌 = 0 is never attained. At 𝑌 = 𝑌 , 
the drift of 𝑑𝑌  vanishes, in which case the derived ODEs collapse to 
non-linear equations. That is to say, the equilibrium relations we derive 
next also apply for 𝑌 = 𝑌  (upon setting the drift of 𝑑𝑌  to zero).

A.4.1. State 𝑧 = 𝐴𝐵
In state 𝑧 = 𝐴𝐵, efforts are redundant, so clearly 𝑒𝑥(𝑌 ,𝐴𝐵) = 0. 

Using Ito’s Lemma, we can calculate for 𝑥 = 𝐴,𝐵:
E[𝑑𝑉 𝑥(𝑌 ,𝐴𝐵)]

𝑑𝑡
= (𝑉 𝑥)′(𝑌 ,𝐴𝐵)𝜇𝑌 (𝑌 ,𝐴𝐵),

where 𝜇𝑌 (𝑌 , 𝑧) is the drift of 𝑑𝑌  from (A.12). Inserting these relations 
into (A.23), we obtain 
𝛿𝑉 𝑥(𝑌 ,𝐴𝐵) = 𝛿𝑓𝑥(𝑌 , 𝐴𝐵) + (𝑉 𝑥)′(𝑌 ,𝐴𝐵)𝜇𝑌 (𝑌 ,𝐴𝐵), (A.24)

which are two first-order ODEs in 𝑌  for 𝑥 = 𝐴,𝐵, given 𝑧 = 𝐴𝐵.
Next, in state 𝑧 = 𝐴𝐵, we have 𝑊𝑡 = 𝑊 (𝑌 ,𝐴𝐵). Since efforts are 

zero, welfare 𝑊 (𝑌 ,𝐴𝐵) solves 

𝛾𝑊 (𝑌 ,𝐴𝐵) =
∑

𝑥=𝐴,𝐵
𝛾𝑍𝑥

𝐻𝑣
(

𝑚𝑥(𝑌 ,𝐴𝐵)
)

+ 𝛾𝑌 𝑣
(

𝑚𝐶 (𝑌 ,𝐴𝐵)
)

+𝑊 ′(𝑌 , 𝐴𝐵)𝜇𝑌 (𝑌 ,𝐴𝐵),

(A.25)

which is a first-order ODE in 𝑌 .

A.4.2. State 𝑧 = 𝑥
Consider state 𝑧 = 𝑥 for 𝑥 = 𝐴 or 𝑥 = 𝐵. Recall that when 𝑥 = 𝐴, 

then −𝑥 = 𝐵 and vice versa. Then, 𝑒𝑥(𝑌 , 𝑥) = 0. Using Ito’s Lemma for 
jump processes, we can calculate 
E[𝑑𝑉 𝑥(𝑌 , 𝑧)]

𝑑𝑡
= (𝑉 𝑥)′(𝑌 , 𝑥)𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥(𝑌 , 𝑥)(𝑉 𝑥(𝑌 ,𝐴𝐵) − 𝑉 𝑥(𝑌 , 𝑥)),

(A.26)

and 
E[𝑑𝑉 −𝑥(𝑌 , 𝑧)]

𝑑𝑡
= (𝑉 −𝑥)′(𝑌 , 𝑥)𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥(𝑌 , 𝑥)(𝑉 −𝑥(𝑌 ,𝐴𝐵) − 𝑉 −𝑥(𝑌 , 𝑥)),

(A.27)

Inserting (A.27) into (A.23) for country −𝑥, we obtain

𝛿𝑉 −𝑥(𝑌 , 𝑥) = max
𝑒−𝑥(𝑌 ,𝑥)≥0

{

𝛿𝑓−𝑥(𝑌 , 𝑥) + (𝑉 −𝑥)′(𝑌 , 𝑥)𝜇𝑌 (𝑌 , 𝑥) (A.28)

+ 𝑒−𝑥(𝑌 , 𝑥)
[

𝑉 −𝑥(𝑌 ,𝐴𝐵) − 𝑉 −𝑥(𝑌 , 𝑥)
]
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−
𝜆(𝑒−𝑥(𝑌 , 𝑥))2

2
− 𝜙𝑒−𝑥(𝑌 , 𝑥)

}

.

The optimization with respect to effort 𝑒−𝑥(𝑌 , 𝑥) yields (with some 
abuse of notation)

𝑒−𝑥(𝑌 , 𝑥) =
max{0, 𝑉 −𝑥(𝑌 , 𝐴𝐵) − 𝑉 −𝑥(𝑌 , 𝑥) − 𝜙}

𝜆

=

[

𝑉 −𝑥(𝑌 ,𝐴𝐵) − 𝑉 −𝑥(𝑌 , 𝑥) − 𝜙
]+

𝜆
, (A.29)

where [⋅]+ = max{0, ⋅} is the positive part of a real number.
Performing similar steps for country 𝑥 (i.e., inserting (A.26) and 

𝑒𝑥(𝑌 , 𝑥) = 0 into (A.23) and rearranging), we have 

𝛿𝑉 𝑥(𝑌 , 𝑥) = 𝛿𝑓 𝑥(𝑌 , 𝑥) + (𝑉 𝑥)′(𝑌 , 𝑥)𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥(𝑌 , 𝑥)
[

𝑉 𝑥(𝑌 , 𝐴𝐵) − 𝑉 𝑥(𝑌 , 𝑥)
]

.

(A.30)

subject to optimal effort 𝑒−𝑥(𝑌 , 𝑥) from (A.29). Note that in state 𝑧 =
𝑥 ∈ {𝐴,𝐵}, the two ODEs (A.28) and (A.30), which characterize the 
value functions and optimal digitization efforts, are interconnected, 
i.e., coupled.

Finally, in state 𝑥, welfare 𝑊 (𝑌 , 𝑥) solves the ODE
𝛾𝑊 (𝑌 , 𝑥) = 𝛾

[

𝑍𝑥
𝐻𝑣

(

𝑚𝑥(𝑌 , 𝑥)
)

+𝑍−𝑥
𝐿 𝑣

(

𝑚−𝑥(𝑌 , 𝑥)
)

+ 𝑌 𝑣(𝑚𝐶 (𝑌 , 𝑥))
]

+𝑊 ′(𝑌 , 𝑥)𝜇𝑌 (𝑌 , 𝑥) (A.31)

+ 𝑒−𝑥(𝑌 , 𝑥)
[

𝑊 (𝑌 ,𝐴𝐵) −𝑊 (𝑌 , 𝑥)
]

−
𝜆(𝑒−𝑥(𝑌 , 𝑥))2

2
− 𝜙𝑒−𝑥(𝑌 , 𝑥),

subject to optimal effort 𝑒−𝑥(𝑌 , 𝑥) from (A.29).

A.4.3. State 𝑧 = −𝑥
The analysis of state 𝑧 = −𝑥 is analogous when we replace 𝑥 by −𝑥.

A.4.4. State 𝑧 = 0
In state 𝑧 = 0, we can calculate for 𝑥 = 𝐴,𝐵:

E[𝑑𝑉 𝑥(𝑌 , 𝑧)] = (𝑉 𝑥)′(𝑌 , 0)𝜇𝑌 (𝑌 , 0) (A.32)
+ 𝑒𝑥(𝑌 , 0)(𝑉 𝑥(𝑌 , 𝑥) − 𝑉 𝑥(𝑌 , 0)) + 𝑒−𝑥(𝑌 , 0)(𝑉 𝑥(𝑌 ,−𝑥) − 𝑉 𝑥(𝑌 , 0)).

We can now insert (A.32) into (A.23) and obtain (after omitting time 
subscripts) in state (𝑌 , 0) for 𝑥 = 𝐴,𝐵:

𝛿𝑉 𝑥(𝑌 , 0) = max
𝑒𝑥(𝑌 ,0)≥0

{

𝛿𝑓𝑥(𝑌 , 0) −
𝜆(𝑒𝑥(𝑌 , 0))2

2

− 𝜙𝑒𝑥(𝑌 , 0) + (𝑉 𝑥)′(𝑌 , 0)𝜇𝑌 (𝑌 , 0) (A.33)
+ 𝑒𝑥(𝑌 , 0)

[

𝑉 𝑥(𝑌 , 𝑥) − 𝑉 𝑥(𝑌 , 0)
]

+ 𝑒−𝑥(𝑌 , 0)
[

𝑉 𝑥(𝑌 ,−𝑥) − 𝑉 𝑥(𝑌 , 0)
]

}

.

Country 𝑥 takes the other country’s effort 𝑒−𝑥(𝑌 , 0) as given. The 
optimization with respect to effort 𝑒𝑥(𝑌 , 0) in state 𝑧 = 0 yields 

𝑒𝑥(𝑌 , 0) =

[

𝑉 𝑥(𝑌 , 𝑥) − 𝑉 𝑥(𝑌 , 0) − 𝜙
]+

𝜆
(A.34)

for 𝑥 = 𝐴,𝐵. Analogously, one can solve for country −𝑥’s effort. Welfare 
solves in state 𝑧 = 0

𝛾𝑊 (𝑌 , 0) =
∑

𝑥=𝐴,𝐵
𝛾𝑍𝑥

𝐿𝑣
(

𝑚𝑥(𝑌 , 0)
)

+ 𝛾𝑌 𝑣
(

𝑚𝐶 (𝑌 , 0)
)

+𝑊 ′(𝑌 , 0)𝜇𝑌 (𝑌 , 0) (A.35)

+
∑

𝑥=𝐴,𝐵

[

𝑒𝑥(𝑌 , 0)
[

𝑊 (𝑌 , 𝑥) −𝑊 (𝑌 , 0)
]

−
𝜆(𝑒𝑥(𝑌 , 0))2

2
− 𝜙𝑒𝑥(𝑌 , 0)

]

,

with efforts 𝑒𝑥(𝑌 , 0) satisfying (A.34).

A.5. Part V: System of ODEs and non-linear equations

To get a better overview, we now explicitly gather the ODEs that 
characterize the Markov equilibrium by collecting and summarizing 
our findings from Parts I through IV. We separately consider the states 
𝑧 = 0, 𝑧 = 𝑥 ∈ {𝐴,𝐵}, and 𝑧 = 𝐴𝐵, starting with state 𝑧 = 𝐴𝐵.

Next, recall that

𝑚𝐴(𝑌 , 𝑧) =
𝑃𝐴(𝑌 , 𝑧) − 𝜃(1 − 𝑃𝐵(𝑌 , 𝑧))

1 − 𝜃
𝑚𝐵(𝑌 , 𝑧) = 𝑃𝐵(𝑌 , 𝑧) (A.36)

𝑚𝐶 (𝑌 , 𝑧) = 𝑃𝐶 (𝑌 , 𝑧) =
1 − 𝑃𝐴(𝑌 , 𝑧) − 𝑃𝐵(𝑌 , 𝑧)

1 − 𝜃
.

These relations will be used throughout for any 𝑧 ∈ {0, 𝐴, 𝐵,𝐴𝐵}.
Also recall that in the baseline, the flow payoff function 𝑓𝑥

𝑡 =
𝑓𝑥(𝑌 , 𝑧) satisfies 𝑓𝑥(𝑌 , 𝑧) = 𝑃 𝑥(𝑌 , 𝑧).

A.5.1. State 𝑧 = 𝐴𝐵
In state 𝑧 = 𝐴𝐵, we combine (A.19), (A.15), and (A.20) (as well as 

(A.36)) to calculate

𝑟𝐴(𝑌 ,𝐴𝐵) =
(

(𝑃𝐴)′(𝑌 ,𝐴𝐵)
𝑃𝐴(𝑌 ,𝐴𝐵)

)

𝜇𝑌 (𝑌 ,𝐴𝐵) (A.37)

𝑟𝐵(𝑌 ,𝐴𝐵) =
(

(𝑃𝐵)′(𝑌 ,𝐴𝐵)
𝑃𝐵(𝑌 ,𝐴𝐵)

)

𝜇𝑌 (𝑌 ,𝐴𝐵) (A.38)

𝑟𝐶 (𝑌 ,𝐴𝐵) = −
(

𝑟𝐴(𝑌 ,𝐴𝐵)𝑃𝐴(𝑌 ,𝐴𝐵) + 𝑟𝐵(𝑌 ,𝐴𝐵)𝑃𝐵(𝑌 ,𝐴𝐵)
1 − 𝑃𝐴(𝑌 , 𝐴𝐵) − 𝑃𝐵(𝑌 ,𝐴𝐵)

)

(A.39)

Then, (A.21) implies

𝑌 𝑣′
(

𝑚𝐶 (𝑌 ,𝐴𝐵)
)

+ 𝑟𝐶 (𝑌 ,𝐴𝐵) = 𝑍𝐴
𝐻𝑣′

(

𝑚𝐴(𝑌 ,𝐴𝐵)
)

+ 𝑟𝐴(𝑌 , 𝐴𝐵) (A.40)
𝑌 𝑣′

(

𝑚𝐶 (𝑌 ,𝐴𝐵)
)

+ 𝑟𝐶 (𝑌 ,𝐴𝐵) = 𝑍𝐵
𝐻𝑣′

(

𝑚𝐵(𝑌 ,𝐴𝐵)
)

+ 𝑟𝐵(𝑌 ,𝐴𝐵).

