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A B S T R A C T

I show that prices impact analyst cash flow expectations and argue this impact can partially reconcile subjective
beliefs data with asset pricing models in which investors have rational expectations and discount rate variation
drives prices. Previous work argues that correlations of biased analyst cash flow expectations with prices and
future returns contradict rational models and imply biased investor expectations distort prices. However, using
two instrumental variables for price, I find increases in price unrelated to cash flow news raise analyst cash
flow expectations. Based on this empirical finding, I propose a model with rational investors that matches
key moments in beliefs data: analysts form biased cash flow expectations by learning from prices that contain
discount rate variation. Thus, while stylized facts in beliefs data can be consistent with investors having biased
expectations that distort prices, these facts can also be consistent with investors having rational expectations
and analysts learning from prices.

1. Introduction

Can models in which investors have rational expectations and dis-
count rate variation drives asset prices resolve puzzles such as excess
volatility and return predictability? A growing literature argues against
this possibility because such models seem to conflict with stylized facts
from subjective beliefs data. Specifically, equity research analyst cash-
flow expectations not only correlate strongly with prices, they also have
predictable forecast errors and negatively predict future returns.1 More-
over, subjective expected returns correlate only weakly with prices.2 By
contrast, in models featuring investors with rational expectations, fore-
cast errors are not predictable, cash flow expectations do not predict
returns, and expected returns correlate strongly negatively with prices.
Thus, previous work interprets these facts from subjective beliefs data
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1 De Bondt and Thaler (1990), Rafael (1996), Chen et al. (2013), Delao and Myers (2021), Bordalo et al. (2019, 2024) and Delao et al. (2023)
2 Delao et al. (2023) document this fact using analyst subjective expected returns in the cross section.

as evidence that investors share analysts’ biased cash flow expectations,
which in turn impact prices (De Bondt and Thaler, 1990; Rafael, 1996;
Bordalo et al., 2019, 2024; Delao and Myers, 2021, 2024; Nagel and
Xu, 2021; Delao et al., 2023).

This paper, however, proposes a potential reconciliation between
beliefs data and models featuring investors with rational expectations:
I demonstrate prices impact analyst cash flow expectations. Using two
complementary instrumental variables (IVs) for price from previous
work, I find in the cross section of stocks that price increases unrelated
to cash flow news raise analyst cash flow expectations. An exogenous
1% price increase driven by these IVs raises long-term earnings growth
(LTG) expectations by 5 basis points and one to four year earnings-per-
share (EPS) expectations and forecast errors by 20 to 40 basis points.
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This mechanism is economically significant: it explains about half of
the covariance of prices with analyst expectations and forecast errors.

To illustrate how this mechanism can partially reconcile subjective
beliefs data and models featuring investors with rational expectations,
I propose such a model that quantitatively matches several subjective
belief and cross-sectional asset pricing moments. Investors have private
information (Grossman and Stiglitz, 1980; Hellwig, 1980) and discount
rate variation drives excess volatility and return predictability. This pri-
vate information motivates analysts to learn from prices as a signal of
future cash flows. However, analysts inadvertently learn from discount
rate variation in prices as well. Hence, analysts form biased cash flow
expectations that predict returns and return expectations that correlate
weakly with prices. Thus, private information generates an impact of
prices on analyst expectations, and creates belief heterogeneity that
allows the model to match subjective belief moments even though
investors are rational.

Overall, my results suggest that models in which investors have ra-
tional expectations and discount rate variation drives asset prices need
not conflict with stylized facts documented in subjective beliefs data.
There remains an open question of what factors drive the discount rate
variation that impacts prices and, in turn, analyst expectations. In par-
ticular, my empirical results suggest investor frictions and noise flows,
in addition to risks and preferences, may be important drivers of such
variation.3 At the same time, it remains possible that investors do have
biased cash flow expectations, or that some investors overreact to prices
as analysts do. Ultimately, while analyst expectations remain a useful
tool to explore these possibilities, they alone are likely insufficient.
Since the impact of prices on cash flow expectations arises naturally
in models with heterogeneous beliefs, my results suggest heterogeneity
may be an important feature of subjective beliefs data and analyst
expectations may not align with those of investors. Thus, determining
the impact of investor beliefs on asset prices will likely require direct
measures of investor beliefs4 or empirical strategies accounting for
heterogeneity between analysts and investors.5 Additionally, since my
results are in the cross section of equities, there is an open question of
how prices impact cash flow expectations for the aggregate market.

I start by explaining the challenge in measuring the impact of
prices on analyst cash flow expectations (in Section 2). If analysts and
investors learn from the same cash flow news, then prices may correlate
with analyst expectations without impacting them due to omitted vari-
able bias. Thus, while some prior work uses reduced-form regressions
to suggest prices impact analyst expectations, it neither quantifies this
impact nor explores its relevance for asset pricing models.6 To quantify
this impact, I need instrumental variables that provide exogenous price
variation: variation from noise trading unrelated to cash flow news.
Section 2 presents my empirical framework and the relevance and
exogeneity conditions for a valid instrument.

I use two instruments for price from previous work to overcome
this challenge: changes in benchmarking intensity around Russell index
reconstitutions (Pavlova and Sikorskaya, 2023) and mutual fund flow-
induced trading (Lou, 2012; Li, 2022; Ben-David et al., 2022; Li et al.,

3 For example, it is possible that investors have rational expectations and
noise flows drive discount rate variation (e.g. as in Gabaix and Koijen, 2020).
Such a model would seem to conflict with subjective beliefs data: investors’
cash flow expectations would neither feature predictable forecast errors nor
predict returns, and their expected returns would correlate strongly negatively
with prices. The impact of prices on analyst cash flow expectations that I
document offers a potential reconciliation between subjective beliefs data and
this type of model, as well as other models with different sources of discount
rate variation.

4 E.g. Giglio et al. (2021), Dahlquist and Ibert (2024) and Couts et al.
(2023)

5 E.g. McCarthy and Hillenbrand (2021), Bianchi et al. (2023) and
Chaudhry (2024)

6 E.g. Brown et al. (1987), Lys and Sohn (1990), Abarbanell (1991), Forbes
and Skerratt (1992), Guay et al. (2011) and Miller and Sedor (2014)

2022; Van der Beck, 2021, 2022). Though these instruments use differ-
ent assumptions, they yield consistent estimates of the impact of prices
on analyst cash flow expectations, which underscores the robustness of
this finding.

My first instrument for price is benchmarking intensity (BMI) changes
around Russell index reconstitutions, following Pavlova and Sikorskaya
(2023) (in Section 4). This instrument uses changes in the amount
of benchmarked institutional capital following different stocks from
funds tracking the Russell indices. Each June, stocks mechanically enter
and exit the Russell 1000 and 2000 based on which side of a cutoff
their May market caps fell on. Thus, the flows from benchmarked
funds prompted by this reconstitution and the resulting price pressure
are (conditionally) exogenous to June cash flow news (Chang et al.,
2014; Crane et al., 2016; Glossner, 2019). In particular, the BMI
measure of Pavlova and Sikorskaya (2023) captures the total change
in benchmarked capital when a stock mechanically switches not only
between the Russell 1000 and 2000 Blend indices, but also between
the Value and Growth indices. Using June BMI changes for stocks near
the market cap cutoffs to instrument for price, I find an exogenous 1%
price increase raises analyst one to four year EPS expectations by 40
basis points.

My baseline specification using the BMI instrument addresses poten-
tial threats to instrument validity. First, I use May, not June, market
caps to calculate the Russell cutoffs to avoid selection bias (Chang
et al., 2014; Appel et al., 2021; Wei and Young, 2021). Second, I
use the method of Ben-David et al. (2019) to approximate proprietary
Russell market caps using standard databases, which allows accurate
prediction of index assignment and avoids the threat posed by market
cap mismeasurement (Glossner, 2019; Wei and Young, 2021).

In robustness checks I address additional potential threats (in Sec-
tion 4.2). First, I show BMI increases do not forecast future profitability
increases (consistent with Pavlova and Sikorskaya, 2023), which sug-
gests analysts do not respond to real effects induced by BMI increases.7
Second, I show the price impact of BMI changes reverts over time, as
often expected of non-fundamental price changes.

My second instrument for price is the mutual fund flow-induced
trading (FIT) instrument of Lou (2012), similar to the flow-to-stock
instrument of Wardlaw (2020) (in Section 5). Flows induce funds to
do some mechanical rebalancing: funds tend to scale their preexisting
holdings proportionally in response to flows. This mechanical compo-
nent of the cross-sectional trading induced by flows is uninformed and
can provide exogenous price variation. An exogenous 1% price increase
raises analyst one to four-year EPS expectations by 20 basis points (not
statistically distinct from the estimate using the BMI instrument). This
impact does not shrink as the forecast horizon grows. Moreover, the
greater coverage of the FIT instrument than the BMI instrument (all
stocks held by mutual funds versus only those in narrow windows
around Russell cutoffs) allows precise measurement of the impact of
prices on LTG expectations, which far fewer analysts report than annual
EPS expectations. An exogenous 1% price increase raises LTG expecta-
tions by 5 basis points. For both expectations types, these increases do
not revert over the next year, but do so over longer horizons as the
price impact of the FIT instrument reverts.

My baseline specification using the FIT instrument addresses po-
tential threats to instrument validity. First, I use the Lou (2012) FIT
instrument, which is not subject to the Wardlaw (2020) critique of
the Edmans et al. (2012) version of this instrument.8 Second, I note
that, as a shift-share instrument, FIT does not require exogenous flows
(Goldsmith-Pinkham et al., 2020): correlations of flows with various

7 E.g. Appel et al. (2016), Crane et al. (2016), Schmidt and Fahlenbrach
(2017), Appel et al. (2019, 2021) and Heath et al. (2022)

8 Wardlaw (2020) demonstrates the Edmans et al. (2012) construction of
mutual fund flow-induced trading mechanically depends on the current-period
return and argues this dependence threatens the instrument’s exogeneity.
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objects9 do not threaten exogeneity. The instrument’s variation comes
from variation in fund ownership shares across stocks, so a sufficient
condition for exogeneity is that these ownership shares do not correlate
with analyst belief shocks. Third, I show the price impact of FIT
reverts over time, as often expected of non-fundamental price changes
(consistent with Lou, 2012).

In robustness checks I address additional potential threats (in Sec-
tion 5.3). First, I control for observed and latent stock characteristics
(interacted with time fixed effects) associated with common fund styles
to address the potential threat of ownership shares and analyst belief
shocks depending on common characteristics. Second, I reconstruct the
FIT instrument from only diversified funds to address potential threats
posed by concentrated portfolios. Third, I reconstruct the instrument
from only passive funds, which generally adhere to the proportional
trading assumption, to address the potential threat of selection bias
arising from systematic deviations from proportional trading (Berger,
2023). Fourth, I show FIT does not forecast future profitability in-
creases, which suggests analysts do not respond to real effects of this
instrument.

I next quantify how economically large the impact of prices on
analyst cash flow expectations is (in Section 6). Specifically, I measure
the proportions of the cross-sectional covariances of prices with analyst
expectations and forecast errors explained by this channel. Doing so
requires an estimate of the impact of average price changes on analyst
expectations (the ‘‘average treatment effect’’). Since the above estimates
measure the impact of price changes driven by the two instruments
on analyst expectations (‘‘local average treatment effects’’), they may
differ from the impact of average price changes if analysts respond
heterogeneously to different price changes (Angrist and Imbens, 1995).
Thus, I use the method of Pancost and Schaller (2024) to recover
(under certain assumptions discussed in Section 6.2) estimates of the
impact of average price changes from these local estimates. I find the
impact of prices on analyst cash flow expectations explains 60% of the
covariance of prices with LTG expectations and 40% of the covariance
with one-to-four year EPS expectations and forecast errors.

To illustrate how this impact of prices on analyst cash flow ex-
pectations can partially reconcile subjective beliefs data and models
featuring investors with rational expectations, I propose such a model
that matches several subjective belief and cross-sectional asset pricing
moments (in Section 7). In the model, investors have rational cash flow
expectations and private information; discount rate variation drives
excess volatility and return predictability across stocks. Analysts seek to
forecast cash flows, and so try to recover investors’ private information
by learning from prices (Grossman and Stiglitz, 1980; Hellwig, 1980).
Yet since prices reflect discount rate variation, learning from prices
introduces discount rate variation into analyst cash flow expectations.
As a result, analyst cash flow expectations predict future returns. By
inadvertently attributing discount-rate driven price variation to cash
flow news, analysts also form subjective expected returns that correlate
weakly with prices. Lastly, analysts overreact to prices (as in Glaeser
and Nathanson, 2017; Bastianello and Fontanier, 2021, 2024; Bordalo
et al., 2021), which creates predictable forecast errors. I estimate the
model to match the impact of prices on analyst annual EPS expectations
and the proportion of the covariance of analyst forecast errors with
prices (40%) that this impact accounts for. I find the model quan-
titatively matches the predictability of returns by analyst cash flow
expectations and the weak correlation of subjective expected returns
with prices documented in previous work. I discuss extensions of
this model with analyst overreaction to fundamental signals that can
potentially account for the remaining 60% of the covariance of analyst
forecast errors with prices, including extensions in which investors both
do and do not remain rational.

9 E.g. With surveyed beliefs (Greenwood and Shleifer, 2014), past perfor-
mance (Ippolito, 1992; Chevalier and Ellison, 1997; Sirri and Tufano, 1998),
past flows (Lou, 2012), and earnings news (Di Maggio et al., 2023).

This paper proceeds as follows. Section 2 introduces my empirical
framework for measuring the impact of prices on analyst cash flow
expectations. Section 3 discusses the data. Sections 4 and 5 measure
the impact of prices on analyst expectations using BMI changes around
Russell index reconstitutions and the FIT instrument. Section 6 presents
the decomposition of the covariance of prices with analyst expectations.
Section 7 presents the asset pricing model with rational investors that
uses this impact to match asset pricing and subjective belief moments.
Section 8 concludes.

1.1. Related literature

This paper relates to three bodies of literature: empirical work
that uses analyst expectations to inform asset pricing models with
subjective beliefs, theoretical work on the impact of prices on cash flow
expectations, and previous work that examines how different economic
agents respond to exogenous price changes.

First, a growing literature uses analyst cash flow expectations to
test asset pricing models with subjective beliefs. Work going back
at least to Malkiel (1970) uses analyst cash flow expectations as a
proxy for investor expectations.10 Under this assumption, previous
work finds variation in subjective cash flow expectations can explain
much (or all) of the time series and cross-sectional variation in stock
prices.11 Moreover, this literature finds analyst cash flow expectations
negatively predict future returns12 and feature predictable forecast er-
rors.13 Additionally, subjective expected returns correlate weakly with
prices.14

These results seemingly contradict models with rational expecta-
tions in which forecast errors are not predictable, cash flow expecta-
tions do not predict returns, and expected returns correlate strongly
negatively with prices. Thus, these results motivate models in which
investors share biased analyst cash flow expectations, which distort
prices (Bordalo et al., 2019, 2024; Nagel and Xu, 2021; Delao and
Myers, 2021, 2024; Delao et al., 2023). In these models, prices do not
impact cash flow expectations; biases arise only from biased learning
from exogenous fundamentals (Bastianello and Fontanier, 2024).

This paper provides a potential reconciliation between the stylized
facts from analyst expectations data and models featuring investors
with rational expectations: I demonstrate that prices impact analyst
cash flow expectations. While some previous work uses reduced-form
regressions to suggest prices may impact analyst expectations, previous
work does not quantify this impact nor determine if this impact is
large enough to inform asset pricing models.15 This is the first paper
to quantify this impact and show it can potentially reconcile subjective
beliefs data and models featuring investors with rational expectations.