And, from (A.24), we know
𝛿𝑉 𝐴(𝑌 ,𝐴𝐵) =𝛿𝑓𝐴(𝑌 ,𝐴𝐵) + (𝑉 𝐴)′(𝑌 ,𝐴𝐵)𝜇𝑌 (𝑌 ,𝐴𝐵),

𝛿𝑉 𝐵(𝑌 ,𝐴𝐵) =𝛿𝑓𝐵(𝑌 ,𝐴𝐵) + (𝑉 𝐵)′(𝑌 ,𝐴𝐵)𝜇𝑌 (𝑌 ,𝐴𝐵). (A.41)

Further, (A.25) holds, yielding a system of five first-order ODEs.
At the boundary 𝑌 = 𝑌 , the drift of 𝑑𝑌  vanishes (i.e., 𝜇𝑌 (𝑌 , 𝑧) = 0), 

and the solution, that is, (𝑃 𝑥(𝑌 ,𝐴𝐵), 𝑉 𝑥(𝑌 ,𝐴𝐵),𝑊 (𝑌 , 𝐴𝐵)) for 𝑥 = 𝐴,𝐵, 
is characterized by the following system of five equations (for 𝑥 = 𝐴,𝐵):

𝑌 𝑣′
(

𝑚𝐶 (𝑌 ,𝐴𝐵)
)

= 𝑍𝑥
𝐻𝑣′

(

𝑚𝑥(𝑌 ,𝐴𝐵)
)

𝛿𝑉 𝑥(𝑌 ,𝐴𝐵) = 𝛿𝑓𝑥(𝑌 ,𝐴𝐵), (A.42)

𝛾𝑊 (𝑌 ,𝐴𝐵) =
∑

𝑥=𝐴,𝐵
𝛾𝑍𝑥

𝐻𝑣
(

𝑚𝑥(𝑌 ,𝐴𝐵)
)

+ 𝛾𝑌 𝑣
(

𝑚𝐶 (𝑌 ,𝐴𝐵)
)

,

where 𝑚𝐴(𝑌 , 0), 𝑚𝐵(𝑌 , 0), 𝑚𝐶 (𝑌 , 0) satisfy (A.36). To solve for the
Markov equilibrium in state 𝑧 = 𝐴𝐵, we first solve the system of 
non-linear Eqs. (A.42) for the five unknowns 𝑃𝐴(𝑌 ,𝐴𝐵), 𝑃𝐵(𝑌 ,𝐴𝐵), 
𝑉 𝐴(𝑌 ,𝐴𝐵), 𝑉 𝐵(𝑌 ,𝐴𝐵), and 𝑊 (𝑌 ,𝐴𝐵) — there is no closed-form solu-
tion. The calculation of 𝑚𝐶 (𝑌 ,𝐴𝐵) = 𝑃𝐶 (𝑌 ,𝐴𝐵) follows from (A.36).

Then, we solve the system of five coupled first order ODEs in (A.40), 
(A.41), as well as (A.25) subject to the boundary conditions/boundary 
values (𝑃 𝑥(𝑌 ,𝐴𝐵), 𝑉 𝑥(𝑌 ,𝐴𝐵),𝑊 (𝑌 ,𝐴𝐵)

)

𝑥=𝐴,𝐵 — which then yields 
values 𝑃 𝑥(𝑌 ,𝐴𝐵) for 𝑥 = 𝐴,𝐵 as well as 𝑃𝐶 (𝑌 ,𝐴𝐵) via 𝑃𝐶 (𝑌 ,𝐴𝐵) =
𝑚𝐶 (𝑌 ,𝐴𝐵) = 1−𝑃𝐴(𝑌 ,𝑧)−𝑃𝐵 (𝑌 ,𝑧)

1−𝜃 . We follow this approach in the other 
states 𝑧 = 𝐴,𝐵, 0 too in order to solve the system of differential 
equations, starting at the upper boundary 𝑌 .

A.5.2. State 𝑧 = 𝑥 ∈ {𝐴,𝐵}
In state 𝑧 = 𝑥, we have 𝑒𝑥(𝑌 , 𝑥) = 0 and 𝑒−𝑥(𝑌 , 𝑥) =

[

𝑉 −𝑥(𝑌 ,𝐴𝐵)−𝑉 −𝑥(𝑌 ,𝑥)−𝜙
]+

𝜆 . Then, we can combine (A.19), (A.15), and 
(A.20) to obtain

𝑟𝐴(𝑌 , 𝑥) =
(

(𝑃𝐴)′(𝑌 , 𝑥)
𝑃𝐴(𝑌 , 𝑥)

)

𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥(𝑌 , 𝑥)
(

𝑃𝐴(𝑌 ,𝐴𝐵)
𝑃𝐴(𝑌 , 𝑥)

− 1
)

.

𝑟𝐵(𝑌 , 𝑥) =
(

(𝑃𝐵)′(𝑌 , 𝑥)
𝑃𝐵(𝑌 , 𝑥)

)

𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥(𝑌 , 𝑥)
(

𝑃𝐵(𝑌 , 𝐴𝐵)
𝑃𝐵(𝑌 , 𝑥)

− 1
)

𝑟𝐶 (𝑌 , 𝑥) = −
(

𝑟𝐴(𝑌 , 𝑥)𝑃𝐴(𝑌 , 𝑥) + 𝑟𝐵(𝑌 , 𝑥)𝑃𝐵(𝑌 , 𝑥)
1 − 𝑃𝐴(𝑌 , 𝑥) − 𝑃𝐵(𝑌 , 𝑥)

)
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Then, (A.21) implies
𝑌 𝑣′

(

𝑚𝐶 (𝑌 , 𝑥)
)

+ 𝑟𝐶 (𝑌 , 𝑥) = 𝑍𝐴(𝑌 , 𝑧)𝑣′
(

𝑚𝐴(𝑌 , 𝑥)
)

+ 𝑟𝐴(𝑌 , 𝑥) (A.43)
𝑌 𝑣′

(

𝑚𝐶 (𝑌 , 𝑥)
)

+ 𝑟𝐶 (𝑌 , 𝑥) = 𝑍𝐵(𝑌 , 𝑥)𝑣′
(

𝑚𝐵(𝑌 , 𝑥)
)

+ 𝑟𝐵(𝑌 , 𝑥),

where 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴
𝐿  for 𝑧 = 0, 𝐵 and 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴

𝐻  for 𝑧 = 𝐴,𝐴𝐵. 
Likewise, 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵

𝐿  for 𝑧 = 0, 𝐴 and 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵
𝐻  for 𝑧 = 𝐵,𝐴𝐵.

Further, we recall that 𝑉 𝐴(𝑌 , 𝑥) and 𝑉 𝐵(𝑌 , 𝑥) solve the ODEs (A.28) 
and (A.30), while 𝑊 (𝑌 , 𝑥) solves the ODE (A.31). This yields a system 
of five interconnected first-order ODEs in state 𝑥 = 𝐴𝐵, which are 
linked to state 𝑧 = 𝐴𝐵 via the jump processes, facilitating stochastic 
state transitions from state 𝑧 = 𝑥 to state 𝑧 = 𝐴𝐵.

To solve the model for the Markov equilibrium in state 𝑧 = 𝑥, 
we need to solve the system of five coupled first order ODEs, which 
is characterized in (A.43), (A.28), (A.30), and (A.31), for 𝑃𝐴(𝑌 , 𝑥), 
𝑃𝐵(𝑌 , 𝑥), 𝑉 𝐴(𝑌 , 𝑥), 𝑉 𝐵(𝑌 , 𝑥), and 𝑊 (𝑌 , 𝑥). Given the solution, we then 
also obtain 𝑃𝐶 (𝑌 , 𝑥) = 𝑚𝐶 (𝑌 , 𝑥) = 1−𝑃𝐴(𝑌 ,𝑥)−𝑃𝐵 (𝑌 ,𝑥)

1−𝜃 .
At the boundary 𝑌 = 𝑌 , the drift of 𝑑𝑌  vanishes so that the system 

characterized in (A.43), (A.28), (A.30), and (A.31) becomes a system of 
five non-linear equations, which can be solved for the four unknowns 
𝑃𝐴(𝑌 , 𝑥), 𝑃𝐵(𝑌 , 𝑥), 𝑉 𝐴(𝑌 , 𝑥), 𝑉 𝐵(𝑌 , 𝑥), and 𝑊 (𝑌 , 𝑥), given the values 
of 𝑃𝐴(𝑌 ,𝐴𝐵), 𝑃𝐵(𝑌 , 𝐴𝐵), 𝑉 𝐴(𝑌 ,𝐴𝐵), 𝑉 𝐵(𝑌 ,𝐴𝐵), and 𝑊 (𝑌 , 𝑥). Given 
these boundary conditions at 𝑌 , we can then solve the system of ODEs 
— characterized via (A.43), (A.28), (A.30), and (A.31) — on (0, 𝑌 ] in 
state 𝑧 = 𝑥.

A.5.3. State 𝑧 = 0
In state 𝑧 = 0, we have

𝑒𝐴(𝑌 , 0) =

[

𝑉 𝐴(𝑌 ,𝐴) − 𝑉 𝐴(𝑌 , 0) − 𝜙
]+

𝜆
 and 

𝑒𝐵(𝑌 , 0) =

[

𝑉 𝐵(𝑌 , 𝐵) − 𝑉 𝐵(𝑌 , 0) − 𝜙
]+

𝜆
.

Then, we can combine (A.19), (A.15), and (A.20) to obtain

𝑟𝐴(𝑌 , 0) =
(

(𝑃𝐴)′(𝑌 , 0)
𝑃𝐴(𝑌 , 0)

)

𝜇𝑌 (𝑌 , 0) +
∑

𝑥=𝐴,𝐵
𝑒𝑥(𝑌 , 0)

(

𝑃𝐴(𝑌 , 𝑥)
𝑃𝐴(𝑌 , 0)

− 1
)

.

𝑟𝐵(𝑌 , 0) =
(

(𝑃𝐵)′(𝑌 , 0)
𝑃𝐵(𝑌 , 0)

)

𝜇𝑌 (𝑌 , 0) +
∑

𝑥=𝐴,𝐵
𝑒𝑥(𝑌 , 0)

(

𝑃𝐵(𝑌 , 𝑥)
𝑃𝐵(𝑌 , 0)

− 1
)

𝑟𝐶 (𝑌 , 0) = −
(

𝑟𝐴(𝑌 , 0)𝑃𝐴(𝑌 , 0) + 𝑟𝐵(𝑌 , 0)𝑃𝐵(𝑌 , 0)
1 − 𝑃𝐴(𝑌 , 0) − 𝑃𝐵(𝑌 , 0)

)

Then, (A.21) implies
𝑌 𝑣′

(

𝑚𝐶 (𝑌 , 0)
)

+ 𝑟𝐶 (𝑌 , 0) = 𝑍𝐴
𝐿𝑣

′ (𝑚𝐴(𝑌 , 0)
)

+ 𝑟𝐴(𝑌 , 0) (A.44)
𝑌 𝑣′

(

𝑚𝐶 (𝑌 , 0)
)

+ 𝑟𝐶 (𝑌 , 0) = 𝑍𝐵
𝐿 𝑣

′ (𝑚𝐵(𝑌 , 0)
)

+ 𝑟𝐵(𝑌 , 0)

Moreover, 𝑉 𝐴(𝑌 , 0) and 𝑉 𝐵(𝑌 , 0) solve the ODE system (A.33) and 
𝑊 (𝑌 , 0) solves the ODE (A.35). To solve the model for the Markov 
equilibrium in state 𝑧 = 0, we need to solve this system of five inter-
connected first order ODEs, which is characterized in (A.44), (A.33), 
and (A.35), for 𝑃𝐴(𝑌 , 0), 𝑃𝐵(𝑌 , 0), 𝑉 𝐴(𝑌 , 0), 𝑉 𝐵(𝑌 , 0), and 𝑊 (𝑌 , 0). We 
then also obtain 𝑃𝐶 (𝑌 , 0) = 𝑚𝐶 (𝑌 , 0) = 1−𝑃𝐴(𝑌 ,0)−𝑃𝐵 (𝑌 ,0)

1−𝜃 .
At the boundary 𝑌 = 𝑌 , the drift of 𝑑𝑌  vanishes so that the 

system characterized in (A.44), (A.33), and (A.35) becomes a system of 
five non-linear equations, which can be solved for the five unknowns 
𝑃𝐴(𝑌 , 0), 𝑃𝐵(𝑌 , 0), 𝑉 𝐴(𝑌 , 0), 𝑉 𝐵(𝑌 , 0) and 𝑊 (𝑌 , 0), given the values of 
𝑃𝐴(𝑌 , 𝑥), 𝑃𝐵(𝑌 , 𝑥), 𝑉 𝐴(𝑌 , 𝑥), 𝑉 𝐵(𝑌 , 𝑥), and 𝑊 (𝑌 , 𝑥) for 𝑥 = 𝐴,𝐵.

A.6. Discussion: Numerical solution method

The numerical solution requires to solve the system of ODEs from 
Appendix  A.5.

Because the currency values in states 𝑧 = 𝐴 and 𝑧 = 𝐵 depend on the 
currency values in state 𝑧 = 𝐴𝐵, one has to solve the model backward 
in terms of the state variable 𝑧, starting with state 𝑧 = 𝐴𝐵.