Second, this paper relates to theoretical work on the impact of
prices on cash flow expectations. My results are consistent with models
featuring learning from prices due to dispersed information (e.g. Gross-
man and Stiglitz, 1980; Hellwig, 1980; Dubey et al., 1987; Kyle, 1989;
Jackson, 1991; Mendel and Shleifer, 2012) and behavioral mislearning
from prices (Glaeser and Nathanson, 2017; Bastianello and Fontanier,

10 E.g. Frankel and Lee (1998), Lee et al. (1999), Lee and Swaminathan
(2000), Hribar and McInnis (2012), Bouchaud et al. (2019), Brandon and Wang
(2020) and Landier and Thesmar (2020) among many others.
11 E.g. Chen et al. (2013), Delao and Myers (2021, 2024) and Delao et al.
(2023)
12 E.g. Rafael (1996), Bordalo et al. (2019, 2024) and Nagel and Xu (2021)
13 E.g. De Bondt and Thaler (1990), Rafael (1996), Bordalo et al. (2019) and
Bordalo et al. (2024)
14 In the cross section (Delao et al., 2023). The time-series evidence is more
mixed depending on the agent surveyed (Wu, 2018; Delao and Myers, 2021;
Nagel and Xu, 2023; Adam and Nagel, 2023).
15 E.g. Brown et al. (1987), Lys and Sohn (1990), Abarbanell (1991), Forbes
and Skerratt (1992), Guay et al. (2011) and Miller and Sedor (2014). Sulaeman
and Wei (2019) find prices impact some analysts’ buy recommendations.
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2024, 2021; Bordalo et al., 2021). However, previous work using
analyst expectations to test asset pricing models with subjective beliefs
has generally not accounted for this learning from prices mechanism.16
This paper not only demonstrates that analyst cash flow expectations
behave in a manner consistent with learning from prices, it also quan-
tifies the strength of this mechanism. Moreover, this is the first paper
to show this mechanism is strong enough to potentially reconcile
subjective beliefs data and models featuring investors with rational
expectations. In particular, this paper provides one such quantitative
model that matches several subjective belief and cross-sectional asset
pricing moments.

Third, this paper relates to work on how different agents respond to
exogenous price changes. Previous work uses mutual fund flow-driven
price pressure to examine the impact of prices on corporate finance
outcomes.17 Other work uses Russell index reconstitutions to study the
impact of institutional and passive ownership on corporate governance
and product market outcomes.18 This paper uses both instruments to
study how exogenous price changes impact analyst cash flow expec-
tations. This is the first paper to quantify this impact and show it is
potentially large enough to reconcile subjective beliefs data and models
featuring investors with rational expectations. I verify that real effects
of both instruments do not drive my results.

2. Measuring the impact of prices on analyst expectations

The primary challenge in measuring the impact of prices on analyst
cash flow expectations is omitted variable bias created by common
information or sentiment shocks to analyst and investor expectations.

Consider this system of equations (microfounded in Appendix A
with a model with private information):

𝛥𝑝 =𝑀𝑧 + 𝜖 (1)

𝛥𝑦 = 𝛼𝛥𝑝 + 𝜈 (2)

𝛥𝑦 is the quarterly change in analyst expectations and 𝛥𝑝 is the con-
temporaneous percentage price change (ex-dividend return). 𝜖 and 𝜈
are correlated and capture other cash flow news or sentiment shocks
that both investors and analysts learn from, such as public signals like
EPS announcements. 𝑧 is a noise-trader demand shock that impacts
price and is uncorrelated with these other cash flow news or sentiment
shocks.

𝛼 is the impact of prices on analyst cash flow expectations that
I measure. A regression of analyst expectations on prices does not
identify 𝛼 because if investors and analysts learn from common public
signals, then 𝜖 and 𝜈 are positively correlated, which creates positive
omitted variable bias (i.e. E[𝛥𝑝 ⋅ 𝜈] ≠ 0).

The noise-trader shock 𝑧 enables identification of 𝛼 by providing
exogenous price variation uncorrelated with 𝜈. This two-stage least
squares (2SLS) regression identifies 𝛼:

𝛥𝑝 = 𝑏𝑧 + 𝑒1
𝛥𝑦 = 𝛼𝛥𝑝̂ + 𝑒2.

To obtain a consistent estimate of 𝛼, the instrumental variable for price
𝑧 must satisfy:

16 Certain models of price extrapolation feature feedback from prices to cash
flow expectations (e.g. Jin and Sui, 2022).
17 E.g. Seasoned equity issuance (Giammarino et al., 2004; Khan et al.,
2012), M&A (Edmans et al., 2012; Eckbo et al., 2018), payout policy (Derrien
et al., 2013), R&D spending (Phillips and Zhdanov, 2013), shareholder ac-
tivism (Norli et al., 2015), management earnings forecasts (Zuo, 2016), analyst
coverage (Lee and So, 2017), and investment (Lou and Wang, 2018; Dessaint
et al., 2019).
18 E.g. Schmidt and Fahlenbrach (2017), Appel et al. (2016, 2019, 2021),
Heath et al. (2022) and Sharma (2023).

1. (Relevance)𝑀 ≠ 0 in (1): The instrument has an effect on price.
2. (Exogeneity) E[𝑧 ⋅ 𝜈] = 0: The instrument affects analyst expecta-
tions only through price; it does not correlate with other shocks
to analyst expectations, such as public signals that investors and
analysts learn from. Thus, 𝑧 must provide variation in prices
unrelated to cash flow news.

To assess the economic significance of 𝛼, I calculate the proportion of
the cross-sectional covariance of prices with analyst cash flow expecta-
tions explained by this impact of prices on analyst expectations:
𝛼V [𝛥𝑝]

𝐶𝑜𝑣 (𝛥𝑝, 𝛥𝑦)
=

Two Stage Least Squares Estimate of 𝛼
OLS Coefficient in Regression of 𝛥𝑦 on 𝛥p . (3)

Sections 4 and 5 describe strategies to identify 𝛼 using different
empirical noise trader demand shocks.

Note that while, for simplicity, (2) assumes all price changes have
the same impact on analyst cash flow expectations, in general different
price changes may have heterogeneous impacts. In this case, 2SLS
estimates of 𝛼 are local average treatment effects (LATEs) (Angrist and
Imbens, 1995) that reflect how price changes due specifically to the
noise shocks 𝑧 impact analyst expectations. These LATEs may differ
from the average treatment effect (ATE): the impact of average price
changes on analyst expectations. Appendix B derives conditions under
which the LATE under- or overestimates the ATE.

Such heterogeneity does not alter the qualitative interpretation of
2SLS estimates of 𝛼: positive estimates imply prices do impact analyst
cash flow expectations. However, it may alter the quantitative interpre-
tation, which depends on how average price changes impact analyst
expectations. Thus, to assess the economic significance of the impact of
prices on analyst expectations I rely not on the 2SLS estimates of this
impact, but instead on the proportion of the covariance between these
objects that this impact explains. (3) correctly estimates this covariance
decomposition when the LATE estimated by 2SLS equals the ATE, and
Section 6 describes an adjustment I make using the method of Pancost
and Schaller (2024) to correctly estimate this decomposition under
general assumptions about heterogeneity.

3. Data

This paper uses four main data sources: analyst cash flow expecta-
tions, stock prices, Russell index constituents, and mutual fund holdings
and flows.

I use two sets of analyst cash flow expectations from I/B/E/S. First, I
use the long-term EPS growth (LTG) expectations focused on by Bordalo
et al. (2019, 2024) and Nagel and Xu (2021). I/B/E/S defines LTG
expectations as representing analysts’ expected annual EPS growth over
a firm’s ‘‘next full business cycle’’, which I/B/E/S describes as three to
five years (Wharton Research Data Services, 2008). Some work argues
these expectations capture longer horizons of up to five to ten years
(Sharpe, 2005). I/B/E/S reports LTG expectations at the stock × analyst
institution × analyst × quarter level. I average LTG expectations for
each stock within each quarter at the analyst institution level and take
quarterly differences to obtain a stock × analyst institution × quarter
panel of quarterly changes in LTG expectations.19

Second, I use the annual EPS expectations over shorter horizons
of one to four years focused on by Delao and Myers (2021, 2024),
and Delao et al. (2023). I/B/E/S reports EPS forecasts at the stock
× fiscal year horizon × analyst institution × analyst × quarter level.

19 Using institution-level (versus analyst-level) variation creates more quar-
ter over quarter matches when computing quarterly expectations changes,
which I winsorize at 5% to remove some extremely large outliers. Usually
one analyst at an institution covers stock 𝑛 in quarter 𝑡; if multiple analysts
do, they usually report expectations on the same day. If multiple analysts from
institution 𝑎 report expectations for stock 𝑛 in quarters 𝑡 − 1 or 𝑡 on different
days, I compute the inter-announcement price change (𝛥𝑝𝑎,𝑛,𝑡) between the first
such report in quarter 𝑡 − 1 and the last report in quarter 𝑡.



Journal of Financial Economics 171 (2025) 104095

5

A. Chaudhry

For example, in the second quarter of 2022 I see the Apple annual
EPS forecasts issued by all equity research analysts at Goldman Sachs
for fiscal years 2022, 2023, etc. Forecast horizons extend up to ten
fiscal years ahead, but coverage declines with horizon (sharply after
two years), and so I focus on the one to four year horizons. For each
horizon, I average EPS forecasts for each stock within each quarter at
the analyst institution level (e.g. I average the EPS forecasts for fiscal
year 2022 for Apple made by all Goldman Sachs analysts during the
second quarter of 2022). I then linearly interpolate among horizons to
construct fixed ℎ-year horizon EPS forecasts. For example, to obtain
the one-year EPS forecast from June 2022 to June 2023, I interpolate
between the fiscal year 2022 and 2023 EPS forecasts.20 I then construct
quarter-over-quarter EPS expectation revisions. Let 𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 be the ℎ-
year ahead annual EPS expectation reported by analyst institution 𝑎 for
stock 𝑛 in quarter 𝑡. I define the ℎ-year ahead EPS expectation revision
from quarter 𝑡 to 𝑡 + 1 as:

𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡+1 ≡
𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡+1 − 𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡

𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡
. (4)

I drop all observations where 𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 ≤ 0. Thus, I obtain a stock ×
analyst institution × quarter panel of quarterly revisions in ℎ-year EPS
expectations, where ℎ ranges from one to four years.21

Each type of expectation has its advantages. Present value identi-
ties suggest the LTG expectations should correlate more strongly with
prices, as documented in previous work (Bordalo et al., 2019, 2024,
2021). Yet the annual expectations have far greater coverage, which
enables more powerful tests. Moreover, the fixed forecast horizon
means 𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡+1 directly captures forecast error changes:

Forecast Error𝑎,𝑛,𝑡+4ℎ∣𝑡 = Realized EPS𝑛,𝑡+4ℎ − 𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡
Forecast Error𝑎,𝑛,𝑡+4ℎ∣𝑡+1 − Forecast Error𝑎,𝑛,𝑡+4ℎ∣𝑡

= 𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 − 𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡+1.

The forecast error change is the negative of the expectation revision
numerator in (4). Hence, the annual expectation revisions demonstrate
that analyst forecast errors (in addition to cash flow expectations) rise
in response to exogenous price increases (in magnitude, i.e. become
more negative). Thus, analysts do not raise expectations due to exoge-
nous price increases solely because these increases raise actual future
earnings.

For both expectations types, multiple analyst institutions 𝑎 (here-
after called analysts) report expectations for the same stock 𝑛 in the
same quarter 𝑡, often on different days. Thus, I let 𝛥𝑦𝑎,𝑛,𝑡 denote the
quarterly change in 𝑎’s expectations for stock 𝑛 from quarter 𝑡 − 1 to 𝑡.
I let 𝛥𝑝𝑎,𝑛,𝑡 denote the contemporaneous percentage price change (ex-
dividend return) between the two quarterly report dates for analyst 𝑎
for stock 𝑛 in quarters 𝑡 − 1 and 𝑡 (which can differ across analysts for
the same stock, as in Fig. 1).

I obtain stock price data from CRSP and accounting data to construct
firm characteristics from the Compustat North America Fundamentals
Annual and Quarterly Databases.

The authors of Pavlova and Sikorskaya (2023) provide benchmark-
ing intensity and constituent data.

To construct the flow-induced trading instrument of Lou (2012), I
use mutual fund holdings from the Thomson Reuters S12 database and
mutual fund flows from the CRSP Mutual Fund database.22

20 Delao and Myers (2021) follow the same interpolation procedure.
21 I winsorize these final values at the 5% level (within each horizon ℎ) to
remove some extremely large outliers.
22 Following Wardlaw (2020), I drop sector mutual funds when constructing
the flow-induced trading instrument.

Fig. 1. Staggered timing of analyst reports.
Illustration of staggered timing of expectation releases for two analysts 𝑎 and 𝑏 for the
same stock 𝑛.

4. Evidence from index reconstitutions

This section measures the impact of prices on analyst cash flow ex-
pectations using my first instrument for price: changes in benchmarking
intensity around annual June Russell index reconstitutions.

On a specified day in May, Russell ranks all eligible stocks by
market capitalization. Stocks above a specific rank cutoff are assigned
to the Russell 1000, and those below are assigned to the Russell 2000.
Historically, more institutional capital has been benchmarked to the
Russell 2000 than 1000. Thus, a stock from the Russell 1000 in year
𝑡−1 whose market cap falls just below the cutoff in year 𝑡 will move to
the Russell 2000 in June, undergo inflows of institutional capital due
to benchmarking, and experience positive returns in June. Similarly, a
stock from the Russell 2000 in year 𝑡 − 1 whose market cap falls just
above the cutoff will move to the Russell 1000 and experience outflows
and negative returns. Conditional on the May rank-date market cap,
Russell index membership in June is exogenous to June cash-flow news
(Chang et al., 2014; Crane et al., 2016; Glossner, 2019). Thus, the June
returns induced by this index reconstitution are also exogenous to June
cash-flow news.

Pavlova and Sikorskaya (2023) note these reconstitution returns
differ across stocks. Every stock in the Russell 2000 Blend index is
also in the Russell 2000 Value or Growth indices, which have different
levels of benchmarked capital. Every stock in the Russell 1000 Blend
index is also in the Russell 1000 Value or Growth indices, and some
(those under market cap rank 200) are in the Russell Midcap Blend,
Value, and Growth indices. Thus, a stock moving from the Russell 1000
Value to the Russell 2000 Value may experience different inflows of
benchmarked capital — and so different price pressure — than a stock
moving from the Russell 1000 Growth to the Russell 2000 Growth.23

The Pavlova and Sikorskaya (2023) benchmarking intensity (𝐵𝑀𝐼)
measure captures this heterogeneity:

𝐵𝑀𝐼𝑛,𝑡 =

∑

Index 𝑗

Institutional AUM Benchmarked to Index 𝑗 in Month 𝑡
⋅Weight of Stock 𝑛 in Index 𝑗 in Month 𝑡

Stock 𝑛 Market Value in Month 𝑡 .

𝐵𝑀𝐼𝑛,𝑡 captures the inelastic demand for stock 𝑛 in month 𝑡 by all
benchmarked mutual funds and ETFs. It depends on which indices 𝑗 the
stock is part of and the proportion of the total market value of stock 𝑛
that is held by benchmarked investors. Pavlova and Sikorskaya (2023)
construct 𝐵𝑀𝐼 from thirty-four indices that account for about 90% of
mutual fund and ETF assets, including the nine Russell benchmarks.