Having obtained 𝑃 𝑥(𝑌 ,𝐴𝐵), 𝑉 𝑥(𝑌 ,𝐴𝐵), and 𝑊 (𝑌 , 𝐴𝐵) for 𝑌 ∈
(0, 𝑌 ], one can solve for 𝑃 𝑥(𝑌 ,𝐴) and 𝑃 𝑥(𝑌 , 𝐵), value functions 𝑉 𝑥(𝑌 ,𝐴)
and 𝑉 𝑥(𝑌 , 𝐵) and efforts (determining the transition probabilities for 𝑧), 
and welfare 𝑊 (𝑌 ,𝐴) and 𝑊 (𝑌 , 𝐵). Here, 𝑥 = 𝐴,𝐵.

Having obtained 𝑃 𝑥(𝑌 , 𝐴) and 𝑃 𝑥(𝑌 , 𝐵) as well as 𝑉 𝑥(𝑌 ,𝐴) and 
𝑉 𝑥(𝑌 , 𝐵), one can solve for currency values 𝑃 𝑥(𝑌 , 0) and value functions 
𝑉 𝑥(𝑌 , 0), efforts, and welfare 𝑊 (𝑌 , 0).

In other words, the solution admits the hierarchy in terms of the 
state variable: (i) 𝑧 = 𝐴𝐵 (no more transitions possible), (ii) 𝑧 = 𝐴,𝐵
(only possible transition: 𝑧′ = 𝐴𝐵), and (iii) 𝑧 = 0 (possible transitions: 
𝑧′ = 𝐴 and 𝑧′ = 𝐵). We solve the equilibrium system obeying to the 
order of hierarchy, (i), (ii), and (iii). The solution can be numerically 
obtained via a standard ODE solver, such ode15s in Matlab.

Appendix B. Planner solution

We assume 𝜃 = 0. In the planner solution, efforts are chosen 
according to the HJB equation: 

𝛾𝑊𝑡 = max
𝑒𝐴𝑡 ,𝑒

𝐵
𝑡 ≥0

{

∑

𝑥=𝐴,𝐵

(

𝛾𝑍𝑥
𝑡 𝑣(𝑚

𝑥
𝑡 ) − 𝑔𝑥(𝑒𝑥𝑡 )

)

+ 𝛾𝑌𝑡𝑣(𝑚𝑥
𝑡 ) +

E𝑡[𝑑𝑊𝑡]
𝑑𝑡

}

.

(B.45)

We solve for a Markov equilibrium, where we can express all equilib-
rium quantities as functions of (𝑌 , 𝑧). In this Markov equilibrium, at 
any point in time 𝑡, cohort 𝑡 chooses the holdings of currencies 𝐴,𝐵, 𝐶
to maximize the expected utility 𝑈𝑡 (with 𝑈𝑡 from (2)), given prices 
(𝑃𝐴

𝑡 , 𝑃𝐵
𝑡 , 𝑃𝐶

𝑡 ), yielding 𝑚𝐴
𝑡 +𝑚𝐵

𝑡 +𝑚𝐶
𝑡 = 1. The markets for all currencies 

clear, i.e., 𝑚𝐴
𝑡 = 𝑃𝐴

𝑡 , 𝑚𝐵
𝑡 = 𝑃𝐵

𝑡 , and 𝑚𝐶
𝑡 = 𝑃𝐶

𝑡 . And, (𝑒𝐴𝑡 , 𝑒𝐵𝑡 ) is chosen 
according to (B.45).

Analogous to the baseline, we characterize the relevant ODEs for 
𝑧 = 0, 𝑥, 𝐴𝐵 where 𝑥 = 𝐴,𝐵. The optimal choice of the planner’s effort 
in state (𝑌 , 𝑧) is denoted 𝑒∗(𝑌 , 𝑧). We will show that (for 𝑥 = 𝐴,𝐵 and 
−𝑥 = 𝐵,𝐴):

𝑒𝑥∗(𝑌 , 0) =
[𝑊 (𝑌 , 𝑥) −𝑊 (𝑌 , 0) − 𝜙]+

𝜆
 and 

𝑒𝑥∗(𝑌 ,−𝑥) =
[𝑊 (𝑌 , 𝐴𝐵) −𝑊 (𝑌 ,−𝑥) − 𝜙]+

𝜆
. (B.46)

In addition, 𝑒𝑥∗(𝑌 , 𝑥) = 𝑒𝑥∗(𝑌 ,𝐴𝐵) = 0. Throughout, we have for all 
𝑥 = 𝐴,𝐵, 𝐶 that 𝑚𝑥(𝑌 , 𝑧) = 𝑃 𝑥(𝑌 , 𝑧) by means of market clearing.
State 𝑧 = 𝐴𝐵. Since there is no effort anymore in state 𝑧 = 𝐴𝐵, the 
solution and equilibrium coincide with the ones from the baseline.
State 𝑧 = 𝑥. In state 𝑧 = 𝑥, we have 𝑒𝑥∗(𝑌 , 𝑥) = 0 and 𝑒−𝑥∗ (𝑌 , 𝑥) =
[

𝑊 (𝑌 ,𝐴𝐵)−𝑊 (𝑌 ,𝑥)−𝜙
]+

𝜆 . The currency returns are characterized via

𝑟𝐴(𝑌 , 𝑥) =
(

(𝑃𝐴)′(𝑌 , 𝑥)
𝑃𝐴(𝑌 , 𝑥)

)

𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥∗ (𝑌 , 𝑥)
(

𝑃𝐴(𝑌 ,𝐴𝐵)
𝑃𝐴(𝑌 , 𝑥)

− 1
)

.

𝑟𝐵(𝑌 , 𝑥) =
(

(𝑃𝐵)′(𝑌 , 𝑥)
𝑃𝐵(𝑌 , 𝑥)

)

𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥∗ (𝑌 , 𝑥)
(

𝑃𝐵(𝑌 , 𝐴𝐵)
𝑃𝐵(𝑌 , 𝑥)

− 1
)

𝑟𝐶 (𝑌 , 𝑥) = −
(

𝑟𝐴(𝑌 , 𝑥)𝑃𝐴(𝑌 , 𝑥) + 𝑟𝐵(𝑌 , 𝑥)𝑃𝐵(𝑌 , 𝑥)
1 − 𝑃𝐴(𝑌 , 𝑥) − 𝑃𝐵(𝑌 , 𝑥)

)

In addition, we have the pricing relationship (A.43), that is,
𝑌 𝑣′

(

𝑚𝐶 (𝑌 , 𝑥)
)

+ 𝑟𝐶 (𝑌 , 𝑥) = 𝑍𝐴(𝑌 , 𝑧)𝑣′
(

𝑚𝐴(𝑌 , 𝑥)
)

+ 𝑟𝐴(𝑌 , 𝑥)

= 𝑍𝐵(𝑌 , 𝑥)𝑣′
(

𝑚𝐵(𝑌 , 𝑥)
)

+ 𝑟𝐵(𝑌 , 𝑥),

where 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴
𝐿  for 𝑧 = 0, 𝐵 and 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴

𝐻  for 𝑧 = 𝐴,𝐴𝐵. 
Likewise, 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵

𝐿  for 𝑧 = 0, 𝐴 and 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵
𝐻  for 𝑧 = 𝐵,𝐴𝐵.

Further, in state 𝑥, welfare 𝑊 (𝑌 , 𝑥) in the planner solution solves 
the ODE

𝛾𝑊 (𝑌 , 𝑥) = max
𝑒−𝑥∗

{

𝛾
[

𝑍𝑥
𝐻𝑣

(

𝑚𝑥(𝑌 , 𝑥)
)

+𝑍−𝑥
𝐿 𝑣

(

𝑚−𝑥(𝑌 , 𝑥)
)

+ 𝑌 𝑣(𝑚𝐶 (𝑌 , 𝑥))
]

+𝑊 ′(𝑌 , 𝑥)𝜇𝑌 (𝑌 , 𝑥)

+ 𝑒−𝑥∗ (𝑌 , 𝑥)
(

𝑊 (𝑌 , 𝐴𝐵) −𝑊 (𝑌 , 𝑥)
)
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−
𝜆(𝑒−𝑥∗ (𝑌 , 𝑥))2

2
− 𝜙𝑒−𝑥∗ (𝑌 , 𝑥)

}

. (B.47)

Taking the first-order condition with respect to 𝑒−𝑥∗  yields

𝑒−𝑥∗ (𝑌 , 𝑥) =
[𝑊 (𝑌 ,𝐴𝐵) −𝑊 (𝑌 ,−𝑥) − 𝜙]+

𝜆
,

as desired.
To solve the model for the Markov equilibrium in state 𝑧 = 𝑥, we 

need to solve the system of three coupled first order ODEs, which is 
characterized in (A.43) and (B.47), for 𝑃𝐴(𝑌 , 𝑥), 𝑃𝐵(𝑌 , 𝑥), and 𝑊 (𝑌 , 𝑥). 
At the boundary 𝑌 = 𝑌 , the drift of 𝑑𝑌  vanishes so that the system 
characterized in (A.43) and (B.47) becomes a system of three non-
linear equations, which can be solved for the four unknowns 𝑃𝐴(𝑌 , 𝑥), 
𝑃𝐵(𝑌 , 𝑥), and 𝑊 (𝑌 , 𝑥), given the values of 𝑃𝐴(𝑌 ,𝐴𝐵), 𝑃𝐵(𝑌 ,𝐴𝐵), 
𝑉 𝐴(𝑌 , 𝐴𝐵), 𝑉 𝐵(𝑌 ,𝐴𝐵), and 𝑊 (𝑌 , 𝑥). Given these boundary conditions 
at 𝑌 , we can then solve the system of ODEs.
State 𝑧 = 0. In state 𝑧 = 0, we can combine (A.19), (A.15), and (A.20) 
to obtain

𝑟𝐴(𝑌 , 0) =
(

(𝑃𝐴)′(𝑌 , 0)
𝑃𝐴(𝑌 , 0)

)

𝜇𝑌 (𝑌 , 0) +
∑

𝑥=𝐴,𝐵
𝑒𝑥∗(𝑌 , 0)

(

𝑃𝐴(𝑌 , 𝑥)
𝑃𝐴(𝑌 , 0)

− 1
)

.

𝑟𝐵(𝑌 , 0) =
(

(𝑃𝐵)′(𝑌 , 0)
𝑃𝐵(𝑌 , 0)

)

𝜇𝑌 (𝑌 , 0) +
∑

𝑥=𝐴,𝐵
𝑒𝑥∗(𝑌 , 0)

(

𝑃𝐵(𝑌 , 𝑥)
𝑃𝐵(𝑌 , 0)

− 1
)

𝑟𝐶 (𝑌 , 0) = −
(

𝑟𝐴(𝑌 , 0)𝑃𝐴(𝑌 , 0) + 𝑟𝐵(𝑌 , 0)𝑃𝐵(𝑌 , 0)
1 − 𝑃𝐴(𝑌 , 0) − 𝑃𝐵(𝑌 , 0)

)

,

where optima (equilibrium) efforts 𝑒𝐴∗ (𝑌 , 0) and 𝑒𝐵∗ (𝑌 , 0) are character-
ized below.

Then, pricing Eq. (A.44) applies in that
𝑌 𝑣′

(

𝑚𝐶 (𝑌 , 0)
)

+ 𝑟𝐶 (𝑌 , 0) = 𝑍𝐴
𝐿𝑣

′ (𝑚𝐴(𝑌 , 0)
)

+ 𝑟𝐴(𝑌 , 0)

= 𝑍𝐵
𝐿 𝑣

′ (𝑚𝐵(𝑌 , 0)
)

+ 𝑟𝐵(𝑌 , 0)

Welfare solves in state 𝑧 = 0

𝛾𝑊 (𝑌 , 0) = max
𝑒𝐴∗ ,𝑒𝐵∗

{

∑

𝑥=𝐴,𝐵
𝛾𝑍𝑥

𝐿𝑣
(

𝑚𝑥(𝑌 , 0)
)

+ 𝛾𝑌 𝑣
(

𝑚𝐶 (𝑌 , 0)
)

+𝑊 ′(𝑌 , 0)𝜇𝑌 (𝑌 , 0)

(B.48)

+
∑

𝑥=𝐴,𝐵

[

𝑒𝑥∗(𝑌 , 0)(𝑉
𝑥(𝑌 , 𝑥) − 𝑉 𝑥(𝑌 , 0)) −

𝜆(𝑒𝑥∗(𝑌 , 0))
2

2
− 𝜙𝑒𝑥∗(𝑌 , 0)

]

}

.

Optimizing over 𝑒𝑥∗, we obtain

𝑒𝐴∗ (𝑌 , 0) =

[

𝑊 (𝑌 ,𝐴) −𝑊 (𝑌 , 0) − 𝜙
]+

𝜆
 and 

𝑒𝐵∗ (𝑌 , 0) =

[

𝑊 (𝑌 , 𝐵) −𝑊 (𝑌 , 0) − 𝜙
]+

𝜆
.

To solve the model for the Markov equilibrium in state 𝑧 = 0, we need 
to solve this system of three interconnected first order ODEs, which is 
characterized in (A.44) and (B.48), for 𝑃𝐴(𝑌 , 0), 𝑃𝐵(𝑌 , 0) and 𝑊 (𝑌 , 0).

At the boundary 𝑌 = 𝑌 , the drift of 𝑑𝑌  vanishes so that the 
system characterized in (A.44) and (B.48) becomes a system of five non-
linear equations, which can be solved for the five unknowns 𝑃𝐴(𝑌 , 0), 
𝑃𝐵(𝑌 , 0), and 𝑊 (𝑌 , 0), given the values of 𝑃𝐴(𝑌 , 𝑥), 𝑃𝐵(𝑌 , 𝑥) and 
𝑊 (𝑌 , 𝑥) for 𝑥 = 𝐴,𝐵.

Appendix C. Model variant with interest rates and UIP

In the model variant of Section 3.3, we have 𝜃 = 0 and cohort 𝑡’s 
lifetime utility (i.e., the user’s lifetime utility) becomes: 
𝑈𝑡 = E𝑡[𝑐𝑡+𝑑𝑡] +𝑍𝐴

𝑡 𝑣(𝑚
𝐴
𝑡 )𝑑𝑡 +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 )𝑑𝑡 + 𝑌𝑡𝑣(𝑚𝐶

𝑡 )𝑑𝑡

+ 𝑚𝐴
𝑡 (1 − 𝛼𝐴𝑡 )𝑖

𝐴𝑑𝑡 + 𝑚𝐵
𝑡 (1 − 𝛼𝐵𝑡 )𝑖

𝐵𝑑𝑡. (C.49)

where E𝑡[𝑐𝑡+𝑑𝑡] = 1 +
∑

𝑥=𝐴,𝐵,𝐶 𝑚𝑥
𝑡 𝑟

𝑥
𝑡 𝑑𝑡. The novel terms relative to (2) 

capture that the holding currency 𝑥 = 𝐴,𝐵 allows users to earn interest 
subject to imperfect passthrough, namely at rate (1−𝛼𝑥𝑡 )𝑖𝑥. When 𝛼𝑥𝑡 = 0, 
interest passthrough is perfect and currency holders earn interest at rate 

𝑖𝑥, while no interest is earned and passed on to currency-𝑥 holders when 
𝛼𝑥𝑡 = 1.

It is assume that the uncovered interest parity (UIP) holds, in that:
𝜌 = 𝑟𝑥𝑡 + 𝑖𝑥𝑡

for 𝑥 = 𝐴,𝐵. Using UIP, we obtain for 𝑥 = 𝐴,𝐵:

𝑚𝑥
𝑡 (𝑟

𝑥
𝑡 + (1 − 𝛼𝑥𝑡 )𝑖

𝑥) = 𝑚𝑥
𝑡 (𝜌 − 𝛼𝑥𝑡 𝑖

𝑥).

As such, we can rewrite the user’s expected utility as follows:
𝑈𝑡 = 1 +𝑍𝐴

𝑡 𝑣(𝑚
𝐴
𝑡 )𝑑𝑡 +𝑍𝐵

𝑡 𝑣(𝑚
𝐵
𝑡 )𝑑𝑡 + 𝑌𝑡𝑣(𝑚𝐶

𝑡 )𝑑𝑡 + 𝑚𝐴
𝑡 (𝜌 − 𝛼𝐴𝑡 𝑖

𝐴)𝑑𝑡

+ 𝑚𝐵
𝑡 (𝜌 − 𝛼𝐵𝑡 𝑖

𝐵)𝑑𝑡 + 𝑚𝐶
𝑡 𝑟

𝐶
𝑡 𝑑𝑡

Note that 𝜃 = 0 is assumed, so without loss we denote by 𝑃 𝑥′
𝑡 = 𝑚𝑥′

𝑡  the 
level of adoption of currency 𝑥′ = 𝐴,𝐵, 𝐶. Clearly,
𝑃𝐴
𝑡 + 𝑃𝐵

𝑡 + 𝑃𝐶
𝑡 = 𝑚𝐴

𝑡 + 𝑚𝐵
𝑡 + 𝑚𝐶

𝑡 = 1

holds in equilibrium. The user cohort 𝑡 chooses currency holdings to 
maximize its expected utility, taking prices (i.e., 𝑟𝑥𝑡 ) and interest rates 
as given.

The user takes prices and interest as given, and solves
max
𝑚𝑥
𝑡 ≥0

𝑈𝑡  s.t. 𝑚𝐴
𝑡 + 𝑚𝐵

𝑡 + 𝑚𝐶
𝑡 = 1.

After taking first-order conditions, the pricing equation becomes
𝑌𝑡𝑣

′(𝑚𝐶
𝑡 ) + 𝑟𝐶𝑡 = 𝑍𝐴

𝑡 𝑣
′(𝑚𝐴

𝑡 ) + 𝜌 − 𝛼𝐴𝑡 𝑖
𝐴 = 𝑍𝐵

𝑡 𝑣
′(𝑚𝐵

𝑡 ) + 𝜌 − 𝛼𝐵𝑡 𝑖
𝐵 ,

which is (22). The analogous pricing condition for the baseline model 
is presented in (13).

We now present the relevant equations and ODEs for states 𝑧 =
0, 𝑥, 𝐴𝐵 where 𝑥 ∈ {𝐴,𝐵} to solve for the Markov equilibrium. The 
arguments are analogous to those in the baseline, and we provide ad-
ditional details only where needed. The only difference to the baseline 
lies in the pricing equation, which changes from (13) to (22).

C.1. State 𝑧 = 𝐴𝐵

In state 𝑧 = 𝐴𝐵, we have

𝑟𝐶 (𝑌 ,𝐴𝐵) =
(𝑃𝐶 )′(𝑌 ,𝐴𝐵)
𝑃𝐶 (𝑌 ,𝐴𝐵)

𝜇𝑌 (𝑌 ,𝐴𝐵) = (𝑃𝐶 )′(𝑌 ,𝐴𝐵)𝜇𝑌 ,

for 𝑌 < 𝑌  while 𝜇𝑌 (𝑌 ,𝐴𝐵) = 0, where we used 𝜇𝑌 (𝑌 ,𝐴𝐵) =
𝑌 𝜇𝑃𝐶 (𝑌 ,𝐴𝐵), as well as 𝜃 = 0 implying 𝑚𝐶 (𝑌 ,𝐴𝐵) = 𝑃𝐶 (𝑌 , 𝐴𝐵). The 
pricing Eq. (22) yields (for 𝛼𝑥𝑡 = 𝛼𝑥(𝑧) with 𝑥 = 𝐴,𝐵):

𝑍𝐴
𝐻𝑣′(𝑚𝐴(𝑌 ,𝐴𝐵)) + 𝜌 − 𝛼𝐴(𝐴𝐵)𝑖𝐴 = 𝑍𝐵

𝐻𝑣′(𝑚𝐵(𝑌 ,𝐴𝐵)) + 𝜌 − 𝛼𝐵(𝐴𝐵)𝑖𝐵 .

We can eliminate 𝑚𝐵(𝑌 ,𝐴𝐵) = 1 − 𝑚𝐴(𝑌 ,𝐴𝐵) − 𝑚𝐶 (𝑌 ,𝐴𝐵). We can 
then solve above non-linear equation for 𝑚𝐴(𝑌 ,𝐴𝐵) as a function of 
𝑚𝐶 (𝑌 ,𝐴𝐵) = 𝑃𝐶 (𝑌 ,𝐴𝐵). Next, we use (22) to obtain 
𝑌 𝑣′(𝑚𝐶 (𝑌 ,𝐴𝐵)) + 𝑟𝐶 (𝑌 ,𝐴𝐵) = 𝑍𝐴

𝐻𝑣′(𝑚𝐴(𝑌 ,𝐴𝐵)) + 𝜌− 𝛼𝐴(𝐴𝐵)𝑖𝐴. (C.50)

Note that (C.50) represents a first-order ODE, which we can solve on 
[0, 𝑌 ] subject to an appropriate boundary condition. This boundary 
condition is obtained by setting the drift of 𝑑𝑌  to zero at 𝑌 = 𝑌 .

At 𝑌 = 𝑌 , the drift of 𝑑𝑌  vanishes, so 𝑟𝐶 (𝑌 ,𝐴𝐵) = 0 and
𝑌 𝑣′(𝑚𝐶 (𝑌 ,𝐴𝐵)) = 𝑍𝐴

𝐻𝑣′(𝑚𝐴(𝑌 ,𝐴𝐵)) + 𝜌 − 𝛼𝐴(𝐴𝐵)𝑖𝐴,

which can be solved together with
𝑍𝐴

𝐻𝑣′(𝑚𝐴(𝑌 ,𝐴𝐵)) + 𝜌 − 𝛼𝐴(𝐴𝐵)𝑖𝐴 = 𝑍𝐵
𝐻𝑣′(𝑚𝐵(𝑌 ,𝐴𝐵)) + 𝜌 − 𝛼𝐵(𝐴𝐵)𝑖𝐵

for 𝑚𝐶 (𝑌 ,𝐴𝐵), 𝑚𝐴(𝑌 ,𝐴𝐵) and ultimately for 𝑚𝐵(𝑌 ,𝐴𝐵) =
1 − 𝑚𝐶 (𝑌 ,𝐴𝐵) − 𝑚𝐴(𝑌 ,𝐴𝐵).

Finally, the value functions (𝑉 𝐴(𝑌 ,𝐴𝐵), 𝑉 𝐵(𝑌 , 𝐴𝐵)
) solve (A.24) 

and welfare solves (A.25), subject to appropriate boundary conditions 
obtained by setting the drift of 𝑑𝑌  to zero at 𝑌 = 𝑌 .
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C.2. State 𝑧 = 𝑥

In state 𝑧 = 𝑥 ∈ {𝐴,𝐵}, we have

𝑟𝐶 (𝑌 , 𝑥) =
(𝑃𝐶 )′(𝑌 , 𝑥)
𝑃𝐶 (𝑌 , 𝑥)

𝜇𝑌 (𝑌 , 𝑥) + 𝑒−𝑥(𝑌 , 𝑥)
(

𝑃𝐶 (𝑌 , 𝐴𝐵)
𝑃𝐶 (𝑌 , 𝑥)

− 1
)

,

whereby 𝑒−𝑥(𝑌 , 𝑥) =
[

𝑉 −𝑥(𝑌 ,𝐴𝐵)−𝑉 −𝑥(𝑌 ,𝑥)−𝜙
]+

𝜆 .
The pricing Eq. (22) yields (for 𝛼𝑥𝑡 = 𝛼𝑥(𝑧)):

𝑍𝐴(𝑌 , 𝑥)𝑣′(𝑚𝐴(𝑌 , 𝑥)) + 𝜌 − 𝛼𝐴(𝑥)𝑖𝐴 = 𝑍𝐵(𝑌 , 𝑥)𝑣′(𝑚𝐵(𝑌 , 𝑥)) + 𝜌 − 𝛼𝐵(𝑥)𝑖𝐵 ,

where 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴
𝐿  for 𝑧 = 0, 𝐵 and 𝑍𝐴(𝑌 , 𝑧) = 𝑍𝐴

𝐻  for 𝑧 = 𝐴,𝐴𝐵. 
Likewise, 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵

𝐿  for 𝑧 = 0, 𝐴 and 𝑍𝐵(𝑌 , 𝑧) = 𝑍𝐵
𝐻  for 𝑧 = 𝐵,𝐴𝐵.

We can eliminate 𝑚𝐵(𝑌 , 𝑥) = 1 − 𝑚𝐴(𝑌 , 𝑥) − 𝑚𝐶 (𝑌 , 𝑥). We can then 
solve above non-linear equation for 𝑚𝐴(𝑌 , 𝑥) as a function of 𝑚𝐶 (𝑌 , 𝑥) =
𝑃𝐶 (𝑌 , 𝑥).

Next, we use (22) to obtain 
𝑌 𝑣′(𝑚𝐶 (𝑌 , 𝑥)) + 𝑟𝐶 (𝑌 , 𝑥) = 𝑍𝐴(𝑌 , 𝑥)𝑣′(𝑚𝐴(𝑌 , 𝑥)) + 𝜌 − 𝛼𝐴(𝑥)𝑖𝐴. (C.51)

This is a first-order ODE, which we can solve on [0, 𝑌 ] subject to an 
appropriate boundary condition obtained by setting the drift of 𝑑𝑌  to 
zero at 𝑌 = 𝑌 .

Finally, the value functions (𝑉 𝐴(𝑌 ,𝐴𝐵), 𝑉 𝐵(𝑌 ,𝐴𝐵)
) solve (A.28) 

and (A.30), and welfare solves (A.31), subject to appropriate boundary 
conditions obtained by setting the drift of 𝑑𝑌  to zero at 𝑌 = 𝑌 .

C.3. State 𝑧 = 0

In state 𝑧 = 0, we have for 𝑥 = 𝐴,𝐵 that

𝑟𝐶 (𝑌 , 0) =
(𝑃𝐶 )′(𝑌 , 0)
𝑃𝐶 (𝑌 , 0)

𝜇𝑌 (𝑌 , 0) +
∑

𝑥=𝐴,𝐵
𝑒𝑥(𝑌 , 0)

(

𝑃𝐶 (𝑌 , 𝑥)
𝑃𝐶 (𝑌 , 0)

− 1
)

,

whereby

𝑒𝑥(𝑌 , 0) =

[

𝑉 𝑥(𝑌 , 𝑥) − 𝑉 𝑥(𝑌 , 0) − 𝜙
]+

𝜆
.