I use June 𝐵𝑀𝐼 changes in each year for stocks in a narrow
window around Russell reconstitution thresholds as an instrument for
price. Stocks with larger 𝛥𝐵𝑀𝐼 experience more benchmarking in-
flows and more price pressure. While 𝐵𝑀𝐼 is generally endogenous

23 Technically all stocks in the Blend indices are in both the Value and
Growth indices, just in different proportions.
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Fig. 2. Russell reconstitution timeline.
Illustration of Russell index reconstitution timing. 𝛥𝐸𝑎,𝑛,𝑡+ℎ∣𝑡 is an ℎ-year EPS expectation change for analyst 𝑎 and stock 𝑛, where the original expectation was reported prior to
the May rank date and the revised expectation is reported after June 1st. 𝛥𝐸𝑏,𝑛,𝑡+ℎ∣𝑡 is an ℎ-year expectation change for analyst 𝑏 and stock 𝑛, where the original expectation was
reported after the May rank date but before the end of June and the revised expectation is reported after June 1st. 𝛥𝐸𝑎,𝑛,𝑡+ℎ∣𝑡 is included only in the full sample, while 𝛥𝐸𝑏,𝑛,𝑡+ℎ∣𝑡
is included in both the full- and post-rank samples (discussed in Section 4.2.2).

because index membership is, June 𝐵𝑀𝐼 changes for stocks in this
window are driven by Russell index membership changes, which are
exogenous to June cash flow news conditional on the May rank-date
market cap. Thus, 𝛥𝐵𝑀𝐼𝑛,𝑡 satisfies the exogeneity condition and is
uncorrelated with analyst belief shocks (conditional on controls 𝑿𝑛,𝑡
discussed below):

E
[

𝛥𝐵𝑀𝐼𝑛,𝑡𝜈𝑎,𝑛,𝑡 ∣ 𝑿𝑛,𝑡
]

= 0,∀𝑎, 𝑡.

Controlling for the rank-date market cap removes the threat that bad
news before the rank date could impact analyst beliefs (directly) and
𝛥𝐵𝑀𝐼𝑛,𝑡 (by lowering market cap and moving stock 𝑛 from the Russell
1000 to 2000). Since the bad news only impacts 𝛥𝐵𝑀𝐼𝑛,𝑡 through the
rank-date market cap, controlling for that market cap makes 𝛥𝐵𝑀𝐼𝑛,𝑡
conditionally exogenous.

Section 4.2 addresses additional potential threats to exogeneity.
Among other tests, I show long-run reversal of the price impact of
𝛥𝐵𝑀𝐼 and a lack of impact of 𝛥𝐵𝑀𝐼 on realized future earnings.

I run the following two-stage least squares regression:

𝛥𝑝𝑎,𝑛,𝑡 = 𝑎1𝛥𝐵𝑀𝐼𝑛,𝑡 + 𝜷′
1𝑿𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒1,𝑎,𝑛,𝑡

𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 = 𝛼𝛥𝑝̂𝑎,𝑛,𝑡 + 𝜷′
2𝑿𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒2,𝑎,𝑛,𝑡,ℎ. (5)

The first stage regresses quarterly percentage price changes between
analyst reports on June 𝐵𝑀𝐼 changes.24 The second stage regresses
quarterly revisions to annual EPS expectations on instrumented price
changes. 𝑿𝑛,𝑡 are stock-level controls discussed below and 𝐹𝐸𝑡 are year
fixed effects.

I restrict the sample to analyst expectations changes that are ex-
posed to June index reconstitutions: those for which the original ex-
pectation is reported in June or earlier and the revised expectation in
June or later, as in Fig. 2. I include all annual EPS expectations revisions
with horizons up to four years.

I also restrict the sample to stocks within a narrow bandwidth
around the reconstitution market cap cutoffs to maintain comparability
across firms (as in Pavlova and Sikorskaya, 2023). I use a 150-stock
bandwidth in the baseline analysis (Section 4.2.1 finds similar results
for alternative bandwidths). Prior to 2007, the rank cutoff was the
1,000th stock. To reduce turnover, since 2007 Russell has used a
‘‘banding policy’’ under which there are two separate cutoffs for stocks
starting in the Russell 1000 and 2000 pre-reconstitution, both of which
are mechanical functions of the firm size distribution. Thus, there is
a ‘‘band’’ of market caps including stocks from the Russell 1000 and
2000. Appendix D.1 explains the Russell methodology I use to calculate
these cutoffs. Since Russell ranks stocks using a proprietary market cap
that I lack access to, I use the method of Ben-David et al. (2019) to
approximate this proprietary market cap using standard databases.25
Doing so predicts assignment to the Russell 1000 and 2000 with high
accuracy, as shown in Appendix Table D2. Following previous work,

24 Following Pavlova and Sikorskaya (2023), I winsorize price changes at
1%. Section 4.2 finds similar results at 0%.
25 See Appendix Table D2 for details.

I use May — not June — market caps to calculate the Russell recon-
stitution thresholds to avoid selection bias.26 In this restricted sample,
there is enough power to quantify the impact of prices on annual EPS
expectations, but not on LTG expectations, which far fewer analysts
cover (as detailed in Appendix Table D4).27 I quantify the impact of
prices on LTG expectations in Section 5 using the flow-induced trading
instrument.

𝑿𝑛,𝑡 includes stock-level controls used by Pavlova and Sikorskaya
(2023): May rank-date log market cap, one-year monthly average bid–
ask percentage spread28, and the banding controls from Appel et al.
(2019) (an indicator for having rank-date market cap in the ‘‘band’’,
an indicator for being in the Russell 2000 in May, and the interaction
of these indicators). Whereas Pavlova and Sikorskaya (2023) use the
proprietary Russell market cap, I calculate market cap from stan-
dard databases. Conditional on these variables that determine Russell
1000/2000 membership, 𝛥𝐵𝑀𝐼𝑛,𝑡 in June is exogenous.

Table 1 presents summary statistics. There are 164,512 total analyst-
stock-horizon-year observations. The time period is 1999 to 2018, as this
is the period in which I observe Russell index constituents in May (pre-
reconstitution) and June (post-reconstitution). In the average year, I
observe analyst expectation changes for about 90% of the firms in the
150-stock bandwidth around the reconstitution cutoffs.29

4.1. Empirical results

Table 2 displays the baseline results. Column 1 displays the OLS
regression of annual EPS expectation revisions on contemporaneous
price changes, and finds a strong association between these objects,
as documented in previous work (Delao and Myers, 2021, 2024).30
The first stage regression in column 2 is strong: Russell reconstitution-
driven 𝐵𝑀𝐼 increases raise prices. The partial 𝐹 -statistic (11.7) is

26 E.g. Chang et al. (2014), Appel et al. (2021) and Wei and Young (2021)
27 In this restricted sample there are only 3,758 analyst-stock-year obser-
vations for the LTG expectation changes, versus 164,512 observations for
the annual EPS expectation revisions. As Table D4 displays, the two-stage
least squares estimate of 𝛼 in this LTG expectation sample is 𝛼 = 2.1 basis
points, which is economically significant and in the 95% confidence interval
of the 𝛼 = 5.5 basis points estimate obtained from the flow-induced trading
instrument (see Section 5.1 for details). However, the 95% confidence interval
for this 𝛼 = 2.1 basis points estimate is wide (−22.7 to 26.9 basis points) due
to the small sample.
28 Pavlova and Sikorskaya (2023) note changes in a stock’s liquidity can
impact both its returns (by altering the liquidity premium) and 𝐵𝑀𝐼 . Thus,
they control for Russell’s proprietary float factor and the rolling average bid–
ask percentage spread (to address staleness in the float factor). Lacking access
to Russell’s proprietary float factor, I control for the bid–ask spread.
29 Since there is only one market cap cutoff before 2007, there are 300 stocks
in the 150-stock window. After the introduction of the banding policy in 2007,
there are two cutoffs, and so 600 stocks in the 150-stock window. See Appendix
D1 for details.
30 See Appendix C for a comparison of this OLS regression of analyst
expectations on prices in changes to the regression in levels performed in
previous work.
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Table 1
Summary Statistics for Russell Reconstitution Instrument.

𝛥𝐵𝑀𝐼𝑛.𝑡 𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 𝛥𝑝𝑎,𝑛,𝑡 Num Stocks/Year Percent Covered

Num. Obs. 164,512.00 164,512.00 164,512.00 20.00 20.00
Mean 0.00 −0.02 0.02 432.45 0.89
Std. Dev. 0.04 0.20 0.24 148.33 0.04
Min −0.41 −0.63 −0.60 240.00 0.80
25% −0.01 −0.09 −0.12 260.00 0.87
50% 0.00 0.00 0.00 541.50 0.91
75% 0.01 0.07 0.13 554.00 0.92
Max 0.29 0.51 0.90 562.00 0.94

Summary statistics for observations in the 150-stock window around Russell reconstitution market cap thresholds in each year for May-
to-June changes in benchmarking intensity (𝛥𝐵𝑀𝐼𝑛,𝑡), quarter-over-quarter revisions in analyst EPS expectations for forecast horizons
of one to four years (𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡), inter-announcement percentage price changes between expectation releases in consecutive quarters
(𝛥𝑝𝑎,𝑛,𝑡), the number of stocks in the window in each year, and the percentage of all stocks in each window in each year that I observe
analyst expectations for. Expectations revisions and price changes are expressed in absolute terms (i.e. 0.01 is 1%). The time period
is 1999-05:2018-09.

Table 2
Impact of Prices on Annual EPS Expectations Using 𝛥𝐵𝑀𝐼 as Instrument.

(1) (2) (3) (4)
OLS First Stage Reduced Form 2SLS

𝛥𝑝𝑎,𝑛,𝑡 0.265*** 0.416**
(0.0111) (0.0639, 0.768)

𝛥𝐵𝑀𝐼𝑛,𝑡 0.573*** 0.238***
(0.168) (0.0736)

Year FE Y Y Y Y
Year-Clustered SE Y Y Y Y
N 164512 164512 164512 164512
F 568.6 11.68 10.48 13.95
R-Squared 0.0825 0.00747 0.00152

Standard errors in parentheses
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
This table displays results for the following two-stage least squares regression in the 150-stock window:

𝛥𝑝𝑎,𝑛,𝑡 = 𝑎0 + 𝑎1𝛥𝐵𝑀𝐼𝑛,𝑡 + 𝜷′
1𝑿𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒1,𝑎,𝑛,𝑡

𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 = 𝑏0 + 𝛼𝛥𝑝̂𝑎,𝑛,𝑡 + 𝜷′
2𝑿𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒2,𝑎,𝑛,𝑡,ℎ ,

The first stage regresses percent price changes between analyst reports (𝛥𝑝𝑎,𝑛,𝑡) on the June change in 𝐵𝑀𝐼 (𝛥𝐵𝑀𝐼𝑛,𝑡) (column 2
reports the first-stage partial 𝐹 -statistic). The reduced form regresses quarterly revisions to annual EPS expectations with horizons of
one to four years (𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡) on 𝛥𝐵𝑀𝐼𝑛,𝑡. The second stage regresses 𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 on instrumented price changes (𝛥𝑝̂𝑎,𝑛,𝑡). 𝑿𝑛,𝑡 includes
the log market cap as of the May rank date, the one-year monthly rolling average bid–ask percentage spread, and the banding controls
(an indicator for having rank-date market cap in the band including stocks from the Russell 1000 and 2000, an indicator for being in
the Russell 2000 in May before reconstitution, and the interaction of these indicators). Column 4 reports the 95% confidence interval
for the second-stage coefficient using the 𝑡𝐹 procedure of Lee et al. (2022). All units are in percentage points (i.e. 1.0 is 1%). The
time period is 1999-05:2018-09.

above the conventional threshold of 10. The reduced-form coefficient
in column 3 is also significant: Russell reconstitution-driven 𝐵𝑀𝐼
increases raise annual EPS expectation revisions. The second-stage 𝛼
estimate in column 4 reveals a statistically and economically significant
impact of prices on annual EPS expectation revisions: an exogenous 1%
price increase raises annual EPS expectations by 41 basis points. I report
the 95% confidence interval for the second-stage coefficient using the
𝑡𝐹 procedure of Lee et al. (2022) to address concerns about how
instrument strength impacts second-stage inference. Appendix Figure
D1 displays first-stage and reduced-form binscatter plots. Appendix
Table D3 displays alternate specifications.

Thus, prices impact analyst cash flow expectations. Moreover, these
revisions of fixed-horizon EPS expectations reflect changes in forecast
errors, as discussed in Section 3. Forecast errors increase (in magnitude,
i.e. become more negative) in response to exogenous price increases.
Hence, analysts do not raise cash flow expectations due to exogenous
price increases solely because these increases raise actual future cash
flows (e.g. through the relaxation of financial constraints enabling
greater investment (Bernanke and Gertler, 1986) or because a firm’s
managers, customers, or suppliers learn from private information in
prices and adjust real decisions (Subrahmanyam and Titman, 2001;
Edmans et al., 2015)).

4.2. Robustness and threats to instrument validity

Fig. 3 summarizes the robustness checks I conduct for the baseline
results in Table 2.

4.2.1. Alternative winsorizations and bandwidths
As displayed in Fig. 3, not winsorizing prices changes, instead of

at the baseline 1%, yields similar first-stage (0.637 versus the baseline
0.573) and second-stage (𝛼 = 37.5 versus the baseline 𝛼 = 41.6 basis
points) estimates. Winsorizing EPS expectation revisions from 1% to
9%, instead of the baseline 5%, yields reduced-form estimates from
0.184 to 0.351 (statistically indistinct from the baseline 0.238), and
second-stage 𝛼 estimates from 32.1 to 61.2 basis points (statistically
indistinct from the baseline 41.6 basis points).

Using alternate bandwidths from 100 to 200 stocks around the
cutoffs, instead of the baseline 150 stocks, yields similar first-stage
(0.534 to 0.593 versus the baseline 0.573), reduced-form (0.211 to
0.229 versus the baseline 0.238), and second-stage (𝛼 = 38.2 to 40.2
versus the baseline 41.6 basis points) estimates.

4.2.2. Real effects of 𝐵𝑀𝐼 increases
Appendix D.2.1 demonstrates 𝐵𝑀𝐼 increases do not predict higher

future EPS growth in levels or changes (as in Pavlova and Sikorskaya,
2023). These null results address the potential threat that 𝐵𝑀𝐼 in-
creases raise analyst expectations directly (instead of through prices) if
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Fig. 3. Robustness checks for using 𝛥𝐵𝑀𝐼 as instrument.
This figure displays results for alternate specifications of two-stage least squares regression (5).In all specifications 𝑿𝑛,𝑡 includes the log market cap as of the May rank date, the
one-year monthly rolling average bid–ask percentage spread, and the banding controls (an indicator for having rank-date market cap in the band including stocks from the Russell
1000 and 2000, an indicator for being in the Russell 2000 in May before reconstitution, and the interaction of these indicators). In the ‘‘Value Controls’’ specification, 𝑿𝑛,𝑡 also
includes market-to-book ratio and annual sales growth. The solid error bars display 90% confidence intervals, while the dashed error bars display 95% confidence intervals. Panel
(c) reports the 90% and 95% confidence intervals for the second-stage coefficients using the 𝑡𝐹 procedure of Lee et al. (2022). Standard errors are clustered by quarter. All units
are in percentage points (i.e. 1.0 is 1%). The time period is 1999-05:2018-09.
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analysts pay attention to passive ownership increases and expect them
to improve corporate governance or product market outcomes.31

I also repeat the baseline analysis using only analyst expectations
changes for which the original expectation is reported after the May
rank date but before the end of June (as in Fig. 2) and find similar
results (displayed in Fig. 3), which further assuages this potential con-
cern. If analysts do not respond to prices but expect passive ownership
increases to raise future cash flows, then these anticipated improve-
ments should appear in the first expectation reported after the May
rank date (e.g. on June 1) because Russell index assignment depends
only on information available at the rank date and can be accurately
predicted with public data (see Appendix Table D2). These anticipated
improvements should not impact expectations revisions that occur fully
after the rank date (e.g. from June 1 to September 1). Thus, the
impact of 𝐵𝑀𝐼 increases on post-rank date expectations revisions is
inconsistent with analysts only paying attention to passive ownership,
but is consistent with analysts responding to prices.