The pricing Eq. (22) yields (for 𝛼𝑥𝑡 = 𝛼𝑥(𝑧)):

𝑍𝐴
𝐿𝑣

′(𝑚𝐴(𝑌 , 0)) + 𝜌 − 𝛼𝐴(0)𝑖𝐴 = 𝑍𝐵
𝐿 𝑣

′(𝑚𝐵(𝑌 , 0)) + 𝜌 − 𝛼𝐵(0)𝑖𝐵 .

We can eliminate 𝑚𝐵(𝑌 , 0) = 1 − 𝑚𝐴(𝑌 , 0) − 𝑚𝐶 (𝑌 , 0). We can then 
solve above non-linear equation for 𝑚𝐴(𝑌 , 0) as a function of 𝑚𝐶 (𝑌 , 0) =
𝑃𝐶 (𝑌 , 0).

Next, we use (22) to obtain 
𝑌 𝑣′(𝑚𝐶 (𝑌 , 0)) + 𝑟𝐶 (𝑌 , 0) = 𝑍𝐴

𝐿𝑣
′(𝑚𝐴(𝑌 , 0)) + 𝜌 − 𝛼𝐴(0)𝑖𝐴, (C.52)

which is a first-order ODE. This ODE can be solved on [0, 𝑌 ] subject to 
an appropriate boundary condition. As before, this boundary condition 
is obtained by setting the drift of 𝑑𝑌  at 𝑌  to zero.

Finally, the value functions (𝑉 𝐴(𝑌 ,𝐴𝐵), 𝑉 𝐵(𝑌 ,𝐴𝐵)
) solve (A.33) 

and welfare solves (A.31), subject to appropriate boundary conditions 
obtained by setting the drift of 𝑑𝑌  to zero at 𝑌 = 𝑌 .

Appendix D. Calculation of model quantities

The first time of digitization reads 𝑇 ∗ = min{𝑇𝐴, 𝑇 𝐵}. Assume that 
𝑒𝐴(𝑌 , 0) + 𝑒𝐵(𝑌 , 0) > 0 to guarantee that 𝑇 ∗ is finite in expectation.

We calculate the expected time to first digitization 𝑡 at time 𝑡 for 
𝑌𝑡 = 𝑌  in state 𝑧 = 0, which is defined as

𝑡 = E𝑡[𝑇 ∗ − 𝑡|𝑧 = 0] = ∫

∞

𝑡
𝑒− ∫ 𝑠

𝑡 (𝑒𝐴𝑢 +𝑒
𝐵
𝑢 )𝑑𝑢𝑑𝑠.

Let  (𝑌 ) = 𝑡 for 𝑌𝑡 = 𝑌 . Then,  (𝑌 ) solves the ODE on (𝑌0, 𝑌 ):
(𝑒𝐴(𝑌 , 0) + 𝑒𝐵(𝑌 , 0)) (𝑌 ) = 1 +  ′(𝑌 )𝜇𝑌 (𝑌 , 0)

subject to the boundary condition

 (𝑌 ) = 1
𝑒𝐴(𝑌 , 0) + 𝑒𝐵(𝑌 , 0)

< +∞.

Conditional on remaining in state 𝑧 = 0, there is a one-to-one mapping 
from 𝑌𝑡 < 𝑌  to 𝑡, so, having obtained  (𝑌 ), we can also calculate 
𝑡 =  (𝑌𝑡) for 𝑌𝑡 < 𝑌 . Conditional on remaining in state 𝑧 = 0, defining 
𝑡′ = inf{𝑡 ≥ 0 ∶ 𝑌𝑡 ≥ 𝑌 }. For times 𝑡 ≥ 𝑡′, 𝑡 =  (𝑌 ) = 𝑡′ , i.e., 𝑡 remains 
constant after 𝑌𝑡 reaches 𝑌 .

Next, the probability density function of 𝑇 ∗ as a function of 𝑡 equals

𝑘𝑡 = 𝑒− ∫ 𝑡
0 (𝑒

𝐴
𝑢 +𝑒

𝐵
𝑢 )𝑑𝑢(𝑒𝐴𝑡 + 𝑒𝐵𝑡 ),

where 𝑒− ∫ 𝑡
0 (𝑒

𝐴
𝑢 +𝑒

𝐵
𝑢 )𝑑𝑢 = 𝑃𝑟𝑜𝑏({𝑇 ∗ ≥ 𝑡}|𝑧 = 0) and (𝑒𝐴𝑡 +𝑒𝐵𝑡 )𝑑𝑡 = 𝑃𝑟𝑜𝑏({𝑇 ∗ ∈

[𝑡, 𝑡 + 𝑑𝑡)}|𝑇 ∗ ≥ 𝑡}.

Appendix E. Micro-foundation of convenience utility

We now provide a micro-foundation of the money-in-the-utility 
approach, specifically, the formulation of expected utility in (2) en-
tailing convenience utility. This micro-foundation of the convenience 
utility is based on a cash-in-advance constraint as well as random 
search/matching and bargaining between users (buyers) and sellers, 
highlighting the medium-of-exchange function of money. The micro-
foundation shares some similarities with the new monetarist approach, 
as developed in Lagos and Wright (2005), but we make certain sim-
plifying assumptions (as the micro-foundation is not the paper’s key 
focus). We set up the micro-foundation in a rather general form: It nests 
the baseline specification in (2), but it could also accommodate more 
general forms of convenience utility. Importantly, the micro-foundation 
also sheds light on the factors that affect currency convenience and, 
specifically, determine the values of the convenience scale 𝑍𝑥

𝑡  and 𝑌𝑡
in (2).

For the micro-foundation, consider cohort 𝑡 of the representative 
user that is born with one unit of consumption good at time 𝑡. At the 
beginning of its lifetime, i.e., an instant [𝑡, 𝑡 + 𝑑𝑡], cohort 𝑡 chooses its 
holdings of currency 𝑥 (in terms of the consumption good), 𝑚𝑥

𝑡  at price 
𝑃 𝑥
𝑡  for 𝑥 = 𝐴,𝐵, 𝐶 — that is, cohort 𝑡 holds 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡  units of currency 

𝑥. Over its lifetime, cohort 𝑡 either utilizes its money holdings to pay a 
seller for services, yielding some utility from transacting with the seller 
(characterized below), or sells its money to cohort 𝑡 + 𝑑𝑡 of the user at 
price 𝑃 𝑥

𝑡+𝑑𝑡.
We characterize the transaction activity between sellers and users 

(buyers) over a short time period [𝑡, 𝑡 + 𝑑𝑡]. Crucially, transactions be-
tween sellers and users occur before uncertainty about the digitization 
outcome over [𝑡, 𝑡+𝑑𝑡] is realized and thus before the next-period prices 
𝑃 𝑥
𝑡+𝑑𝑡 are realized. Users and sellers can also not write contracts con-
tingent on next-period prices. Thus, when transacting, users and sellers 
form expectations about 𝑃 𝑥

𝑡+𝑑𝑡. All expectations (denoted shorthand E =
E𝑡) are understood as conditional on time-𝑡 public information. Further, 
we will assume the CRRA function form for 𝑣(𝑚𝑥

𝑡 ) =
𝑚1−𝜂

1−𝜂 , although most 
of our results carry through under more general forms. Also, note that
E[𝑃 𝑥

𝑡+𝑑𝑡] = 𝑃 𝑥
𝑡 + E[𝑑𝑃 𝑥

𝑡 ] = 𝑃 𝑥
𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡),

which will be used repeatedly below to simplify the expressions. When 
laying out the micro-foundation, we can focus on a specific currency 
𝑥 = 𝐴,𝐵, 𝐶 — the micro-foundation is analogous for all three currencies 
(for notational convenience, we write 𝑍𝐶

𝑡 ∶= 𝑌𝑡 and similar).

E.1. Random search/matching and transactions

For any 𝑥 = 𝐴,𝐵, 𝐶, there exists a mass of type-𝑥 sellers. For simplic-
ity, any type-𝑥 seller only accepts currency 𝑥 as payment for its services. 
There are no other types of sellers, i.e., any seller accepts precisely one 
type of currency 𝑥. Any type-𝑥 seller can produce an arbitrary number 
of service goods at a marginal (utility) cost normalized to one unit of 
the consumption good. Meetings and thus transactions between the user 
and sellers occur randomly over [𝑡, 𝑡 + 𝑑𝑡].

With probability 𝑍̂𝑥
𝑡 𝑑𝑡, the user meets a (single) type-𝑥 seller and 

transacts using its holdings of currency 𝑥. While the user and seller 
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could theoretically pass on the opportunity, we show that in our 
formulation, a transaction always occurs when the opportunity arises. 
With probability 1−𝑍̂𝑥

𝑡 𝑑𝑡, the user does not transact with a type-𝑥 seller. 
This scenario could capture that the user does not have transaction 
needs, is unable to locate a seller, or, in reduced form, that it meets 
a seller but the transaction does not go through on time (e.g., due 
to settlement failures or delays). Thus, one can think of 𝑍̂𝑥

𝑡  capturing 
the currency’s general level of acceptance by sellers, as well as the 
technology and transaction speed associated with currency 𝑥 (more on 
this later).

Note that the probability of meeting two sellers of different types is 
of order (𝑑𝑡)2 and, therefore, negligible in continuous time. We do not 
account for these events, when calculating payoffs.

E.2. Transaction utility and payoffs

Suppose now that the representative user meets a type-𝑥 seller and 
that a transaction occurs. In this transaction, the type-𝑥 seller is paid 
 units of currency 𝑥 and delivers  units of service to the user. Here, 
 must adhere to the cash-in-advance constraint  ≤ 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡  — that 

is, at time 𝑡, the user acquires 𝑚𝑥
𝑡 ∕𝑃

𝑥
𝑡  units of currency 𝑥 and cannot 

pay more than this amount to the seller.
The seller incurs a (utility) production cost  (i.e., the seller pro-

duces services at a marginal cost normalized to one) and a transaction 
cost proportional to the real (expected) time-𝑡 + 𝑑𝑡 value of money 
𝜅̂𝑥𝑡 E[𝑃 𝑥

𝑡+𝑑𝑡] for some 𝜅̂𝑥𝑡 ∈ [0, 1). After being paid, the seller of 
the service sells its currency holdings to cohort 𝑡 + 𝑑𝑡 at price 𝑃 𝑥

𝑡+𝑑𝑡, 
yielding expected payoff E[𝑃 𝑥

𝑡+𝑑𝑡] at the time the seller is paid by the 
user. Recall that transactions between users and sellers occur before 
next-period prices are realized.29

Thus, the seller’s expected utility from the transaction — given 
(,) — reads 
𝑈𝑥
𝑡 (,) = − +(1 − 𝜅̂𝑥𝑡 )E[𝑃

𝑥
𝑡+𝑑𝑡]. (E.53)

The proportional transaction cost could reflect monetary costs associ-
ated with the payment network that the seller must pay to intermedi-
aries (e.g., credit card companies or payment processors) or a utility 
cost (for instance, due to settlement and payment delays).

The transaction cost implies that for each unit of currency trans-
ferred between buyer and seller, the seller incurs 𝜅̂𝑥𝑡  in transaction 
fees; total transaction costs are then 𝜅̂𝑥𝑡 E[𝑃 𝑥

𝑡+𝑑𝑡]. While the transaction 
cost enters the seller’s utility, we note that the terms of trade (,)
are endogenous and eventually determine whether the seller or buyer 
covers these transaction costs. Our model is flexible and allows for a 
split of these transaction costs.

The user derives utility from the transaction of 
𝑈̂𝑥
𝑡 (,) = 𝑣() +  + 𝜈𝑥𝑡 𝜅̂

𝑥
𝑡 E[𝑃 𝑥

𝑡+𝑑𝑡] (E.54)

Here, the user’s utility from service consumption reads 𝑣() +  — 
that is, the production of  units of service (at marginal cost of one) 
generates a surplus of 𝑣().

Next, the transaction costs 𝜅̂𝑥𝑡 E[𝑃 𝑥
𝑡+𝑑𝑡] could represent interchange 

fees in credit card transactions (when 𝑥 = 𝐴,𝐵 represents a fiat 
currency). In practice, such interchange fees are predominantly borne 
by sellers, while buyers even receive rebates (e.g., in form of credit 
card points or cash back). To capture such rewards, we assume that 
the user is rebated fraction 𝜈𝑥𝑡  of the transaction fees, where 𝜈𝑥𝑡 ≤ 1 is a 
parameter. The rebate is modeled as a positive utility payoff entering 

29 We could equally assume that the transaction cost is based on the time-𝑡
value of money and price 𝑃 𝑥

𝑡 . This would not affect the payoffs and outcomes 
in the end, since the difference induced by this alternative modeling is of order 
(𝑑𝑡)2 and, therefore, negligible. This arises, because (i) the probability of a 
transaction occurring is of order 𝑑𝑡 and (ii) the difference between 𝑃 𝑥

𝑡  and 
E[𝑃 𝑥

𝑡+𝑑𝑡] is of order 𝑑𝑡.

𝑈̂𝑥
𝑡 (,) above. By assuming 𝜈𝑥𝑡 < 0, we could capture that, like the 

seller, the user incurs a transaction cost (in utility) too. We assume for 
simplicity, that 𝜈𝑥𝑡 𝜅̂𝑥𝑡 E[𝑃 𝑥

𝑡+𝑑𝑡] is in utility units and does not have to 
be paid from the cash balance (i.e., does not affect the cash-in-advance 
constraint) — this would be consistent with credit card rewards and 
points.

Note that 𝜈𝑥𝑡 = 1 implies that transaction fees are a pure transfer 
from the seller to the buyer, occurring at time 𝑡+𝑑𝑡 after the transaction. 
In this case, transaction fees do not constitute a deadweight loss. How-
ever, our analysis will show that these fees can still distort transactions 
and limit the convenience of a currency, even when 𝜈𝑥𝑡 = 1.

We observe that the user’s transaction utility net of payment equals 
𝑈̂𝑥
𝑡 (,)−E[𝑃 𝑥

𝑡+𝑑𝑡], where the payment to the seller can be regarded 
as an opportunity cost. That is, when the user transacts with a seller, 
it pays the seller and, therefore, ‘‘foregoes’’ the opportunity to sell its 
currency holdings to cohort 𝑡+𝑑𝑡, which would give payoff E[𝑃 𝑥

𝑡+𝑑𝑡]. 
The transaction surplus equals then
𝑣() −(1 − 𝜈𝑥𝑡 )𝜅̂

𝑥
𝑡 E[𝑃

𝑥
𝑡+𝑑𝑡].

Without transaction costs, i.e., 𝜅̂𝑥𝑡 = 0, surplus increases in the amount 
of service produced.

Finally, we make a parameter assumption to render tractability to 
our analysis and avoid tedious case distinctions. Specifically, we assume 
that 

𝑣′(1) ≥
𝜅̂𝑥𝑡

1 − 𝜅̂𝑥𝑡
. (E.55)

By strict concavity, note that 𝑣′() > 𝑣′(1) for  ∈ [0, 1). This condition 
ensures that in optimum, the user spends all its cash holdings to buy 
services, when given the opportunity. In other words, the cash-in-
advance constraint  ≤ 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡  binds in optimum under this condition, 

thereby simplifying the analysis. Whenever  = 𝑚𝑥
𝑡 ∕𝑃

𝑥
𝑡 , we have

E[𝑃 𝑥
𝑡+𝑑𝑡] =

𝑚𝑥
𝑡

𝑃 𝑥
𝑡
E[𝑃 𝑥

𝑡 + 𝑑𝑃 𝑥
𝑡 ] = 𝑚𝑥

𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡),

where we used 𝑃 𝑥
𝑡+𝑑𝑡 = 𝑃 𝑥

𝑡 + 𝑑𝑃 𝑥
𝑡  and E[𝑑𝑃 𝑥

𝑡 ] = 𝑃 𝑥
𝑡 𝑟

𝑥
𝑡 𝑑𝑡.

E.3. Transaction terms and bargaining

When the user and a type-𝑥 seller meet, they bargain over ,), 
i.e., the terms of trade. We model the bargaining process (in reduced 
form) as follows. When a meeting occurs between the user and the 
type-𝑥 seller, then, with probability 𝜒𝑥

𝑡 , the user has full bargaining 
power and makes a take-it-or-leave-it (TIOLI) offer to the seller. With 
probability 1 − 𝜒𝑥

𝑡 , the seller has full bargaining power and makes a 
TIOLI offer to the user. In bargaining, the seller has an outside option 
of zero. The user, entering the bargaining with 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡  units of currency 

𝑥, has the outside option of not transacting and selling its currency 
holdings to cohort 𝑡+𝑑𝑡, delivering expected utility E[𝑃 𝑥

𝑡+𝑑𝑡] = 𝑚𝑥
𝑡 (1+

𝑟𝑥𝑡 𝑑𝑡).
The parameter 𝜒𝑥

𝑡  can be interpreted as the user’s bargaining power 
vis-a-vis sellers accepting currency 𝑥. We offer some interpretation of 
this parameter later on. We note that this modeling of bargaining is 
more tractable in our setting than the more commonly adopted Nash-
bargaining, while allowing us to capture the relevant economic forces 
related to bargaining power. We adopt it for simplicity and tractability, 
but note that we could equally employ Nash bargaining, as, e.g., in 
money search models such as Lagos and Wright (2005).

We now distinguish two cases: (1) user has full bargaining power 
(which happens with probability 𝜒𝑥

𝑡 ), and (2) Seller has full bargaining 
power (which happens with probability 1 − 𝜒𝑥

𝑡 ).

E.3.1. User has full bargaining power
If the user has full bargaining power, the user makes a take-it-or-

leave-it offer (,) to the seller which, stipulates proposed (nominal) 
payment  and service delivery . When choosing the offer, the user 
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maximizes its utility net of payment subject to the seller’s participation 
constraint and the cash-in-advance constraint, in that:

max
(,)

𝑈̂𝑥
𝑡 (,) −E[𝑃 𝑥

𝑡+𝑑𝑡] s.t. 𝑈𝑥
𝑡 (,) ≥ 0 and  ≤

𝑚𝑥
𝑡

𝑃 𝑥
𝑡
,

where 𝑈̂𝑥
𝑡 (,) is from (E.54). It is optimal for the user extract full 

transaction surplus. Thus, in optimum, the seller just breaks even and 
earns its outside option of zero, so that 𝑈𝑥

𝑡 (,) = 0. Therefore, by 
(E.53), we obtain  = (1− 𝜅̂𝑥𝑡 )E[𝑃

𝑥
𝑡+𝑑𝑡]. Under this relation, the user’s 

net utility becomes (according to (E.54)):
() ∶= 𝑣((1 − 𝜅̂𝑥𝑡 )E[𝑃

𝑥
𝑡+𝑑𝑡]) − 𝜅̂𝑥𝑡 (1 − 𝜈𝑥𝑡 )E[𝑃 𝑥

𝑡+𝑑𝑡],

where we used that E[𝑃 𝑥
𝑡+𝑑𝑡]∕𝑃

𝑥
𝑡 = 1+𝑟𝑥𝑡 𝑑𝑡. Calculate ′() = 𝑣′(𝑆)(1−

𝜅̂𝑥𝑡 )E[𝑃
𝑥
𝑡+𝑑𝑡] − 𝜅̂𝑥𝑡 (1− 𝜈𝑥𝑡 )E[𝑃

𝑥
𝑡+𝑑𝑡]. By condition (E.55), ′() > 0. Conse-

quently, the user’s payoff () increases in  and thus is maximized 
(subject to cash-in-advance constraint) by setting  = 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡 . That is, 

the cash-in-advance constraint optimally binds.
As a result, the seller is paid  = 𝑚𝑥

𝑡 ∕𝑃
𝑥
𝑡  units of currency 𝑥. Solving 

𝑈𝑥
𝑡 (𝑚

𝑥
𝑡 ∕𝑃

𝑥
𝑡 ,) = 0 for  = 

𝑥
𝑡 , we get 


𝑥
𝑡 = 𝑚𝑥

𝑡 (1 − 𝜅̂𝑥𝑡 )(1 + 𝑟𝑥𝑡 𝑑𝑡). (E.56)

The user’s net utility then becomes 𝑣(𝑥
𝑡 ) − 𝜅̂𝑥𝑡 (1 − 𝜈𝑥𝑡 )𝑚

𝑥
𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡). The 

user’s gross utility (excluding payment) is 𝑣(𝑥
𝑡 )+

𝑥
𝑡 +𝑚𝑥

𝑡 𝜈
𝑥
𝑡 𝜅̂

𝑥
𝑡 (1+𝑟𝑥𝑡 𝑑𝑡).

E.3.2. Seller has full bargaining power
If the seller has full bargaining power, the seller makes a take-it-

or-leave-it offer (,) to the user which, stipulates proposed payment 
 and service delivery . Formally, the seller maximizes its payoff 
subject to the user’s participation constraint and the cash-in-advance 
constraint:

max
(,)

𝑈𝑥
𝑡 (,) s.t. 𝑈̂𝑥

𝑡 (,) ≥ E[𝑃 𝑥
𝑡+𝑑𝑡] and  ≤

𝑚𝑥
𝑡

𝑃 𝑥
𝑡
.

In optimum, the user just breaks even, so 𝑈̂𝑥
𝑡 (,) = E[𝑃 𝑥

𝑡+𝑑𝑡] — 
which implies by (E.54) that  + 𝑣() = E[𝑃 𝑥

𝑡+𝑑𝑡](1 − 𝜈𝑥𝑡 𝜅̂
𝑥
𝑡 ). We can 

solve for 

E[𝑃 𝑥
𝑡+𝑑𝑡] =

𝑣() + 
1 − 𝜈𝑥𝑡 𝜅̂

𝑥
𝑡
. (E.57)

Utilizing the cash-in-advance constraint, i.e.,  ≤ 𝑚𝑥
𝑡 ∕𝑃

𝑥
𝑡 , the condi-

tion (E.57) implies that
𝑣() +  ≤ 𝑚𝑥

𝑡 (1 − 𝜈𝑥𝑡 𝜅̂
𝑥
𝑡 )(1 + 𝑟𝑥𝑡 𝑑𝑡).

In particular, due to 𝑚𝑥
𝑡 < 1,  ≤ 1.

Using (E.57), we get  = −𝑣() + (1 − 𝜈𝑥𝑡 𝜅̂
𝑥
𝑡 )E[𝑃 𝑥

𝑡+𝑑𝑡]. Using this 
relationship (in line 2), the seller’s payoff becomes
𝑈𝑥
𝑡 (,) = − +(1 − 𝜅̂𝑥𝑡 )E[𝑃

𝑥
𝑡+𝑑𝑡]

= 𝑣() −𝜅̂𝑥𝑡 (1 − 𝜈𝑥𝑡 )E[𝑃
𝑥
𝑡+𝑑𝑡]

= 𝑣() −
𝜅̂𝑥𝑡 (1 − 𝜈𝑥𝑡 )(𝑣() + )

1 − 𝜈𝑥𝑡 𝜅̂
𝑥
𝑡

=
𝑣()(1 − 𝜅̂𝑥𝑡 ) − 𝜅̂𝑥𝑡 (1 − 𝜈𝑥𝑡 )

1 − 𝜈𝑥𝑡 𝜅̂
𝑥
𝑡

,

where we used (E.57) to transition from line 2 to 3. Provided 𝑣′() ≥
𝜅̂𝑥𝑡 (1−𝜈

𝑥
𝑡 )

1−𝜅̂𝑥𝑡
 for all  ∈ [0, 1] — which holds by (E.55) — it follows that 

𝑈𝑥
𝑡 (,) increases in . Since  increases in  by (E.57), we have 

 = 𝑚𝑥
𝑡

𝑃 𝑥
𝑡
, i.e., the cash-in-advance constraint optimally binds.

The seller is paid 𝑚𝑥
𝑡 ∕𝑃

𝑥
𝑡  units of currency and, by (E.57), the seller 

produces  = 𝑥
𝑡  service units, satisfying 

𝑣(𝑥
𝑡 ) + 𝑥

𝑡 = 𝑚𝑥
𝑡 (1 − 𝜈𝑥𝑡 𝜅̂

𝑥
𝑡 )(1 + 𝑟𝑥𝑡 𝑑𝑡). (E.58)

Clearly, 𝑥
𝑡 > 𝑥

𝑡 . The seller’s payoff becomes 𝑚𝑥
𝑡 (1− 𝜅̂𝑥𝑡 )(1+𝑟𝑥𝑡 𝑑𝑡)−𝑆𝑥

𝑡 >
0.

E.4. Expected utility

Next, the model can allow for currency 𝑥 to pay a nominal interest 
at rate 𝑖𝑥𝑡 ; this assumption allows us to encompass the formulation of 
Section 3.3. We assume that the user earns the interest payment on 
currency 𝑥 of 𝑖𝑥𝑡 𝑚𝑥

𝑡 𝑑𝑡 regardless of whether it spends its currency-𝑥
holdings in a transaction to pay the seller. Since the interest payment 
is of order 𝑑𝑡 and transactions with sellers occur with probabilities 
of order 𝑑𝑡, this assumption is inconsequential (i.e., the probability 
of transacting times the interest payment is of order (𝑑𝑡)2 and, thus, 
negligible).

Then, at time 𝑡, the user’s expected utility becomes (ignoring terms 
of order (𝑑𝑡)2 and higher):
𝑡 ∶=

∑

𝑥=𝐴,𝐵,𝐶
𝑍̂𝑥

𝑡 𝑑𝑡
{

𝜒𝑥
𝑡

[

𝑣(
𝑥
𝑡 ) + 

𝑥
𝑡 + 𝑚𝑥

𝑡 𝜈
𝑥
𝑡 𝜅̂

𝑥
𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡)

]

+ (1 − 𝜒𝑥
𝑡 )𝑚

𝑥
𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡)

}

+
∑

𝑥=𝐴,𝐵,𝐶
(1 − 𝑍̂𝑥

𝑡 𝑑𝑡)𝑚
𝑥
𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡) +

∑

𝑥=𝐴,𝐵,𝐶
𝑚𝑥

𝑡 𝑖
𝑥
𝑡 𝑑𝑡.