This post-rank sample yields similar first-stage (0.421 versus the
baseline 0.573) and reduced-form (0.257 versus the baseline 0.228)
estimates. The second-stage estimate is larger than, but statistically
indistinct from, the baseline estimate (𝛼 = 61.1 versus the baseline
41.6 basis points). Although this post-rank second-stage estimate is
not statistically significant because the post-rank sample is ten times
smaller than the full sample (11,980 versus 164,512 observations), the
first-stage and reduced-form estimates remain significant.

4.2.3. Ex-post price reversal
Appendix Table D5 shows the price impact of BMI increases reverts

in the long run (two years following the reconstitution), as is often
expected of non-fundamental price changes.

4.2.4. Switchers between value and growth indices
I control for variables proxying for firm fundamentals and find

similar results (displayed in Fig. 3). This test addresses the potential
threat that news for stock 𝑛 before the rank date could impact analyst
beliefs directly, and could impact 𝛥𝐵𝑀𝐼𝑛,𝑡 by moving stock 𝑛 from
the Value to the Growth indices, or vice versa. Assignment to the
Value and Growth indices at each May rank date is based on a custom
algorithm applied to a proprietary database of ex-ante analyst forecasts,
book-to-price ratio, and sales growth. Lacking these proprietary val-
uation metrics, I control for market-to-book ratio32 and annual sales
growth, and obtain similar first-stage (0.594 versus the baseline 0.573),
reduced-form (0.238 versus the baseline 0.228), and second-stage (𝛼 =
38.4 versus the baseline 41.6 basis points) estimates.

The post rank-date analysis discussed in Section 4.2.2 further as-
suages this concern. Analyst expectations changes after the rank date
are not exposed to news from before the rank date that may impact
assignment to the Value and Growth indices, but are still exposed to
June reconstitution price changes.

5. Evidence from mutual fund flow-induced trading

This section measures the impact of prices on analyst cash flow
expectations using my second instrument for price: mutual fund flow-
induced trading (FIT).

Flows induce uninformed stock-level trading by mutual funds, which
tend to scale preexisting holdings proportionally to ex-ante portfolio
weights (Frazzini and Lamont, 2008). For example, a $1 inflow induces

31 Previous work finds mixed results for the effect of passive ownership
increases on corporate governance quality (e.g. Schmidt and Fahlenbrach,
2017; Appel et al., 2016, 2019, 2021; Heath et al., 2022). Sharma (2023)
finds switching from the Russell 1000 to 2000 is weakly associated with lower
profitability and cash flows over the next year. Pavlova and Sikorskaya (2023)
finds ‘‘little evidence’’ that 𝛥𝐵𝑀𝐼 correlates with future cash flow changes.
32 I construct book equity following the approach of Cohen et al. (2003).

an S&P 500 index fund to mechanically allocate about five cents to
Apple, as Apple’s weight in the S&P 500 is about 5%. This predicted
mechanical component of the cross-sectional trading due to flows is
uninformed.

I use the FIT instrument of Lou (2012) (similar to the flow-to-
stock instrument of Wardlaw, 2020).33 I first calculate the quarterly
(percentage) flow to mutual fund 𝑖 as

𝑓𝑖,𝑡 =
𝑇𝑁𝐴𝑖,𝑡 − 𝑇𝑁𝐴𝑖,𝑡−1 ⋅

(

1 + Ret𝑖,𝑡
)

TNA𝑖,𝑡−1
.

𝑇𝑁𝐴𝑖,𝑡 and Ret𝑖,𝑡 are fund 𝑖’s total net assets in quarter 𝑡 and return from
quarter 𝑡 − 1 to 𝑡. The predicted mechanical trading by fund 𝑖 in stock
𝑛 due to this flow is Shares Held𝑖,𝑛,𝑡−2 ⋅ 𝑓𝑖,𝑡. Using the number of shares
held from quarter 𝑡− 2 ensures Shares Held𝑖,𝑛,𝑡−2 uses only information
available before the change in expectations from 𝑡−1 to 𝑡. Aggregating
across all funds and scaling by shares outstanding yields34:

FIT𝑛,𝑡 =
∑

fund 𝑖

Shares Held𝑖,𝑛,𝑡−2
Shares Outstanding𝑛,𝑡−2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡𝑆𝑖,𝑛,𝑡−2

𝑓𝑖,𝑡. (6)

𝑆𝑖,𝑛,𝑡−2 is the proportion of all shares of stock 𝑛 owned by mutual fund
𝑖 in quarter 𝑡 − 2.

Table 3 presents summary statistics. There are 121,553 analyst-
stock-year observations in the matched FIT and LTG expectation sam-
ple, spanning 1983 to 2020. There are 3, 396, 550 analyst-stock-horizon-
year observations in the annual EPS expectation sample, spanning 1982
to 2020 (Appendix Table F6 displays horizon-specific statistics). The
availability of I/B/E/S analyst expectations constrains both start points.

I use FIT𝑛,𝑡 as a cross-sectional instrument for price changes. Hence,
if analyst belief shocks 𝜈𝑎,𝑛,𝑡 are cross-sectionally uncorrelated with FIT𝑛,𝑡
for each analyst 𝑎 and quarter 𝑡

E
[

FIT𝑛,𝑡𝜈𝑎,𝑛,𝑡
]

= 0,∀𝑎, 𝑡, (7)

then the FIT instrument satisfies the unconditional exogeneity condi-
tion: E[FIT𝑛,𝑡𝜈𝑎,𝑛,𝑡] = 0.

The only source of cross-sectional variation in the FIT instrument
is the ex-ante ownership shares 𝑆𝑖,𝑛,𝑡−2. Stocks 𝑛 for which fund 𝑖 has
greater ownership shares are more exposed to 𝑖’s flow in this quarter.
These stocks have larger magnitudes of flow-induced trading, and so
more price pressure. Flows 𝑓𝑖,𝑡 are at the fund level, and so do not
create variation across stocks within a quarter. Heterogeneous own-
ership shares create variation across stocks by creating heterogeneous
exposures to flows. Thus, a sufficient condition for FIT exogeneity (7)
is that the ex-ante ownership shares are exogenous across stocks within
each quarter 𝑡:

E
[

𝑆𝑖,𝑛,𝑡−2𝜈𝑎,𝑛,𝑡
]

= 0,∀𝑎, 𝑖, 𝑡. (8)

The sufficiency of cross-sectionally exogenous ownership shares follows
from the result that exogenous shares are sufficient for shift-share
instrument exogeneity (Goldsmith-Pinkham et al., 2020).

For example, if there is one fund, analyst, and quarter (drop sub-
scripts 𝑖, 𝑎, and 𝑡), but 𝑁 stocks, then FIT𝑛 = 𝑆𝑛𝑓 (𝑆𝑛 ≠ 1 because there
are other investors). FIT𝑛 is exogenous if and only if the ownership
shares are: 0 = E

[

FIT𝑛𝜈𝑛
]

= E
[

𝑆𝑛𝜈𝑛
]

𝑓 , because the flow is con-
stant across stocks. Appendix E Proposition 2 (the same as Goldsmith-
Pinkham et al., 2020 Proposition 2) generalizes this argument.

33 The FIT instrument uses predicted trading due to all flows; the
flow-to-stock instrument uses only extreme outflows.
34 Following Li (2022), I do not multiply the numerator by a ‘‘partial scaling
factor’’ to adjust for funds scaling existing positions by less than one dollar per
dollar of flow due to constraints. I use shares outstanding in the denominator
(not shares held by all mutual funds as in Li, 2022) so FIT𝑛,𝑡 = 0.01 represents
the mutual fund sector buying 1% of stock 𝑛’s shares.
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Table 3
Summary Statistics for FIT Instrument.

𝛥𝐿𝑇𝐺𝑎,𝑛,𝑡 𝛥𝑝𝑎,𝑛,𝑡 FIT𝑛,𝑡 Num Stocks/(Fund, Quarter)

Num. Obs. 121 553.00 121553.00 121553.00 131333.00
Mean −0.01 0.03 −0.0001 165.30
Std. Dev. 0.04 0.22 0.0039 309.02
Min −0.12 −0.94 −0.3941 1.00
25% −0.02 −0.08 −0.0010 44.00
50% −0.00 0.02 −0.0000 73.00
75% 0.01 0.13 0.0007 132.00
Max 0.10 5.80 0.1845 3712.00

(a) LTG Expectations

𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 𝛥𝑝𝑎,𝑛,𝑡 FIT𝑛,𝑡 Num Stocks/(Fund, Quarter)

Num. Obs. 3396550.00 3396550.00 3396550.00 133902.00
Mean −0.01 0.03 −0.0001 162.61
Std. Dev. 0.19 0.24 0.0042 306.68
Min −0.59 −0.99 −0.4536 1.00
25% −0.08 −0.09 −0.0011 43.00
50% 0.00 0.02 −0.0000 72.00
75% 0.07 0.14 0.0008 130.00
Max 0.44 14.05 0.2134 3712.00

(b) Annual EPS Expectations — All Horizons

Summary statistics for quarter-over-quarter changes in LTG expectations 𝛥𝐿𝑇𝐺𝑎,𝑛,𝑡 (Panel (a)) and revisions in annual EPS expectations for
forecast horizons of one to four years 𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 (Panel (b)), inter-announcement percentage price changes (𝛥𝑝𝑎,𝑛,𝑡), the FIT instrument FIT𝑛,𝑡,
and the number of stocks held by mutual funds used to construct the FIT instrument. The first three columns are expressed in absolute terms
(i.e. 0.01 is 1%). The time period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions.

Exogeneity of the ex-ante ownership shares (8) is plausible because
the FIT instrument uses ownership shares from quarter 𝑡 − 2, which
do not contain information analysts use to update expectations from
quarter 𝑡 − 1 to 𝑡. For example, positive news about Apple in quarter
𝑡 − 2 may impact 𝑆𝑖,𝑛,𝑡−2, but will not be used by analysts to update
expectations from quarter 𝑡 − 1 to 𝑡.

This identification strategy does not require exogenous flows. Flows
may correlate with analyst belief shocks in the time series: E

[

𝑓𝑖,𝑡𝜈𝑎,𝑛,𝑡
]

≠
0,∀𝑎, 𝑖, 𝑛. For example, previous work finds correlations of flows with
surveyed beliefs (Greenwood and Shleifer, 2014), past performance (Ip-
polito, 1992; Chevalier and Ellison, 1997; Sirri and Tufano, 1998), past
flows (Lou, 2012), and earnings news (Di Maggio et al., 2023). None of
these time-series correlations undermines FIT cross-sectional exogeneity.
(7) can hold even if E

[

𝑓𝑖,𝑡𝜈𝑎,𝑛,𝑡
]

≠ 0,∀𝑎, 𝑖, 𝑛 because flows do not create
cross-sectional variation in FIT𝑛,𝑡 across stocks within a quarter. Only
the heterogeneous ownership shares create cross-sectional variation.

For example, one may be concerned that good news about small
stocks in quarter 𝑡 raises analyst expectations for small stocks and drives
flows into small-cap funds. This situation does threaten exogeneity, but
not because flows are endogenous. The issue here is the ownership
shares are endogenous ((8) fails) because both analyst belief shocks
and small-cap fund ownership shares depend on a common stock
characteristic: size. Hence, analyst expectations for small stocks are
more exposed (than those for large stocks) to both the price pres-
sure driven by flows into small-cap funds and the good news shock.
These correlated exposures to different ‘‘aggregate shocks’’ can threaten
exogeneity.

Section 5.3 explains the solution is to control for the problematic
stock characteristics (size in this example) interacted with time fixed
effects. Controlling for observed and latent characteristics that explain
most ownership share variation yields similar results to the baseline
analysis. Funds holding few stocks can raise similar issues, so I recon-
struct the FIT instrument from only diversified mutual funds and find
similar results. Systematic deviations from proportional trading can
also raise similar issues (Berger, 2023), so I reconstruct the instrument
from only passive funds and find similar results. I also show FIT does
not forecast future profitability increases, suggesting analysts do not
respond to real effects of this instrument.

5.1. Empirical results

I run the following two-stage least squares regression:

𝛥𝑝𝑎,𝑛,𝑡 = 𝑎0 + 𝑎1FIT𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒1,𝑎,𝑛,𝑡

𝛥𝑦𝑎,𝑛,𝑡 = 𝑏0 + 𝛼𝛥𝑝̂𝑎,𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒2,𝑎,𝑛,𝑡. (9)

For analyst institution 𝑎 and stock 𝑛 in quarter 𝑡, 𝛥𝑦𝑎,𝑛,𝑡 is either the
quarterly LTG expectation change 𝛥LTG𝑎,𝑛,𝑡, or the ℎ-year EPS expec-
tation revision 𝛥𝐸𝑎,𝑛,𝑡+4ℎ|𝑡. 𝛥𝑝𝑎,𝑛,𝑡 is the corresponding price change
between 𝑎’s two quarterly report dates for stock 𝑛 in quarters 𝑡− 1 and
𝑡. 𝐹𝐸𝑡 are quarter fixed effects.

Table 4 Panel (a) presents the LTG expectations results.35 The OLS
regression of LTG expectation changes on price changes in column 1
finds a strong association between these objects, as in previous work
(Bordalo et al., 2019, 2024; Nagel and Xu, 2021).36 The first-stage
regression in column 2 is strong with a partial 𝐹 -statistic (13.3) over the
conventional threshold (10): higher flow-induced trading raises prices.
The reduced-form coefficient in column 3 is also significant: higher
flow-induced trading raises LTG expectations. The second-stage 𝛼 es-
timate in column 4 reveals a statistically and economically significant
impact: an exogenous 1% price increase raises LTG expectations by 5
basis points. I report the second-stage 95% confidence interval using
the 𝑡𝐹 procedure of Lee et al. (2022) to address any concerns about
how instrument strength impacts second-stage inference. The smaller
magnitude for this 𝛼 estimate than for the annual EPS expectations is
reasonable since the LTG expectations likely capture a more persistent
component of cash flow expectations (as discussed in Section 7.1.2).

Panel (b) displays the one to four-year annual EPS expectations re-
sults. The OLS regression of EPS expectation revisions on price changes
in column 1 finds a strong association between these objects, as in
previous work (Delao and Myers, 2021, 2024). The first-stage re-
gression in column 2 is strong with a partial 𝐹 -statistic (16.1) over
the conventional threshold (10): higher flow-induced trading raises
prices. The reduced-form coefficient in column 3 is also significant:

35 Appendix Table F7 displays results with block-bootstrapped (instead of
quarterly-clustered) confidence intervals.
36 See Appendix C for a comparison of this OLS regression of analyst
expectations on prices in changes to the regression in levels performed in
previous work.
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Table 4
Impact of Prices on Analyst Expectations Using FIT as Instrument.

(1) (2) (3) (4)
Panel (a): LTG Expectation Changes

OLS First Stage Reduced Form 2SLS

𝛥𝑝𝑎,𝑛,𝑡 0.0438*** 0.0546**
(0.00209) (0.0169, 0.0923)

FIT𝑛,𝑡 3.355*** 0.183***
(0.920) (0.0602)

N 121553 121553 121553 121553
F 439.5 13.31 9.242 18.84
R-Squared 0.0399 0.00373 0.000231

Panel (b): Revisions of Annual EPS Expectations

𝛥𝑝𝑎,𝑛,𝑡 0.279*** 0.206**
(0.0118) (0.0820, 0.330)

FIT𝑛,𝑡 3.463*** 0.714***
(0.863) (0.203)

N 3396550 3396550 3396550 3396550
F 562.2 16.09 12.32 21.51
R-Squared 0.108 0.00387 0.000229

Quarter FE Y Y Y Y
Quarter-Clustered SE Y Y Y Y

Standard errors in parentheses
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
This table displays results for the following two-stage least squares regression:

𝛥𝑝𝑎,𝑛,𝑡 = 𝑎0 + 𝑎1FIT𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒1,𝑎,𝑛,𝑡
𝛥𝑦𝑎,𝑛,𝑡 = 𝑏0 + 𝛼𝛥𝑝̂𝑎,𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒2,𝑎,𝑛,𝑡 ,

The first stage regresses percent price changes between analyst reports (𝛥𝑝𝑎,𝑛,𝑡) on the flow-induced trading instrument (FIT𝑛,𝑡) (column 2 reports
the first-stage partial 𝐹 -statistic). The reduced form regresses changes in LTG expectations (𝛥LTG𝑎,𝑛,𝑡) in Panel (a) and quarterly revisions to
annual EPS expectations with horizons of one to four years (𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡) in Panel (b) on FIT𝑛,𝑡. The second stage regresses 𝛥LTG𝑎,𝑛,𝑡 in Panel (a)
and 𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 in Panel (b) on the instrumented price changes (𝛥𝑝̂𝑎,𝑛,𝑡). 𝐹𝐸𝑡 are quarter fixed effects. All units are in percentage points (i.e. 1.0
is 1%). Column 4 reports the 95% confidence interval for the second-stage coefficients using the 𝑡𝐹 procedure of Lee et al. (2022). The time
period is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12 for the annual EPS expectation revisions.

higher flow-induced trading raises annual EPS expectation revisions.
The second-stage 𝛼 estimate in column 4 reveals a statistically and
economically significant impact: an exogenous 1% price increase raises
annual EPS expectations by 21 basis points, which is statistically indis-
tinct from the 41 basis points estimate using the 𝛥𝐵𝑀𝐼 instrument in
Table 2.

Since these revisions of fixed-horizon EPS expectations reflect
changes in forecast errors, as Section 3 discusses, this 𝛼 > 0 result
implies forecast errors increase (in magnitude, i.e. become more neg-
ative) in response to exogenous price increases. Thus, this result is
inconsistent with analysts raising their cash flow expectations due to
exogenous price increases solely because these increases raise actual
future cash flows.

Appendix Figure F5 displays first-stage and reduced-form binscatter
plots. Figures F7 and F8 display alternate specifications. Figure F9
displays results for alternate winsorizations.

5.2. Persistence in the term structure and long-run reversal

The impact of prices on analyst expectations does not shrink as
forecast horizon grows or over the following year for a given forecast
horizon. This impact reverts in the long run as the price impact of FIT
reverts.

Fig. 4 displays the results of two-stage least squares regression (9)
for each annual EPS expectation horizon. The 𝛼 estimates for one to
three year horizons range from 19.2 to 21.2 basis points, which are
similar to the 𝛼 = 20.6 basis points pooled estimate from Table 4
Panel (b). The four-year estimate of 𝛼 = 40.1 basis points is larger,
but is statistically indistinct from the pooled estimate. Appendix Figure
F6 displays first-stage and reduced-form results. Thus, the impact of
prices on analyst cash flow expectations appears permanent in the term
structure of expectations: it does not shrink as forecast horizon grows.

Do analysts revise their expectations ex-post once they have enough
public information to realize they have responded to price changes
driven by noise trading? FIT𝑛,𝑡 uses fund holdings from the end of
quarter 𝑡− 2 to instrument the price change spanning parts of quarters
𝑡− 1 and 𝑡 (as in Fig. 1). Funds report these holdings to the SEC with a
60-day delay, so they become public in quarter 𝑡−1.37 If analysts learn
of these filings with a delay (e.g. due to inattention), they would not be
able to construct FIT𝑛,𝑡 in real time. If they later learn of these filings,
construct FIT𝑛,𝑡, realize they have responded to noise, and revise their
expectations to remove this noise, then the impact of FIT𝑛,𝑡 on analyst
expectations should revert quickly.

These quick ex-post revisions do not occur over one year. I regress
expectations changes on lagged FIT:

𝛥𝑦𝑎,𝑛,𝑡 =
𝐿
∑

𝑠=0
𝛽𝑠FIT𝑛,𝑡−𝑠 + 𝐹𝐸𝑡 + 𝐹𝐸𝑛 + 𝑒𝑎,𝑛,𝑡.

𝛥𝑦𝑎,𝑛,𝑡 is the LTG expectation change or annual EPS expectation revi-
sion. 𝐿 = 0,… , 4 is the max lag.

Fig. 5 displays the sum of the coefficients on the lagged FIT instru-
ments for each maximum lag 𝐿 = 0,… , 4: ∑𝐿

𝑠=0 𝛽𝑠. The vertical line
at the one quarter lag highlights that the first ‘‘true lag’’ is actually
quarter 𝑡−2, since FIT𝑛,𝑡−1 overlaps with 𝛥𝑦𝑎,𝑛,𝑡 (as shown in Fig. 1). At

37 The Thomson Reuters S12 database collects mutual fund holdings from
SEC Forms N-30D, N-Q, and N-CSR, and voluntary disclosures (Zhu, 2020).
Form N-Q is filed within 60 days after a fund’s 1st and 3rd fiscal quarters (Se-
curities, U.S. and Exchange Commission, 2023b). Form N-CSR is filed within
10 days of the fund’s ‘‘transmission to stockholders of any annual or semi-
annual report that is required... pursuant to Rule 30e-1 under the [Investment
Company Act of 1940]’’ (Securities, U.S. and Exchange Commission, 2023a).
These reports are made within 60 days after a fund’s 2nd and 4th fiscal
quarters (Office U.S. Government Publishing, 2023).
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Fig. 4. Impact of prices on term structure of EPS expectations.
This figure displays the following two-stage least squares regressions results:
𝛥𝑝𝑎,𝑛,𝑡 = 𝑎0 + 𝑎1FIT𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒1,𝑎,𝑛,𝑡
𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 = 𝑏0 + 𝛼𝛥𝑝̂𝑎,𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒2,𝑎,𝑛,𝑡 ,
The first stage regresses quarterly percent price changes (𝛥𝑝𝑎,𝑛,𝑡) on the flow-induced trading instrument (FIT𝑛,𝑡). The second stage regresses quarterly revisions to annual EPS
expectations (𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡) on the instrumented price changes (𝛥𝑝̂𝑎,𝑛,𝑡). I run this regression separately for each horizon ℎ from 1 to 4 years. 𝐹𝐸𝑡 are quarter fixed effects. All units
are in percentage points (i.e. 1.0 is 1%). The solid error bars represent 90% confidence intervals, while the dashed error bars display 95% confidence intervals, both of which are
computed using the 𝑡𝐹 procedure of Lee et al. (2022). Standard errors are clustered by quarter. The time period is 1982-04:2020-12.

Fig. 5. Lack of immediate reversal in impact of FIT on analyst cash flow expectations.
This figure displays the coefficient sums ∑𝐿

𝑠=0 𝛽𝑠 , 𝐿 = 0,… , 4, from the following regression:

𝛥𝑦𝑎,𝑛,𝑡 =
𝐿
∑

𝑠=0
𝛽𝑠FIT𝑛,𝑡−𝑠 + 𝐹𝐸𝑡 + 𝐹𝐸𝑛 + 𝑒𝑎,𝑛,𝑡 .

𝛥𝑦𝑎,𝑛,𝑡 is either the quarter-over-quarter change in LTG expectations for analyst institution 𝑎 for stock 𝑛 in quarter 𝑡 (𝛥LTG𝑎,𝑛,𝑡), or the quarterly revision to annual EPS expectations
with horizons of one to four years (𝛥𝐸𝑎,𝑛,𝑡+4ℎ|𝑡). 𝐹𝐸𝑡 and 𝐹𝐸𝑛 are quarter and stock fixed effects. Dark and light shaded areas represent 90% and 95% confidence intervals,
respectively. Standard errors are clustered by quarter and stock. All units are in percentage points (i.e. 1.0 is 1%). The time period is 1983-01:2020-12 for the LTG expectations
and 1982-04:2020-12 for the annual EPS expectation revisions.
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horizons of up to one year, I find no evidence that analysts revise their
LTG or one to four year EPS expectations to remove their responses to
noise-drive price changes. Thus, the impact of prices on analyst cash
flow expectations is persistent.

Appendix Figure F10 shows this impact reverts at longer horizons
(twelve to sixteen quarters) once FIT price impact reverts (Lou, 2012
finds reversal at similar horizons of eight to sixteen quarters). If prices
impact analyst expectations, then analysts should lower their expecta-
tions due to ex-post price reversals. I find evidence of this prediction,
but lack power at longer lags for a sharp statistical test.

5.3. Robustness and threats to instrument validity

This section presents robustness checks to address the main po-
tential threat to FIT exogeneity: that both ex-ante ownership shares
and analyst belief shocks depend on common stock characteristics. As
discussed above, since ownership share exogeneity is sufficient for FIT
exogeneity, exogeneity is not threatened by flows chasing returns and
stock characteristics, nor by flows correlating with surveyed beliefs and
past flows.

If ownership shares 𝑆𝑖,𝑛,𝑡−2 and analyst belief shocks 𝜈𝑎,𝑛,𝑡 depend
on common stock characteristics, they correlate across stocks within
a quarter and (8) fails: the ownership shares are not exogenous. For
example, small-cap funds have larger ownership shares in small stocks
than in large stocks. At the same time, a small-firm tax cut this quarter
raises expectations more for small stocks than large stocks. Thus, stocks
with higher small-cap fund ownership shares have higher analyst belief
shocks, which violates (8).

To be concrete, consider this factor structure in ownership shares
and analyst belief shocks38:

𝑆𝑖,𝑛,𝑡−2 = 𝒄′𝑖𝑿𝑛 + 𝑆̃𝑖,𝑛,𝑡−2 (10)

𝜈𝑎,𝑛,𝑡 = 𝑿′
𝑛𝜼𝑡 + 𝜈̃𝑎,𝑛,𝑡. (11)

In (10), fund 𝑖’s ownership shares 𝑆𝑖,𝑛,𝑡−2 depend cross-sectionally on
stock characteristics 𝑿𝑛 (small-cap funds have larger ownership shares
in small firms). In (11), the impact of aggregate shocks 𝜼𝑡 (the tax news)
on analyst beliefs depends on characteristics (size). 𝑆̃𝑖,𝑛,𝑡−2 and 𝜈̃𝑎,𝑛,𝑡 are
uncorrelated with other objects.

In this case, the ownership shares are not cross-sectionally exoge-
nous ((8) fails):

∀𝑎, 𝑖, 𝑡 ∶ E
[

𝑆𝑖,𝑛,𝑡−2𝜈𝑎,𝑛,𝑡
]

= 𝒄′𝑖E
[

𝑿𝑛𝑿′
𝑛
]

𝜼𝑡 ≠ 0. (12)

Since the ownership shares are not cross-sectionally exogenous, neither
is FIT𝑛,𝑡 ((7) fails):

FIT𝑛,𝑡 =
∑

𝑖
𝑓𝑖,𝑡𝑆𝑖,𝑛,𝑡−2 =

(

∑

𝑖
𝒄𝑖𝑓𝑖,𝑡

)′

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≡𝜷′𝑡

𝑿𝑛 +
∑

𝑖
𝑆̃𝑖,𝑛,𝑡−2𝑓𝑖,𝑡

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≡ ̃FIT𝑛,𝑡

(13)

∀𝑎, 𝑡 ∶ E
[

FIT𝑛,𝑡𝜈𝑎,𝑛,𝑡
]

= 𝜷′
𝑡E

[

𝑿𝑛𝑿′
𝑛
]

𝜼𝑡 ≠ 0.

Simply put, the problem here is that cross-sectional FIT variation
comes from heterogeneous exposures to flows (which come from het-
erogeneous ownership shares) that correlate with exposures to other
aggregate shocks: small stocks are more exposed to both small-cap fund
flows and the tax news.

The solution is to control for characteristics 𝑿𝑛 interacted with
quarter indicators. Doing so removes the variation in FIT𝑛,𝑡 from these
characteristics (𝜷′

𝑡𝑿𝑛). From (13), using FIT𝑛,𝑡 while linearly controlling
for characteristics interacted with quarter indicators is the same as
constructing the instrument from residual ownership shares 𝑆̃𝑖,𝑛,𝑡−2:
̃FIT𝑛,𝑡 =

∑

𝑖 𝑆̃𝑖,𝑛,𝑡−2𝑓𝑖,𝑡. ̃FIT𝑛,𝑡 is exogenous because the residual shares
are.39

38 A more general specification 𝜈𝑎,𝑛,𝑡 = 𝝀′
𝑎,𝑛𝜼𝑡 + 𝜈̃𝑎,𝑛,𝑡,𝝀𝑎,𝑛 = 𝜞 𝑎𝑿𝑛 + 𝝀̃𝑎,𝑛 does

not impact any of the arguments.
39 ̃FIT𝑛,𝑡 is exogenous (E

[ ̃FIT𝑛,𝑡𝜈𝑎,𝑛,𝑡
]

= 0,∀𝑎, 𝑡) since 𝑆̃𝑖,𝑛,𝑡−2 are exogenous
(E

[

𝑆̃𝑖,𝑛,𝑡−2𝜈𝑎,𝑛,𝑡
]

= 0,∀𝑎, 𝑖, 𝑡).

Which characteristics should one control for? While I cannot iden-
tify which characteristics correlate with unobserved analyst belief
shocks, I can identify those that explain significant cross-sectional
variation in ownership shares. If controlling for the most important
determinants of ownership shares has little impact on estimates of
𝛼, that suggests this common characteristics concern does not prove
serious empirically.

Section 5.3.1 controls for stock characteristics associated with the
investment styles of funds that drive most FIT variation and that may
threaten exogeneity. Since ownership shares and analyst belief shocks
may also depend on unobserved characteristics, Section 5.3.2 controls
for latent characteristics from a latent factor model that explain most
cross-sectional ownership share variation. Section 5.3.3 reconstructs
FIT from only diversified funds to address the similar issues raised
by funds holding few stocks: ownership shares depend on a specific
stock characteristic — firm identity. Section 5.3.4 reconstructs FIT from
only passive funds, which generally adhere to proportional trading, to
address similar issues raised by systematic deviations from proportional
trading (Berger, 2023). Section 5.3.5 shows FIT does not predict future
earnings growth to address the potential threat of analysts responding
to real effects of this instrument.

As summarized in Fig. 6, these alternate specifications yield 𝛼
estimates similar to the baseline estimates in Table 4. Appendix Figures
F14 and F15 present the first-stage and reduced-form results.

5.3.1. Controlling for observed stock characteristics
I control for stock characteristics associated with the fund styles that

drive most of the variation in the FIT instrument. Since investment style
is one of the most important determinants of ownership shares within a
fund (e.g. small-cap funds have larger ownership shares in small stocks
than in large stocks), style characteristics may threaten ownership share
exogeneity and should be controlled for.

Which fund styles are most important to control for? As a shift-share
instrument, the FIT instrument is equivalent to using ownership shares
(interacted with quarter indicators) as cross-sectional instruments for
price changes in an over-identified system with a specific GMM weight-
ing matrix (Goldsmith-Pinkham et al., 2020). One can compute which
funds, and so which styles, receive more weight in this estimation using
the ‘‘Rotemberg weights’’ from Goldsmith-Pinkham et al. (2020) (see
Appendix F.5 for details). Violation of share exogeneity (8) for higher
Rotemberg weight styles biases the 𝛼 estimates more. Thus, characteris-
tics associated with high-weight styles are the most important to control
for.