Using (E.56), we can write 𝑣(𝑆𝑥
𝑡 ) = 𝑣

(

𝑚𝑥
𝑡 (1 − 𝜅̂𝑥𝑡 )

)

+ 𝑜(𝑑𝑡). We can insert 
this relationship into above expression for 𝑡, ignore terms of order 
(𝑑𝑡)2 or higher, and simplify to obtain:

𝑡 =
∑

𝑥=𝐴,𝐵,𝐶
𝜒𝑥
𝑡 𝑍̂

𝑥
𝑡

[

𝑣
(

𝑚𝑥
𝑡 (1−𝜅̂

𝑥
𝑡 )
)

−𝜅̂𝑥𝑡 (1−𝜈
𝑥
𝑡 )𝑚

𝑥
𝑡

]

𝑑𝑡+
∑

𝑥=𝐴,𝐵,𝐶
𝑚𝑥
𝑡 (𝑟

𝑥
𝑡 +𝑖

𝑥
𝑡 )𝑑𝑡+1.

Employing CRRA utility, i.e., 𝑣(𝑚) = 𝑚1−𝜂

1−𝜂 , we get 

𝑡 = 1 +
∑

𝑥=𝐴,𝐵,𝐶
𝑍𝑥

𝑡 𝑣(𝑚
𝑥
𝑡 )𝑑𝑡 +

∑

𝑥=𝐴,𝐵,𝐶
𝑚𝑥
𝑡 (𝑟

𝑥
𝑡 + 𝑖𝑥𝑡 − 𝜅𝑥

𝑡 )𝑑𝑡. (E.59)

Here,

𝜅𝑥
𝑡 ∶= 𝑍̂𝑥

𝑡 𝜒
𝑥
𝑡 𝜅̂

𝑥
𝑡 (1 − 𝜈𝑥𝑡 )

and, most importantly, 

𝑍𝑥
𝑡 ∶= 𝑍̂𝑥

𝑡 𝜒
𝑥
𝑡 (1 − 𝜅̂𝑥𝑡 )

1−𝜂 , (E.60)

where we write for notational convenience 𝑍𝐶
𝑡 = 𝑌𝑡. We note that the 

convenience parameters 𝑍𝑥
𝑡  reflect the (1) the probability that a buyer 

encounters a seller who accepts the respective currency (i.e., 𝑍̂𝑥
𝑡 ), (2) 

transaction costs 𝜅̂𝑥𝑡  and (3) the user’s bargaining power relative to 
sellers 𝜒𝑥

𝑡 . Interestingly, even if transaction fees are fully rebated to 
the user, i.e., 𝜈𝑥𝑡 = 1, the transaction fees 𝜅̂𝑥𝑡  still distort transactions 
away from the optimum and thus limit convenience.30

Note that the baseline obtains upon setting ̂𝑖𝑥𝑡 = 0 (currency does not 
earn interest) and either of (i) 𝜅̂𝑥𝑡 = 0 or (ii) 𝜈𝑥𝑡 = 1, bearing in mind 
that 𝑌𝑡 = 𝑍𝐶

𝑡 . In particular, under these assumptions,   from (E.59) 
coincides with (2) and (11).

The stipulation of expected utility in the model variant with UIP 
and interest rates in Appendix  C — specifically, (C.49) — is obtained 
upon setting 𝑖𝑥𝑡 = (1 − 𝛼𝑥𝑡 )𝑖

𝑥 for 𝑥 = 𝐴,𝐵 and 𝑖𝐶 = 0. In addition, either 
of (i) 𝜅̂𝑥𝑡 = 0 or (ii) 𝜈𝑥𝑡 = 1 must hold too.

Finally, we note that in our micro-foundation, the medium-of-
exchange and store-of-value functions of money complement each 
other. When a currency offers higher expected returns and serves as 
a better store of value, it becomes less costly for users to hold this 
currency ‘‘in advance’’ for payments, thereby reinforcing its role as 
a medium of exchange. In contrast to our micro-foundation based 
on random search and matching, Goldstein et al. (2023) abstract 
away from search, instead focusing on coordination. They establish a 

30 When the transaction cost is fully rebated and 𝜈𝑥𝑡 = 1, the transaction 
cost is not a deadweight loss, but represents a (suboptimal) transfer between 
the user and the sellers. Without cash-in-advance constraint, one could offset 
this transfer through higher payments from the user to the sellers. However, 
because the cash-in-advance constraint binds, this is not possible. As a result, 
the transaction costs represent a distortion limiting payment convenience, even 
if 𝜈𝑥𝑡 = 1.
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conflict between the store-of-value and medium-of-exchange functions 
of money, which can lead to fragility.

Likewise, as shown in Doepke and Schneider (2017), Gopinath and 
Stein (2021), the unit-of-account function of money can be viewed 
as complementary to the medium-of-exchange and store-of-value func-
tions. For instance, the U.S. dollar acts as store of value and widely 
accepted medium of exchange, as it is often used as a unit of account 
(e.g., for invoicing in international trade); at the same time, medium-of-
exchange and store-of-value functions reinforce the U.S. dollar’s role as 
international unit of account. In short, while we base the convenience 
of money on its medium-of-exchange function, the complementarity of 
the three functions suggests that this convenience may also reflect other 
monetary functions.

E.5. Determinants of payment convenience

The micro-foundation sheds light on the determinants of the con-
venience utility from (2) and, specifically, the parameters 𝑍𝑥

𝑡  and 𝑌𝑡 =
𝑍𝐶

𝑡 . Eq. (E.60) shows that the convenience scale parameters 𝑍𝑥
𝑡  and 

𝑌𝑡 depend on (1) the probability that a buyer encounters a seller who 
accepts the respective currency (i.e., 𝑍̂𝑥

𝑡 ), (2) transaction costs 𝜅̂𝑥𝑡  and 
(3) the user’s bargaining power relative to sellers 𝜒𝑥

𝑡 . We discuss each 
of these factors of in greater detail and what they represent in reality. 
We also argue how they drive the convenience of fiat monies and PDM.

1. Probability of Meeting a Seller and Transacting. The variable 
𝑍̂𝑥

𝑡  represents the probability of a successful transaction using 
currency 𝑥. This probability is influenced by the payment tech-
nology underlying currency 𝑥 as well as the overall level of its 
acceptance or adoption.
To better see why 𝑍̂𝑥

𝑡  captures payment technology (e.g., in 
terms of settlement speed), suppose that the user meets a type-𝑥
seller with a probability normalized to 𝜋𝑥

𝑡 𝑑𝑡. Provided a meeting 
occurs, the seller and the user try to transact but the payment is 
successfully processed within [𝑡, 𝑡+𝑑𝑡] only with probability 𝑧̂𝑥𝑡 𝑑𝑡
— if the payment is not successful (for instance, because it fails 
or is not processed on time), the transaction is not successful, 
i.e., does not occur. Then, the probability that a transaction 
occurs can be written 𝑍̂𝑥

𝑡 𝑑𝑡, with 𝑍̂𝑥
𝑡 = 𝜋𝑥

𝑡 𝑧̂
𝑥
𝑡  being the product of 

a meeting rate and the probability that the payment is successful 
and settled fast enough.
Naturally, a currency becomes more convenient when it is 
widely accepted and easy to transact with. The likelihood that 
a buyer meets a seller accepting 𝑥, that is, 𝑍̂𝑥

𝑡  should reflect the 
number of sellers accepting or offering services in exchange for 
currency 𝑥. This mechanism is subject to network effects. As we 
sketch in Appendix  E.6 — where we endogenize the number of 
services that can be bought with currency 𝑥 — a higher number 
of services that can be bought with 𝑥 makes currency 𝑥 more 
convenient for users, drawing users to currency 𝑥, which, in turn, 
makes it more appealing for sellers to accept currency 𝑥 for a 
wider range of services.
Consequently, currencies like the U.S. dollar are convenient 
relative to other fiat currencies (i.e., have a high 𝑍𝑥

𝑡 ) because 
they are widely accepted and benefit from the large size of the 
U.S. economy, which facilitates numerous dollar-based trans-
actions (including digital ones). Similarly, the convenience of 
PDM could arise from its integration with digital platforms and 
ecosystems, where transactions often require specific types of 
PDM for settlement. For example, Ether is convenient because 
it is widely used within the expansive Ethereum ecosystem, and 
Alipay is convenient due to its applicability across a broad range 
of services within Alibaba’s ecosystem. This source of payment 
convenience becomes increasingly significant as the size of the 
digital platform on which the PDM is integrated or accepted 

grows. Specifically, the growing importance of digital platforms 
contributes to the rise in PDM convenience, modeled in (4).
Finally, we argue that slow settlement speeds, outdated payment 
technologies, and limited payment functionalities or usability 
(e.g., the inability to support blockchain transactions, certain 
digital platforms, or cross-border payments) constrain the digital 
payment convenience of fiat money. Certain forms of PDM may 
have an advantage over fiat money in these areas by offering 
faster transactions, unique payment functionalities, or a broader 
scope of payment services and usability. Fiat digitization, how-
ever, can address these issues by enabling faster payments and 
enhancing payment technologies and functionalities. Addition-
ally, digitization may increase the convenience of fiat money 
by expanding its usability — both geographically (e.g., by sup-
porting cross-border transactions) and across services (e.g., by 
supporting blockchain-based transactions).

2. Transaction Costs. The transaction cost parameter 𝜅̂𝑥𝑡  inversely 
affects convenience, i.e., 𝑍𝑥

𝑡  decreases with 𝜅̂𝑥𝑡 . The transaction 
cost can be of monetary nature (e.g., credit card interchange 
fees) or a utility cost (e.g., settlement delays, cost of processing 
transactions via PoS, or similar). Specifically, the transaction 
cost may capture that due to delays in payment settlement, 
either the seller receives payment late or the user receives the 
service late — both of which are costly.31
We think that such transactions costs, both monetary (e.g., fees 
charged by costly payment intermediaries such as credit card 
companies) and utility costs (reflecting settlement delays), are 
important frictions limiting the convenience of fiat money in 
digital payment. Certain features of cryptocurrencies and tokens 
(e.g., smart contracting or decentralization in cryptocurrencies) 
and non-bank payment systems can reduce dependence on costly 
payment intermediaries by bypassing traditional bank payment 
rails, thereby reducing transaction costs. Together, these factors 
enhance the convenience of PDM relative to fiat money.32
The digitization of fiat money can also mitigate these frictions 
by reducing reliance on costly payment intermediaries (such 
as credit card companies) and enabling faster, even instant, 
payments. For instance, the introduction of a fast, government-
led payment system — such as Brazil’s Pix or India’s UPI — 
could increase payment speed and reduce reliance on credit 
card companies. In addition, a government-led payment system 
may exert competitive pressure on payment intermediaries, thus 
lowering their fees.

3. Bargaining Power. We argue that a larger user bargaining 
power vis-a-vis sellers (i.e., higher 𝜒𝑥

𝑡 ) could be linked to better 

31 To model this more formally, one could assume that upon a successful 
transaction between the user and a type-𝑥 seller, the payment is initiated at 
time 𝑡 + 𝑑𝑡, but only succeeds at time 𝑇 𝑆 arriving at a Poisson rate 𝜆𝑥𝑡 . Thus, 
the seller must wait on average E[𝑇 𝑆 − 𝑡 + 𝑑𝑡] = 1∕𝜆𝑥𝑡  units of time before 
receiving the payment. Further, consider that the seller discounts at rate 𝜌 > 0. 
Then, a payment worth one unit of consumption good at initiation at 𝑡+ 𝑑𝑡 is 
worth to the seller only 𝜆𝑥𝑡

𝜌+𝜆𝑥𝑡
< 1. Abstracting from price movements between 

payment initiation and settlement, one could then 𝜅̂𝑥
𝑡 ≃ 𝜆𝑥𝑡

𝜌+𝜆𝑥𝑡
. For instance, 

we could assume that an intermediary stands ready to hedge exchange rate 
movements at zero cost so that a payment has the same consumption good 
value at initiation and settlement. Otherwise, the seller values a payment of 
one (nominal) unit of currency at time 𝑡+𝑑𝑡 as 𝜆

𝑥
𝑡 E[𝑃

𝑥
𝑇𝑆

]

𝜌+𝜆𝑥𝑡
< 1, which would lead 

to qualitatively similar outcomes.
32 Cryptocurrencies and tokens promise decentralization and the ability to 
bypass costly payment intermediaries. In particular, their smart contracting 
features (see, e.g., Cong and He (2019)) enable intermediary-free transac-
tions. These features, combined with their decentralized nature, can reduce 
transaction fees for certain transactions, contributing to the digital payment 
convenience of PDM.
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privacy features inherent in currency 𝑥. For this sake, we draw 
on a large literature in industrial organization, which shows 
that sellers can leverage user data to price discriminate (see, 
e.g., Bergemann et al. (2015), Brunnermeier et al. (2023)), effec-
tively allowing them to charge higher prices for their services. 
More relevant in our context, Garratt and Van Oordt (2021) 
show how sellers could use data collected through payments 
with currency 𝑥 to price discriminate future consumers that pay 
using currency 𝑥. Thus, according to their argument, enhanced 
privacy features imply less such price-discrimination and better 
prices for users, which we could capture by higher 𝜒𝑥

𝑡 .33
Therefore, strong privacy features (as seen in, e.g., some cryp-
tocurrencies and tokens) contribute to the digital payment con-
venience of PDM. In contrast, digital fiat money (especially in 
the form of bank deposits) offers weaker privacy features absent 
digitization. However, privacy-enhancing currency digitization 
— for instance, through launching CBDC (as discussed in Garratt 
and Van Oordt, 2021; Ahnert et al., 2022b; Garratt et al., 2022) 
— could improve privacy features in digital fiat money, thus 
increasing its convenience.