As displayed in Table 5, the most important styles (identified from
CRSP style codes40) for both the LTG and annual EPS expectations
samples are cap-based and growth/income-based. The top four styles
account for 116% and 88% of the total Rotemberg weight for these
samples, respectively, so these styles drive almost all FIT instrument
variation (a few styles have slightly negative weights, as detailed in
Appendix F.5). For example, since the most important style for the
LTG sample is growth, much of the FIT instrument variation comes
from comparing stocks that growth funds have large ownership shares
in (growth stocks) to stocks these funds have small ownership shares
in (value stocks). If analyst belief shocks for growth and value stocks
having heterogeneous exposures to other aggregate shocks, that may
violate share exogeneity. Thus, size and valuation metrics may threaten
share exogeneity and should be controlled for because cap-based and
growth/income-based fund ownership shares correlate with these char-
acteristics.

I control for log market equity as a size measure, book-to-market
and dividend-to-book ratios as valuation metrics, and profitability,

40 CRSP style codes are defined in this document: https://wrds-www.
wharton.upenn.edu/documents/1303/MFDB_Guide.pdf.
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Fig. 6. Robustness checks for using FIT instrument.
This figure displays the following two-stage least squares regression results:
𝛥𝑝𝑎,𝑛,𝑡 = 𝑎0 + 𝑎1FIT𝑛,𝑡 + 𝜷 ′

1𝑿𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒1,𝑎,𝑛,𝑡
𝛥𝑦𝑎,𝑛,𝑡 = 𝑏0 + 𝛼𝛥𝑝̂𝑎,𝑛,𝑡 + 𝜷 ′

2𝑿𝑛,𝑡 + 𝐹𝐸𝑡 + 𝑒2,𝑎,𝑛,𝑡 .
The first stage regresses percent price changes between analyst reports (𝛥𝑝𝑎,𝑛,𝑡) on the flow-induced trading instrument (FIT𝑛,𝑡). The second stage regresses changes in LTG expectations
(𝛥LTG𝑎,𝑛,𝑡 in Panel (a)) and quarterly revisions to annual EPS expectations with horizons of one to four years (𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡 in Panel (b)) on the instrumented price changes (𝛥𝑝̂𝑎,𝑛,𝑡).
𝑿𝑛,𝑡 includes quarter indicators interacted with either observed (in the ‘‘Observed Characteristics’’ specifications) or latent (in the ‘‘Latent Characteristics’’ specifications) stock
characteristics. The observed stock characteristics include: book-to-market ratio, log market equity, dividend-to-book equity ratio, profitability, investment, and market beta. For the
‘‘Observed Characteristics’’ specifications, each subsequent column adds an additional control variable (e.g. the right-most column represents the results of the regression with all six
control variables). The time period for the ‘‘Observed Characteristics’’ and ‘‘Latent Characteristics’’ specifications is 1983-01:2020-12 for the LTG expectations and 1982-04:2020-12
for the annual EPS expectation revisions. For the ‘‘Minimum Number of Mutual Fund Holdings’’ specifications, each column reconstructs FIT𝑛,𝑡 only from mutual funds that have
at least 𝑀 holdings, where 𝑀 is labeled on the x-axis. The time period for the ‘‘Minimum Number of Mutual Fund Holdings’’ specifications is 1983-01:2020-12 for the LTG
expectations and 1982-04:2020-12 for the annual EPS expectation revisions. The ‘‘Index Funds Only’’ specifications reconstruct FIT𝑛,𝑡 from only mutual funds identified as index
funds by one of the two criteria listed on the x-axis. The time period for the ‘‘Index Funds Only’’ specifications is 1984-09:2020-12. 𝐹𝐸𝑡 are quarter fixed effects. The solid error
bars represent 90% confidence intervals, while the dashed error bars display 95% confidence intervals, both of which are computed using the 𝑡𝐹 procedure of Lee et al. (2022).
Standard errors are clustered by quarter. All units are in percentage points (i.e. 1.0 is 1%).

Table 5
Rotemberg Weights as Percentage of Total for Most Important Fund Styles.
Style LTG Style Annual EPS Expectation

Domestic Equity Growth 82.74 Domestic Equity Small Cap 38.08
Domestic Equity Small Cap 27.23 Domestic Equity Growth 35.97
Domestic Equity Income 3.98 Domestic Equity Mid Cap 10.20
Domestic Equity Growth & Income 2.37 Domestic Equity Micro Cap 4.08

Total Rotemberg weights (expressed as percentages of the total weight) for top four most important fund styles for both the LTG expectations (𝛥𝐿𝑇𝐺𝑎,𝑛,𝑡) and annual EPS expectations
(𝛥𝐸𝑎,𝑛,𝑡+4ℎ∣𝑡) samples.
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investment, and market beta as popular characteristics that may cor-
relate with ownership shares.41 These six characteristics explain 46%
of within fund-quarter ownership share variation (see Appendix F.6 for
details).

As Fig. 6 displays, controlling for these characteristics interacted
with quarter indicators does not affect the 𝛼 estimates. Sequentially
adding controls, the LTG expectations estimates in Panel (a) range from
𝛼 = 4.8 to 5.7 basis points, which are close to the baseline 𝛼 = 5.5 basis
points estimate from Table 4 Panel (a). The annual EPS expectations
estimates in Panel (b) range from 𝛼 = 20.6 to 24.0 basis points, which
are close to the baseline 𝛼 = 20.6 basis points estimate from Table 4
Panel (b).

5.3.2. Controlling for latent stock characteristics
I fit a latent factor model to address the potential threat of owner-

ship shares and analyst belief shocks depending on unobserved charac-
teristics:

𝑆𝑖,𝑛,𝑡 = 𝒄′𝑖,𝑡𝑿𝑛,𝑡 + 𝐹𝐸𝑖,𝑡 + 𝐹𝐸𝑛,𝑡 + 𝑆̃𝑖,𝑛,𝑡. (14)

I fit factor model (14) to the fund × stock 𝑆𝑖,𝑛,𝑡 panel in each
quarter using regularized singular value decomposition (Funk, 2006)
(see Appendix F.7 for details).42 The stock-quarter fixed effect and first
seven characteristics explain 75% of within fund-quarter ownership
share variation (see Appendix F.6 for details).

As Fig. 6 displays, controlling for these eight latent characteristics
interacted with quarter indicators does not affect the 𝛼 estimates. The
LTG estimates in Panel (a) range from 𝛼 = 5.1 to 5.7 basis points, which
are similar to the baseline 𝛼 = 5.5 basis points estimate in Table 4 Panel
(a). The annual EPS expectations estimates in Panel (b) range from
𝛼 = 20.3 to 20.9 basis points, which are similar to the baseline 𝛼 = 20.6
basis points estimate in Table 4 Panel (b). Appendix Figures F16, F17,
and F18 display the first-stage, reduced-form, and second-stage results
for different numbers of latent factors.

5.3.3. Requiring minimum number of holdings
I reconstruct the FIT instrument from only mutual funds with many

holdings to address the potential threat posed by concentrated port-
folios. Funds holding few stocks may violate share exogeneity. In the
extreme case where each fund holds one stock, any stock-specific
shocks (e.g. earnings surprises) will violate share exogeneity. For exam-
ple, only analyst expectations for Apple are exposed to flows into the
‘‘Apple fund’’ and Apple’s earnings surprise. In this example, ownership
shares and analyst belief shocks depend on a specific characteristic:
firm identify.43 Since ownership shares and analyst belief shocks de-
pend on a common characteristic, share exogeneity (8) is violated, as
in (12).

This fund concentration concern is not serious empirically. In my
sample the average (median) number of stocks held by each fund in
each quarter is over 160 (70) (see Table 3).

41 When using change in analyst expectations 𝛥𝑦𝑎,𝑛,𝑡, I use characteristics
from quarter 𝑡− 2, which is the same quarter the ownership shares 𝑆𝑖,𝑛,𝑡−2 are
taken from to construct FIT𝑛,𝑡. Profitability is the ratio of operating profits over
book equity. Investment is log annual growth rate of assets. Market beta is
constructed from 60-month rolling regressions using returns in excess of one-
month Treasury bill rates. I winsorize profitability, investment, and market
beta at the 2.5th and 97.5th percentiles. Since dividends and book equity are
non-negative, I winsorize them at the 97.5th percentile.
42 Given the sparsity of the data (most funds do not hold most stocks), I
use L2 (i.e. ridge) regularization to estimate the factor model more efficiently.
Regularization biases the factor and loading estimates toward zero to reduce
their variance.
43 If there are 𝑁 total stocks, 𝑿𝑛 in (10) and (11) is an 𝑁-dimensional vector
of stock indicators: 𝑿𝑛 =

[

1𝑗=𝑛
]𝑁
𝑗=1. Firm identity cannot be controlled for: one

would have to control for stock-quarter fixed effects, which would absorb all
FIT variation.

To further address this concern, I reconstruct FIT𝑛,𝑡 using only funds
with at least 𝑀 ∈ [15, 200] holdings in quarter 𝑡. As Fig. 6 displays,
doing so does not affect the 𝛼 estimates. The LTG expectations estimates
in Panel (a) range from 𝛼 = 5.0 to 6.9 basis points, similar to the
baseline 𝛼 = 5.5 basis points estimate in Table 4. The annual EPS
expectations estimates in Panel (b) range from 𝛼 = 16.8 to 20.4 basis
points, similar to the baseline 𝛼 = 20.6 basis points estimate. Power
decreases as the minimum number of holdings rises because excluding
some funds reduces the FIT instrument’s variation.

5.3.4. Using only passive funds
I reconstruct the FIT instrument from only passive funds to address

the potential threat posed by systematic deviations from the propor-
tional trading assumption. The FIT instrument’s construction assumes
that funds tend to scale holdings proportionally in response to flows, or
deviate from proportional trading at random. However, Berger (2023)
finds systematic deviations from proportional trading that can create
selection bias: while the proportional trading assumption may normally
hold (as shown by Lou, 2012), it may not hold when funds face
extreme outflows (e.g. due to liquidity costs). For the Edmans et al.
(2012) 𝑀𝐹𝐹𝐿𝑂𝑊 instrument, Berger (2023) argues these systematic
deviations occur for stocks with certain characteristics (e.g. illiquid
stocks) because this instrument uses only the predicted trading driven
by extreme outflows.44 Since the Lou (2012) FIT instrument I use
includes the predicted trading driven by all flows (not just extreme
outflows), these systematic deviations are less likely in my setting.
Still, I take this concern seriously, because systematic deviations from
proportional trading would create a dependence of ownership shares
on stock characteristics, which threatens share exogeneity (8).45

Reconstructing the FIT instrument from only passive funds ad-
dresses this concern because Berger (2023) finds passive funds, which
closely track an index, generally adhere to proportional trading, or at
least deviate much less from it than active funds do.46 Thus, if selection
bias drives the baseline results in Table 4, then constructing the FIT
instrument from only passive funds should yield smaller 𝛼 estimates.
Yet doing so yields similar results, which suggests this selection bias
concern is not serious empirically.

I use two definitions of ‘‘passive funds’’. First, I classify funds with
the CRSP index fund flag47 or ‘‘target date’’ in their names as passive,
as in Berger (2023). As Fig. 6 displays, constructing the FIT instrument
from only these passive funds yields 𝛼 estimates of 4.6 and 20.1 basis
points for the LTG and annual EPS expectations, similar to the baseline
5.5 and 20.6 basis points estimates in Table 4. These point estimates are
not statistically significant because the sample sizes are much smaller
since the CRSP index fund flag is only available since 1998 and the first
named ‘‘target date’’ funds appear in my sample in 2005.48

44 Berger (2023) raises similar concerns for the flow-to-stock instrument
from Wardlaw (2020).
45 Let actual trading by fund 𝑖 in stock 𝑛 due to flow 𝑓𝑖,𝑡 be 𝜓 𝑖,𝑛,𝑡 ⋅𝑓𝑖,𝑡. Define

FIT𝜓𝑛,𝑡 =
∑

𝑖 𝑆
𝜓
𝑖,𝑛,𝑡𝑓𝑖,𝑡, where 𝑆

𝜓
𝑖,𝑛,𝑡 = 𝜓 𝑖,𝑛,𝑡∕Shares Outstanding𝑛,𝑡. If deviations of

actual trading from proportional trading depend on stock characteristics 𝑿𝑛,𝑡
(Shares Held𝑖,𝑛,𝑡−2 ⋅𝑓𝑖,𝑡 = 𝜓 𝑖,𝑛,𝑡 ⋅𝑓𝑖,𝑡+𝒄′𝑿𝑛,𝑡 ⋅𝑓𝑖,𝑡), then deviations of the shares the
FIT instrument uses (𝑆𝑖,𝑛,𝑡) from the shares that ‘‘should’’ be used (𝑆𝜓𝑖,𝑛,𝑡) depend
on 𝑿𝑛,𝑡: 𝑆𝑖,𝑛,𝑡 =

(

𝑆𝜓𝑖,𝑛,𝑡 ⋅ Shares Outstanding𝑛,𝑡 + 𝒄′𝑿𝑛,𝑡

)

∕Shares Outstanding𝑛,𝑡−2.
46 Heath et al. (2022) note passive ETFs hold a (large) sample of stocks from
their benchmarks that trades off tracking error versus transactions costs (they
hold 97%, 89%, and 63% of stocks in the top, middle, and bottom liquidity
terciles).
47 Specifically, I include only funds with the ‘‘D’’ flag, which stands for ‘‘pure
index fund’’.
48 For the LTG and annual EPS expectations samples, using the FIT in-
strument constructed from funds with the CRSP index fund flag and target
date funds yields 80,870 (down from 121,553) and 2, 392, 080 (down from
3, 396, 550) observations.



Journal of Financial Economics 171 (2025) 104095

16

A. Chaudhry

To increase power, I classify funds as passive based on the propor-
tion of their investment universes they hold. Similar to Koijen and Yogo
(2019), I define a fund’s investment universe as the set of all stocks
it has ever held in the last five years. A fund is passive if it holds
at least 𝑀% of the stocks in its universe.49 For 𝑀 = 50%, this rule
successfully classifies 84% of fund-quarter observations as passive or
not based on the above CRSP index fund flag and ‘‘target date’’ name
definition, with a false positive rate of only 8%. As Fig. 6 displays,
reconstructing the FIT instrument from only funds holding least 50%
of their universes yields 𝛼 estimates of 5.6 and 23.7 basis points for
the LTG and annual EPS expectations samples, which are similar to the
baseline 5.5 and 20.6 basis points estimates. Using thresholds above
50% improves classification accuracy and yields similar results, at the
expense of power, as Appendix Figure F21 displays.50 Appendix Figures
F19 and F20 display the first-stage and reduced-form results.

5.3.5. Real effects of FIT
Appendix F.3 demonstrates FIT does not predict future EPS growth

in levels or changes in this sample. These null results address the
potential threat of FIT raising analyst expectations directly (instead
of through prices) because analysts respond to real effects of the FIT
instrument.51

6. Quantifying the importance of the impact of prices on analyst
expectations

This section measures the proportion of the covariance between
prices and analyst cash flow expectations explained by the impact of
prices on analyst expectations. This covariance proportion requires an
estimate of the impact of average price changes on analyst expectations
(the ‘‘average treatment effect’’). Since the two-stage least squares
estimates in Sections 4.1 and 5.1 measure the impact of price changes
specifically driven by the two instruments on analyst expectations
(‘‘local average treatment effects’’), they may differ from the impact of
average price changes if analysts respond heterogeneously to different
price changes (Angrist and Imbens, 1995).

Section 6.1 describes how I use the approach of Pancost and Schaller
(2024) to recover estimates of this average impact and presents the
empirical estimates of the decomposition of the covariance of prices
with analyst expectations. Section 6.2 provides sufficient conditions
under which this approach recovers the true covariance decomposition
in a general setting. Section 6.3 demonstrates that these covariance
proportion estimates prove robust to relaxations of these conditions.

6.1. Empirical covariance decomposition

For now, consider a simple setting (that I generalize in Section 6.2)
with two types of days: type-𝑇 days on which price changes impact
analyst cash flow expectations, and type-𝐹 on which they do not. In
this case we can write the quarterly changes in price 𝛥𝑝𝑎,𝑛,𝑡 and analyst
expectations 𝛥𝑦𝑎,𝑛,𝑡 as

𝛥𝑝𝑎,𝑛,𝑡 = 𝛥𝑝𝑇𝑎,𝑛,𝑡 + 𝛥𝑝
𝐹
𝑎,𝑛,𝑡

𝛥𝑦𝑎,𝑛,𝑡 = 𝛼𝛥𝑝𝑇𝑎,𝑛,𝑡 + 𝜈𝑎,𝑛,𝑡.

49 Specifically, I apply this classification at the fund-quarter level.
50 Classification accuracy based on the CRSP index fund flag and ‘‘target
date’’ name definition of ‘‘passive’’ for the 60% threshold is 87% with a false
positive rate of 3%. Accuracy for the 70% threshold is 88% with a false positive
rate of 1%.
51 These results are consistent with Wardlaw (2020), which shows that after
correcting the mechanical endogeneity issue in the Edmans et al. (2012)
version of the mutual fund flow-induced trading instrument used in much
previous work, many of the real effects documented in previous work no longer
hold. I use the Lou (2012) FIT instrument, which is not subject to the Wardlaw
(2020) critique of the Edmans et al. (2012) version of this instrument.

The true covariance proportion explained by the impact of prices
on analyst expectations is

𝛼V𝐶𝑋
[

𝛥𝑝𝑇𝑎,𝑛,𝑡
]

𝐶𝑜𝑣𝐶𝑋
(

𝛥𝑝𝑎,𝑛,𝑡, 𝛥𝑦𝑎,𝑛,𝑡
)

=
Two Stage Least Squares Estimate of 𝛼

OLS Coefficient in Regression of 𝛥𝑦𝑎,𝑛,𝑡 on 𝛥𝑝𝑎,𝑛,𝑡
⋅
V𝐶𝑋

[

𝛥𝑝𝑇𝑎,𝑛,𝑡
]

V𝐶𝑋
[

𝛥𝑝𝑎,𝑛,𝑡
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
≡𝜃≤1

,

(15)

where the superscript 𝐶𝑋 (for ‘‘cross-sectional’’) means time fixed
effects are removed.

The proportion of total price variation that impacts analyst expec-
tations is 𝜃, and those price changes have an impact of 𝛼 on analyst
expectations. Thus, 𝛼𝐴𝑇𝐸 ≡ 𝛼 ⋅ 𝜃 represents the impact of average
price changes on analyst cash flow expectations (i.e. average treatment
effect). As discussed in Section 6.2, in general the true covariance
proportion explained is 𝛼𝐴𝑇𝐸 divided by the OLS coefficient.

Thus, measuring the true covariance proportion (15) requires an
estimate of 𝜃 in addition to the two-stage least squares and OLS
estimates. I use the method of Pancost and Schaller (2024) to measure
𝜃. Let 𝛼2𝑆𝐿𝑆ℎ and 𝛼𝑂𝐿𝑆ℎ be the two-stage least squares and OLS estimates
for horizon ℎ (LTG or one to four years). If 𝛼𝑂𝐿𝑆ℎ has omitted variable
bias (due to common information or sentiment shocks impacting both
analyst expectations directly and prices via investor expectations) and
‘‘measurement error’’ (due to 𝛥𝑝𝑎,𝑛,𝑡 being a ‘‘noisy proxy’’ for 𝛥𝑝𝑇𝑎,𝑛,𝑡
given the presence of 𝛥𝑝𝐹𝑎,𝑛,𝑡), then 𝛼

𝑂𝐿𝑆
ℎ is a linear function of 𝛼2𝑆𝐿𝑆ℎ :

𝛼𝑂𝐿𝑆ℎ = 𝜃𝛼2𝑆𝐿𝑆ℎ + 𝑂𝑉 𝐵ℎ,

Pancost and Schaller (2024) demonstrate that in an OLS meta-regress
ion of 𝛼𝑂𝐿𝑆ℎ on 𝛼2𝑆𝐿𝑆ℎ

𝛼𝑂𝐿𝑆ℎ = 𝑎 + 𝑏𝑚𝑒𝑡𝑎𝛼2𝑆𝐿𝑆ℎ + 𝑒ℎ, (16)

𝑏𝑚𝑒𝑡𝑎 consistently estimates 𝜃. Hence, 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers cor-
rected proportion (15).52

I use the horizon-specific 𝛼2𝑆𝐿𝑆ℎ and 𝛼𝑂𝐿𝑆ℎ estimates obtained from
the FIT instrument to compute this meta-regression and corrected
covariance proportion. The horizon-specific 𝛼2𝑆𝐿𝑆ℎ estimates obtained
from the BMI instrument are noisy (see Appendix Table D4) due to the
small sample used (stocks in a narrow window around the reconstitu-
tion thresholds in June), which leads underestimation of both 𝑏𝑚𝑒𝑡𝑎 and
the true covariance proportion explained (Pancost and Schaller, 2024).
Thus, I defer the covariance decomposition using the BMI instrument
to Appendix G Table G9.

Fig. 7 displays the corrected covariance proportion (15) for the LTG
and annual EPS expectations based on the 𝛼2𝑆𝐿𝑆ℎ and 𝛼𝑂𝐿𝑆ℎ estimates
from the FIT instrument. I estimate 𝑏𝑚𝑒𝑡𝑎 = 0.54, which implies an
average 1% price increase raises analyst LTG and one to four-year
annual EPS expectations by 𝛼𝐴𝑇𝐸ℎ = 𝛼2𝑆𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 = 2.7 and 11.1 basis
points, respectively (see Appendix Table G10 for details). Accordingly,
the impact of prices on analyst cash flow expectations explains roughly
𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 = 60% (61.0%) and 40% (39.2%) of the cross-
sectional covariances of prices with LTG and annual EPS expectations.
Since the annual expectation revisions capture forecast error changes,
this impact also explains roughly 40% of the cross-sectional covariance
of prices with forecast errors. Common information or sentiment shocks
to analysts and investors explain the remainder. Appendix G provides
estimation details; Table G10 provides covariance decompositions and
𝛼𝐴𝑇𝐸ℎ estimates for all horizons, as well as confidence intervals for 𝑏𝑚𝑒𝑡𝑎.

52 Appendix G.3 presents a simulation exercise to confirm that this meta-
regression performs well in my small-sample setting (i.e. the number of
observations in the meta-regression is the number of horizons, so five: ℎ =
1, 2, 3, 4, and 𝐿𝑇𝐺).
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Fig. 7. Decomposition of covariance between analyst cash flow expectations and prices.
This figure displays the proportion of the covariance of analyst cash flow expectation changes with contemporaneous price changes explained by the impact of prices on analyst
cash flow expectations (red) and by common information or sentiment shocks to analyst and investor expectations (gray). These proportions sum to one. The left and right panels
display this decomposition for changes in LTG expectations and revisions to one to four year EPS expectations (which capture forecast error changes). Error bars represent quarterly
block-bootstrapped 95% confidence intervals.

These adjusted covariance proportions are more conservative than
the unadjusted proportions. The two-stage least squares and OLS es-
timates (41 and 26 basis points) from the BMI instrument in Table 2
imply the impact of prices on annual analyst EPS expectations explains
157% of the covariance between these objects (following (3)). The two-
stage least squares (5 or 21 basis points) and OLS estimates (4 or 28
basis points) from the FIT instrument in Table 4 imply the impact of
prices on analyst expectations explains 125% and 75% of the observed
covariances of prices with the LTG and annual EPS expectations. Thus,
the adjusted covariance proportions reported in Fig. 7 attribute less of
this covariance to the impact of prices on analyst expectations than the
unadjusted covariance proportions do.

6.2. Sufficient conditions for accurate covariance decomposition

In a general setting, under three assumptions, 𝛼2𝑆𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers
𝛼𝐴𝑇𝐸ℎ and 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers the true proportion of the co-
variance of prices with analyst expectations explained by the impact
of prices on analyst expectations. Section 6.3 considers relaxations of
these assumptions.

General setting. Let there be 𝐼 types of days and assume prices im-
pact analyst cash flow expectations heterogeneously across day types,
analysts, stocks, and time. Also let the instrument impact prices het-
erogeneously across day types, analysts, stocks, and time. Then we can
decompose the quarterly price change 𝛥𝑝𝑎,𝑛,𝑡,53 horizon-ℎ expectation
change 𝛥𝑦ℎ𝑎,𝑛,𝑡, and instrument 𝑧𝑛,𝑡 into summations over all day types

𝛥𝑝𝑎,𝑛,𝑡 =
∑

𝑖
𝛥𝑝𝑖𝑎,𝑛,𝑡 and 𝑧𝑛,𝑡 =

∑

𝑖
𝑧𝑖𝑛,𝑡

𝛥𝑝𝑖𝑎,𝑛,𝑡 =𝑀 𝑖
𝑎,𝑛,𝑡𝑧

𝑖
𝑛,𝑡 + 𝜖

𝑖
𝑎,𝑛,𝑡

𝛥𝑦ℎ𝑎,𝑛,𝑡 =
∑

𝑖
𝛼𝑖,ℎ𝑎,𝑛,𝑡𝛥𝑝

𝑖
𝑎,𝑛,𝑡 + 𝜈

ℎ
𝑎,𝑛,𝑡.

(17)

In this setting, 𝛼𝑂𝐿𝑆 can be written as

𝛼𝑂𝐿𝑆ℎ =
𝐶𝑜𝑣𝐶𝑋

(

𝛥𝑦ℎ𝑎,𝑛,𝑡, 𝛥𝑝𝑎,𝑛,𝑡
)

V𝐶𝑋
[

𝛥𝑝𝑎,𝑛,𝑡
]

=

∑

𝑖 𝐶𝑜𝑣
𝐶𝑋

(

𝛼𝑖,ℎ𝑎,𝑛,𝑡𝛥𝑝
𝑖
𝑎,𝑛,𝑡, 𝛥𝑝𝑎,𝑛,𝑡

)

V𝐶𝑋
[

𝛥𝑝𝑎,𝑛,𝑡
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝛼𝐴𝑇𝐸ℎ

+
𝐶𝑜𝑣𝐶𝑋

(

𝜈ℎ𝑎,𝑛,𝑡, 𝛥𝑝𝑎,𝑛,𝑡
)

V𝐶𝑋
[

𝛥𝑝𝑎,𝑛,𝑡
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝑂𝑉 𝐵ℎ

, (18)

53 Note that since log(1 + 𝑥) ≈ 𝑥, we have 1 + 𝛥𝑝𝑎,𝑛,𝑡 =
∏

𝑖

(

1 + 𝛥𝑝𝑖𝑎,𝑛,𝑡
)

↔

𝛥𝑝𝑎,𝑛,𝑡 ≈
∑

𝑖 𝛥𝑝𝑖𝑎,𝑛,𝑡.

and so the desired covariance proportion is
∑

𝑖 𝐶𝑜𝑣
𝐶𝑋

(

𝛼𝑖,ℎ𝑎,𝑛,𝑡𝛥𝑝
𝑖
𝑎,𝑛,𝑡, 𝛥𝑝𝑎,𝑛,𝑡

)

𝐶𝑜𝑣𝐶𝑋
(

𝛥𝑝𝑎,𝑛,𝑡, 𝛥𝑦𝑎,𝑛,𝑡
) =

𝛼𝐴𝑇𝐸ℎ

𝛼𝑂𝐿𝑆ℎ

, (19)

where 𝛼𝐴𝑇𝐸ℎ represents the impact of average price changes on analyst
expectations.

Sufficient conditions. As Appendix G.1 proves, 𝛼2𝑆𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers
𝛼𝐴𝑇𝐸ℎ and 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers desired covariance proportion
(19) under the following three conditions (which Section 6.3 relaxes).

Assumption 1 (Sufficient Conditions for Recovery of Covariance Propor-
tion (19)). First, there is no estimation noise in 𝛼2𝑆𝐿𝑆ℎ . Second, the 2SLS
estimates are uncorrelated with the omitted variable bias term in (18)
across all horizons ℎ. Third, the ratio 𝜃ℎ = 𝛼𝐴𝑇𝐸ℎ ∕𝛼2𝑆𝐿𝑆ℎ is fixed across
all horizons ℎ.

Proposition 1 (Covariance Proportion Recovery in General Setting). Un-
der Assumption 1, 𝛼2𝑆𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers 𝛼𝐴𝑇𝐸ℎ and 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎

recovers desired covariance proportion (19) in general setting (17).

The intuition for Proposition 1 is simple. Following (18), 𝛼𝑂𝐿𝑆ℎ can
in general be written as

𝛼𝑂𝐿𝑆ℎ = 𝛼2𝑆𝐿𝑆ℎ ⋅
𝛼𝐴𝑇𝐸ℎ

𝛼2𝑆𝐿𝑆ℎ
⏟⏟⏟

≡𝜃ℎ

+ 𝑂𝑉 𝐵ℎ.

In general, 𝜃ℎ is the ratio of the average treatment effect to the local
average treatment effect captured by 𝛼2𝑆𝐿𝑆ℎ . So in general, the product
𝛼2𝑆𝐿𝑆ℎ ⋅ 𝜃ℎ recovers 𝛼𝐴𝑇𝐸ℎ , the numerator of desired covariance propor-
tion (19). Under Assumption 1, 𝑏𝑚𝑒𝑡𝑎 recovers the constant 𝜃ℎ = 𝜃.
Thus, 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 recovers the desired covariance proportion
𝛼𝐴𝑇𝐸ℎ ∕𝛼𝑂𝐿𝑆ℎ from (19).

6.3. Robustness

This section discusses how relaxations of the three conditions in
Assumption 1 impact estimates of the desired covariance proportion
(19).

Estimation noise in 𝛼2𝑆𝐿𝑆ℎ . Estimation noise in 𝛼2𝑆𝐿𝑆ℎ acts as mea-
surement error in meta-regression (16) and creates attenuation bias.
Thus, 𝑏𝑚𝑒𝑡𝑎 underestimates 𝜃, and so 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 underestimates
covariance proportion (19).
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Pancost and Schaller (2024) provide a simple method to correct for
estimation noise in 𝛼2𝑆𝐿𝑆ℎ when estimating 𝜃. Specifically, decompose
estimates 𝛼̂2𝑆𝐿𝑆ℎ of 𝛼2𝑆𝐿𝑆ℎ into

𝛼̂2𝑆𝐿𝑆ℎ = 𝛼2𝑆𝐿𝑆ℎ + 𝜁ℎ𝜖ℎ,

where 𝜖ℎ a mean-zero i.i.d. random variable with unit variance that
reflects estimation noise. Then using V

[

𝛼̂2𝑆𝐿𝑆ℎ
]

= V
[

𝛼2𝑆𝐿𝑆ℎ
]

+ E
[

𝜁2ℎ
]

,
one can remove the attenuation bias from 𝑏𝑚𝑒𝑡𝑎:

𝑏𝑚𝑒𝑡𝑎,𝑎𝑑𝑗 = 𝑏𝑚𝑒𝑡𝑎
V
[

𝛼̂2𝑆𝐿𝑆ℎ
]

V
[

𝛼̂2𝑆𝐿𝑆ℎ
]

− E
[

𝜁2ℎ
]
.

The desired covariance proportion can then be computed as 𝛼2𝑆𝐿𝑆ℎ
∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎,𝑎𝑑𝑗 .