E.6. Endogenous network effects and payment adoption

Taking our micro-foundation one step further, we could endogenize 
the number of (homogeneous) services that the user can pay for with 
currency 𝑥. For instance, assume that there is one representative user 
and one representative seller only accepting currency 𝑥. There is a 
large mass of potential services that the seller may offer. Offering 𝑛𝑥𝑡
services entails a quadratic cost 𝑘

𝑥
𝑡 (𝑛

𝑥
𝑡 )

2

2 𝑑𝑡 with cost parameter 𝑘𝑥𝑡 . This 
cost parameter could capture the cost of using the payment system and 
accepting currency 𝑥 as payment for certain services (e.g., the cost of 
setting up international payment or setting up PoS).34

The user buys at most one service from the seller. The probability 
of successfully transacting and buying an individual service is assumed 
to be 𝑍̂𝑥

𝑡 𝑑𝑡 with 𝑍̂𝑥
𝑡 = 𝑧̂𝑥𝑡 𝑛

𝑥
𝑡  where 𝑧̂𝑥𝑡 > 0 is taken as given and 𝑛𝑥𝑡  is 

the endogenous number of services. Hence, the number of successfully 
transacting increases in the number of services offered by the represen-
tative seller. While we set up this variant with one representative user 
and one representative seller, one can interpret it also as describing a 
mass of users and a mass of sellers (offering different services).

The heuristic timing over [𝑡, 𝑡 + 𝑑𝑡] is as follows. The type-𝑥 seller 
first chooses 𝑛𝑥𝑡  against cost 

𝑘𝑥𝑡 (𝑛
𝑥
𝑡 )

2

2 𝑑𝑡. Then, our aforementioned micro-
foundation applies. Specifically, the seller is matched with the user with 
probability 𝑍̂𝑥

𝑡 𝑑𝑡 = 𝑧̂𝑥𝑡 𝑛
𝑥
𝑡 𝑑𝑡 — in which case the transaction occurs. The 

seller cannot extract any surplus with probability 𝜒𝑥
𝑡 . With probability 

1−𝜒𝑥
𝑡 , however, the seller has full bargaining power and makes a TIOLI 

offer to the user. The seller then is paid 𝑚𝑥
𝑡 ∕𝑃

𝑥
𝑡  units of currency 𝑥 and 

delivers 𝑆𝑥
𝑡  units of service, with 𝑆𝑥

𝑡  characterized in (E.58); recall the 
seller incurs a proportional transaction cost, so its payoff then reads 
[

(1 − 𝜅̂𝑥𝑡 )𝑚
𝑥
𝑡 (1 + 𝑟𝑥𝑡 𝑑𝑡) − 𝑆𝑥

𝑡
]

.

33 Likewise, Ahnert et al. (2022b) show how enhanced payment privacy can 
benefit users through better ‘‘service prices’’ when banks bundle lending and 
payment services.
34 The increasing cost reflects that, for some services, it is easy or natural for 
merchants to accept currency 𝑥 as payment (e.g., a U.S.-based service catering 
to U.S. customers and paid in dollars). However, for other services, it is more 
difficult and costly to accept the currency — for instance, a Chinese seller 
incurs additional costs when selling goods in the U.S. for dollar payments. As 
the representative seller expands the range of services offered in currency 𝑥, 
they first exhaust the easier, low-cost options and then take on services that 
involve higher payment costs.

The seller’s total expected payoff can be written as (ignoring terms 
of order (𝑑𝑡)2 or higher):

𝑧̂𝑥𝑡 𝑛
𝑥
𝑡 (1 − 𝜒𝑥

𝑡 )
[

𝑚𝑥
𝑡 (1 − 𝜅̂𝑥𝑡 ) − 𝑆𝑥

𝑡
]

𝑑𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Expected Transaction Utility
−

𝑘𝑥𝑡 (𝑛
𝑥
𝑡 )

2

2
𝑑𝑡

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Initial Cost

,

where 𝑆𝑥
𝑡  solves (E.58). Observe that 𝑆𝑥

𝑡  is strictly smaller than 𝑚𝑥
𝑡  and 

increases in 𝑚𝑥
𝑡 .

Now, consider that the seller chooses 𝑛𝑥𝑡  to maximize its payoff, 
taking 𝑚𝑥

𝑡  as given (which depends on 𝑛𝑥𝑡  in equilibrium). Then, 𝑛𝑥𝑡
satisfies

𝑛𝑥𝑡 =
𝑧̂𝑥𝑡
𝑘𝑥𝑡

(1 − 𝜒𝑥
𝑡 )
[

𝑚𝑥
𝑡 (1 − 𝜅̂𝑥𝑡 ) − 𝑆𝑥

𝑡
]

.

This relation leads to network effects: Higher 𝑚𝑥
𝑡  implies higher 𝑛𝑥𝑡 , 

while higher 𝑛𝑥𝑡  leads to higher 𝑍̂𝑥
𝑡  and 𝑍𝑥

𝑡 , and thus higher 𝑚𝑥
𝑡 . One can 

then solve for equilibrium 𝑚𝑥
𝑡  and 𝑛𝑥𝑡  by solving a fixed point problem 

(that possibly admits multiple solutions).
The analysis highlights the importance of network effects in de-

termining currency convenience. It also shows that potentially small 
changes in 𝑧̂𝑥𝑡  — e.g., due to technological improvements of the pay-
ment technology — can lead to rather large increases in currency 
convenience due to these network effects. Moreover, note that a de-
crease in 𝑘𝑥𝑡  implies higher 𝑍̂𝑥

𝑡  and 𝑍𝑥
𝑡 . Thus, digitization that decreases 

the cost of adopting a currency for payment (e.g., reducing the seller’s 
cost of accepting payments in a currency for a specific service) improves 
that currency’s convenience. For instance, CBDC or instant payment 
systems reduce the cost for sellers of accepting digital payment for a 
specific service, thus enhancing the currency’s convenience.

E.7. The evolution of PDM convenience

We discuss the assumption that the convenience of PDM evolves 
continuously according to (4), while the convenience of fiat money 
changes discontinuously, experiencing a jump following successful dig-
itization at time 𝑇 𝑥. This assumption reflects that the digitization of 
fiat money — whether through the launch of a new payment system, 
an upgrade to an existing system, or the introduction of a CBDC — 
occurs infrequently and represents significant changes or disruptions to 
the bank-railed and government-led payment systems. For this reason, 
we model the effects of fiat currency digitization as a jump rather 
than a gradual process. For simplicity, we consider only a one-time 
digitization, though the model could be extended to allow for multiple 
stages in the digitization process.

In contrast, PDM encompasses various forms of payment systems 
and digital currencies, each evolving over time, with some achieving 
significant breakthroughs. When aggregated, their convenience evolves 
more gradually over time compared to that of fiat money. To illustrate 
this argument more formally, consider that PDM encompasses a con-
tinuum of different payment services, indexed by 𝑖 ∈ [0, 1] and with 
individual payment convenience 𝑌 𝑖

𝑡 . For any 𝑖 ∈ [0, 1], the payment 
convenience evolves according to
𝑑𝑌 𝑖

𝑡

𝑌 𝑖
𝑡

= 𝜇̂𝑑𝐽 𝑖
𝑡 ,

where 𝑑𝐽 𝑖
𝑡 ∈ {0, 1} is a jump process with E[𝑑𝐽 𝑖

𝑡 ] = 𝛬𝑖
𝑡𝑑𝑡 and 𝜇̂ ≥

0. Then, by the law of large numbers and under standard regularity 
conditions, we have that aggregate PDM convenience 𝑌𝑡 defined as

𝑌𝑡 = ∫

1

0
𝑌 𝑖
𝑡 𝑑𝑖,

evolves according to
𝑑𝑌𝑡
𝑌𝑡

= 𝜇̂

[

∫

1

0
𝛬𝑖
𝑡𝑑𝑖

]

𝑑𝑡.
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Fig. F.1. Replication of Fig.  2: The Dynamics of Digitization Efforts. Panel A depicts 𝐴’s effort as a function of ln(𝑌 ) in states 𝑧 = 0 (solid black line) and 𝑧 = 𝐵 (dotted red line). 
Panel B depicts 𝐵’s effort as a function of ln(𝑌 ) in states 𝑧 = 0 (solid black line) and 𝑧 = 𝐴 (dotted red line). Panel C plots the sum of countries’ efforts against ln(𝑌 ) in states 
𝑧 = 0 (solid black line), 𝑧 = 𝐵 (dotted red line), and 𝑧 = 𝐴 (dashed yellow line). Panel D plots the effort difference against ln(𝑌 ) in state 𝑧 = 0. We use our baseline parameters 
from Section 2.2, in addition to 𝛼𝐴𝑖𝐴 = 0.01 and 𝛼𝐵 𝑖𝐵 = 0.03 (across all states 𝑧). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. F.2. Modeling the benefits of digitization through improved passthrough. Panel A plots country 𝐴’s against ln(𝑌 ) in state 𝑧 = 0 (solid black line) and state 𝑧 = 𝐵 (dotted red 
line). Panel B plots country 𝐵’s against ln(𝑌 ) in state 𝑧 = 0 (solid black line) and state 𝑧 = 𝐴 (dotted red line). Panel C plots total efforts, i.e., the sum of individual efforts, against 
ln(𝑌 ), for 𝑧 = 0 (solid black line), 𝑧 = 𝐵 (dotted red line), and 𝑧 = 𝐴 (dashed yellow line). We set 𝑖𝐴 = 0.01, 𝑖𝐵 − 0.1, 𝛼𝑥(−𝑥) = 𝛼𝑥(0) = 1, and 𝛼𝑥(𝑥) = 𝛼𝑥(𝐴𝐵) = 0.1. And, 𝜌 = 𝜃 = 0. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Assuming that ∫ 1
0 (𝛬

𝑖
𝑡)𝑑𝑖 ∝ 𝑚𝐶

𝑡 , the law of motion (4) follows. This 
assumption could potentially be micro-founded by considering that 
individual payment services evolve proportionally to their adoption 
level. For instance, let 𝑚𝐶𝑖

𝑡  the adoption of PDM service 𝑖 and define 
𝑚𝐶
𝑡 ≡ ∫ 1

0 𝑚𝐶𝑖
𝑡 , and assume that 𝛬𝑖

𝑡 ∝ 𝑚𝐶𝑖
𝑡 , which implies ∫

1
0 (𝛬

𝑖
𝑡)𝑑𝑖 ∝ 𝑚𝐶

𝑡 .

Appendix F. Robustness and additional figures

This Appendix presents additional (non-essential) figures, yielding 
additional results and underscoring the robustness of our findings. 
These figures are discussed and referenced in the main text.
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Fig. F.3. Interest rates and digitization. This figure presents comparative statics in 𝛼𝐴𝑖𝐴. Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 ) for three 
different levels of 𝛼𝐴𝑖𝐴. Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). We divide all baseline parameters from Section 2.2, which are related to 
currency convenience, by 15, leading to 𝑍𝐴

𝐿 = 1∕15, 𝑍𝐵
𝐿 = 0.2∕15, 𝛥𝐹 𝑖𝑥𝑒𝑑 = 1∕15, 𝑌 = 5∕15, and 𝑌0 = 0.1∕15 while all other parameters remain unchanged. We set 𝛼𝐵 𝑖𝐵 = 0.03, and 

𝜌 = 𝜃 = 0.

Fig. F.4. Myopia and effort. This figure presents comparative statics in 𝛿. Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0 against ln(𝑌 ) for three different levels of 
𝛿. Panel C plots total efforts, i.e., the sum of individual efforts, against ln(𝑌 ). We use our baseline parameters from Section 2.2, but set 𝑌0 = 0.5 for Panel C.

Fig. F.5. Positive spillovers in digitization costs. This figure presents comparative statics in 𝛼, starting from 𝛼 = 0. Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 𝑧 = 0
against ln(𝑌 ) for three different levels of 𝛼. Panel C plots 𝐴’s effort in state 𝑧 = 𝐵, while Panel D plots 𝐵’s effort in state 𝑧 = 𝐴.
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Fig. F.6. Positive spillovers in digitization benefits. This figure presents comparative statics in 𝛼𝐶 , starting from 𝛼𝐶 = 0. Panels A and B plot country 𝐴’s and 𝐵’s efforts in state 
𝑧 = 0 against ln(𝑌 ) for three different levels of 𝛼𝐶 . Panel C plots 𝐴’s effort in state 𝑧 = 𝐵, while Panel D plots 𝐵’s effort in state 𝑧 = 𝐴. We use our baseline parameters from 
Section 2.2.
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