Appendix G.2.1 provides the details of this procedure and Table
G11 reports the results. After accounting for estimation noise in the
2SLS estimates, the proportions of the covariances of prices with LTG
and one to four year EPS expectations explained by the impact of
prices on analyst expectations rise from 60% and 40%, respectively,
to 92% and 59%. Similarly, as detailed in Table G11, the estimated
𝛼𝐴𝑇𝐸ℎ = 𝛼2𝑆𝐿𝑆ℎ ⋅𝑏𝑚𝑒𝑡𝑎,𝑎𝑑𝑗 after accounting for estimation noise in the 2SLS
estimates rise from the baseline 2.7 and 11.1 basis points for the LTG
and one to four-year EPS expectations, respectively, to 4.0 and 16.7
basis points.

Correlation of 𝛼2𝑆𝐿𝑆ℎ with omitted variable bias. A correlation between
𝛼2𝑆𝐿𝑆ℎ and the omitted variable bias term in 𝛼𝑂𝐿𝑆ℎ (𝑂𝑉 𝐵ℎ in (18))
creates omitted variable bias in the meta-regression (16). Thus, a
positive (negative) correlation between these objects leads 𝑏𝑚𝑒𝑡𝑎 to
overestimate (underestimate) 𝜃, and 𝛼2𝑆𝐿𝑆ℎ ∕𝛼𝑂𝐿𝑆ℎ ⋅ 𝑏𝑚𝑒𝑡𝑎 to overestimate
(underestimate) covariance proportion (19).

To address this concern, in Appendix G.2.2 I calculate the values
of 𝜃 implied by 𝑏𝑚𝑒𝑡𝑎 under different assumptions about the corre-
lation of 𝛼2𝑆𝐿𝑆ℎ with 𝑂𝑉 𝐵ℎ. I then use these 𝜃 values to calculate
the desired covariance proportion. As Figure G24 demonstrates, for
correlations between 𝛼2𝑆𝐿𝑆ℎ and 𝑂𝑉 𝐵ℎ of less than 0.6, the implied
covariance proportion point estimates for the LTG and one to four
year EPS expectations remain positive. These point estimates are not
statistically significantly larger than zero for correlations above 0.2 due
to large standard errors arising from uncertainty in the estimated 𝑏𝑚𝑒𝑡𝑎
coefficient. Similarly, as Figure G25 demonstrates, the implied 𝛼𝐴𝑇𝐸ℎ
point estimates for the LTG and one to four year EPS expectations
remain positive for correlations less than 0.6. Due to large standard
errors, these point estimates are not statistically significantly larger
than zero for correlations above 0.2.

Estimation noise in 𝛼2𝑆𝐿𝑆ℎ and correlation of 𝛼2𝑆𝐿𝑆ℎ with omitted variable
bias. Figure G26 in Appendix G.2.3 displays the implied covariance
proportions for the LTG and one to four year EPS expectations when
accounting for both estimation noise in 𝛼2𝑆𝐿𝑆ℎ and potential correla-
tion between 𝛼2𝑆𝐿𝑆ℎ and 𝑂𝑉 𝐵ℎ. In this specification, the covariance
proportion point estimates remain positive for all correlations up to
0.8. The estimates are not statistically significantly larger than zero
for correlations above 0.2 due to large standard errors arising from
uncertainty in the estimated 𝑏𝑚𝑒𝑡𝑎 coefficient. Similarly, as Figure G.27
demonstrates, the implied 𝛼𝐴𝑇𝐸ℎ point estimates for the LTG and one
to four year EPS expectations remain positive for all correlations up
to 0.8, while the estimates are not statistically significantly larger than
zero for correlations above 0.2.

𝜃ℎ varies across horizons. If 𝜃ℎ varies across horizons ℎ and is uncor-
related with 𝛼2𝑆𝐿𝑆ℎ , but the other two conditions in Assumption 1 are
satisfied, then the meta-regression (16) recovers the average 𝜃ℎ: 𝑏𝑚𝑒𝑡𝑎 =
E[𝜃ℎ]. Using the average 𝜃ℎ to calculate the horizon-specific covariance
proportions implies some will be overestimated (those for which 𝜃ℎ <
E[𝜃ℎ]) and some will be underestimated (those for which 𝜃ℎ > E[𝜃ℎ]).
In particular, between the covariance proportions in Fig. 7 (60% and
40% for the LTG and annual EPS expectations, respectively), one will be

overestimated and one will be underestimated. Analogously, between
the impacts of average price changes on analyst cash flow expectations
(𝛼𝐴𝑇𝐸ℎ = 𝛼2𝑆𝐿𝑆ℎ ⋅𝑏𝑚𝑒𝑡𝑎 = 2.7 and 11.1 basis points for the LTG and annual
EPS expectations, respectively), one will be overestimated and one will
be underestimated. More precise statements about variation in 𝜃ℎ across
horizons require additional structure, and prove an interesting direction
for future work.

7. A model with rational investors that matches subjective beliefs
data

This section illustrates how models in which investors have rational
expectations can be consistent with stylized facts in subjective beliefs
data. Specifically, investors have rational expectations and discount-
rate variation creates excess volatility and return predictability. How-
ever, investors also have private information that motivates analysts
(who seek to forecast cash flows) to learn from prices. Since prices
reflect discount rate variation, learning from prices introduces discount
rate variation into analyst cash flow expectations. As a result, analyst
cash flow expectations predict future returns. By inadvertently attribut-
ing discount-rate driven price variation to cash flow news, analysts
also form subjective expected returns that correlate weakly with prices.
Lastly, analysts overreact to prices, which creates predictable forecast
errors. All proofs are in Appendix H.1.

7.1. Model setup

A rational representative investor has private information and sets
prices. A representative analyst forecasts cash flows and learns from
prices, but has no direct impact on prices.

7.1.1. Setup: Asset pricing block
The representative investor has rational expectations: he observes

all shocks and knows all parameters.

Stochastic discount factor. The representative investor’s log stochastic
discount factor (SDF) is

𝑚𝑡+1 = −𝑟𝑓 − 1
2
𝛾2𝜎2 − 𝛾𝜖𝑡+1,

as in Delao et al. (2023). 𝑟𝑓 is the log risk-free rate and 𝜖𝑡+1 is an i.i.d.
aggregate shock with variance 𝜎2.

Cash flows. Log dividend growth for stock 𝑛 is

𝛥𝑑𝑛,𝑡+1 = 𝜇𝑑 + 𝜈
𝑝𝑢𝑏
𝑛,𝑡 + 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 + 𝛽𝑛,𝑡𝜖𝑡+1 + 𝑢𝑛,𝑡+1 (20)

𝜈𝑖𝑛,𝑡+1 = 𝜌𝑖𝜈
𝑖
𝑛,𝑡 + 𝜖

𝑖
𝑛,𝑡+1, 𝑖 ∈ {𝑝𝑢𝑏, 𝑝𝑟𝑖𝑣}

𝛽𝑛,𝑡+1 = 1 + 𝜙
(

𝛽𝑛,𝑡 − 1
)

+ 𝜖𝛽𝑛,𝑡+1.

Dividend growth has two persistent components: a public signal 𝜈𝑝𝑢𝑏𝑛,𝑡
observed by the analyst and investor and a private signal 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡+1 ob-
served only by the investor. The private signal motivates the analyst
to learn from prices. Note that any private signal the analyst has and
communicates to the investor acts as a public signal observed by both
agents. Dividend growth has a time-varying aggregate-shock exposure
(𝛽𝑛,𝑡) that tractably creates discount rate variation by generating time-
varying covariances of cash flows with the SDF. One could generate
discount rate variation via other mechanisms as well (e.g. time-varying
volatility).

Equilibrium prices. The Campbell and Shiller (1988) approximation
yields log price–dividend ratio54:

log
(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
)

≈ 𝐴0 + 𝐴1𝜈
𝑝𝑢𝑏
𝑛,𝑡 + 𝐴2𝜈

𝑝𝑟𝑖𝑣
𝑛,𝑡 + 𝐴3𝛽𝑛,𝑡. (21)

54 As discussed in Appendix H.1.1, the full log price–dividend ratio also de-
pends on 𝛽2𝑛,𝑡, but I linearize to make the analyst’s learning problem tractable.
Simulations confirm that, under the estimated parameters in Section 7.2, the
approximation error between the full log

(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
)

and its linearized version
is less than 1% (see Appendix H.1.1 for details).
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Constants 𝐴− (defined in Appendix H.1.1) are functions of the under-
lying structural parameters. Prices reflect expected dividend growth
(driven by 𝜈𝑝𝑢𝑏𝑛,𝑡 and 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 ) and discount rates (driven by 𝛽𝑛,𝑡). Discount
rate variation creates excess volatility and return predictability.

7.1.2. Setup: Analyst learning block
There is a representative analyst who forecasts cash flows, but does

not know the investor’s private information 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 , the time-varying betas
𝛽𝑛,𝑡, or the realized growth shock 𝑢𝑛,𝑡. The analyst only observes the
public signal 𝜈𝑝𝑢𝑏𝑛,𝑡 and aggregate shock 𝜖𝑡. Thus, he views price and
realized dividend growth as a noisy signals of 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 and learns from both.
He treats all parameters as known; there is no parameter learning.

I first discuss how learning from prices yields analyst cash flow
expectations that predict returns, and return expectations that covary
weakly with prices. I then discuss how overreaction to prices yields
predictable forecast errors. All proofs are in Appendix H.1.2.

Analyst learning from prices. The analyst learns 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 using the Kalman
filter. Let

𝑠𝑝𝑛,𝑡 ≡ log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡) − 𝐴0 − 𝐴1𝜈
𝑝𝑢𝑏
𝑛,𝑡 = 𝐴2𝜈

𝑝𝑟𝑖𝑣
𝑛,𝑡 + 𝐴3𝛽𝑛,𝑡 (22)

𝑠𝑑𝑛,𝑡 ≡ 𝛥𝑑𝑛,𝑡 − 𝜇𝑑 − 𝜈
𝑝𝑢𝑏
𝑛,𝑡−1 = 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡−1 + 𝛽𝑛,𝑡−1𝜖𝑡 + 𝑢𝑛,𝑡,

be the two signals: the residual log price–dividend ratio (𝑠𝑝𝑛,𝑡) and
residual realized dividend growth (𝑠𝑑𝑛,𝑡), both purged of the public
signal. Using these signals, the analyst forms an expectation for 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡

55

E𝐴𝑡
[

𝜈𝑝𝑟𝑖𝑣𝑛,𝑡

]

= 𝜌𝑝𝑟𝑖𝑣E𝐴𝑡−1
[

𝜈𝑝𝑟𝑖𝑣𝑛,𝑡−1

]

+ 𝛼
(

𝑠𝑝𝑛,𝑡 − 𝑠̂
𝑝
𝑛,𝑡

)

+ 𝜆
(

𝑠𝑑𝑛,𝑡 − 𝑠̂
𝑑
𝑛,𝑡

)

, (23)

which informs his total dividend growth expectation

E𝐴𝑡
[

𝛥𝑑𝑛,𝑡+1
]

= 𝜇𝑑 + 𝐴1𝜈
𝑝𝑢𝑏
𝑛,𝑡 + 𝐴2E𝐴𝑡

[

𝜈𝑝𝑟𝑖𝑣𝑛,𝑡

]

.

𝑠̂𝑝𝑛,𝑡 and 𝑠̂
𝑑
𝑛,𝑡 are the predicted signal values given the analyst’s expec-

tations of 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡−1 and 𝛽𝑛,𝑡−1 from 𝑡 − 1. The 𝐴 superscript indicates the
expectation is taken under the analyst’s subjective beliefs.

𝛼 in (23) is the Kalman gain on price and the model counterpart
of the impact of prices on analyst cash flow expectations I measure
empirically. Intuitively, 𝛼 is larger if price is more informative about the
investor’s private information (i.e. the variance of 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 is larger relative
to that of 𝛽𝑛,𝑡). Additionally, 𝛼 is smaller for higher persistence (𝜌𝑝𝑟𝑖𝑣)
of 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 , since large price changes correspond to smaller 𝜈

𝑝𝑟𝑖𝑣
𝑛,𝑡 changes.

𝜆 in (23) is the Kalman gain on realized dividend growth.56 Sim-
ilar equations (in Appendix H.1.2) describe how the analyst updates
expectations of 𝛽𝑛,𝑡.

By learning from prices, the analyst forms cash flow expectations
that predict future returns because discount rate variation in the price
signal 𝑠𝑝𝑛,𝑡 (𝛽𝑛,𝑡 in (22)) enters his cash flow expectations.

Moreover, by inadvertently attributing discount-rate driven price
variation to cash flow news, analysts also form subjective expected re-
turns that correlate weakly with prices. Specifically, price–dividend ra-
tio variation can be decomposed into the proportion explained by sub-
jective expected returns versus the proportion explained by subjective
cash flow expectations:

1 = −
𝐶𝑜𝑣

(

log
(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
)

,
∑∞
𝑠=0 𝜅

𝑠
1E

𝐴
𝑡
[

𝑟𝑛,𝑡+𝑠+1
])

𝑉
[

log
(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Proportion Explained by Subjective Expected Returns

55 All shocks are i.i.d. so there is no learning across stocks (another stock
𝑚’s price tells the analyst nothing about 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 ).
56 In general, the gain parameters can time vary as they depend on aggregate
shock 𝜖𝑡. Yet under the estimated parameters in Section 7.2, there is no
dependence on 𝜖𝑡 as the analyst puts no weight on 𝑠𝑑𝑛,𝑡 (i.e. 𝜆 = 0) due to
strong overreaction to prices.

+
𝐶𝑜𝑣

(

log
(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
)

,
∑∞
𝑠=0 𝜅

𝑠
1E

𝐴
𝑡
[

𝛥𝑑𝑛,𝑡+𝑠+1
])

𝑉
[

log
(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Proportion Explained by Subjective Cash Flow Expectations

.

Learning from prices raises the covariance of prices with subjective
cash flow expectations and so suppresses the covariance with subjective
expected returns.

Overreaction to prices. To generate predictable forecast errors, I assume
the analyst overreacts to prices, which can be microfounded with
naive inference (Glaeser and Nathanson, 2017), diagnostic expectations
(Bordalo et al., 2021), or partial equilibrium thinking (Bastianello and
Fontanier, 2021, 2024). To keep the model as simple as possible, I
capture overreaction to prices by modeling the analyst as having biased
beliefs about the shock variances of the three unobserved quantities:
𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 , 𝛽𝑛,𝑡, and 𝑢𝑛,𝑡. Specifically, the analyst believes 𝜖

𝑝𝑟𝑖𝑣
𝑛,𝑡 , 𝜖

𝛽
𝑛,𝑡, and 𝑢𝑛,𝑡 are

i.i.d. with variances:

𝜎̂2𝑝𝑟𝑖𝑣 ≡ 𝜎2𝑝𝑟𝑖𝑣 ⋅ (1 + 𝜔)

𝜎̂2𝛽 ≡ 𝜎2𝛽 ⋅ (1 − 𝜓(𝜔))

𝜎̂2𝑢 ≡ 𝜎2𝑢 + 𝜋(𝜔).

𝜔 controls how much the analyst overestimates the variance of 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 .
𝜓(⋅) and 𝜋(⋅) are functions of 𝜔 (defined in Appendix H.1.2) such that
the analyst does not misperceive the total variances of 𝑠𝑝𝑛,𝑡 and 𝑠𝑑𝑛,𝑡.
Following the literature, this bias is persistent: analysts do not learn
the true shock variances over time.

For 𝜔 = 0, forecast errors are not predictable since the Kalman filter
optimally uses the signals. For 𝜔 > 0, however, 𝛼 is ‘‘too large’’ since
the analyst overestimates how informative about 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 the price signal
is. Thus, he raises E𝐴𝑡 [𝜈

𝑝𝑟𝑖𝑣
𝑛,𝑡 ] ‘‘too much’’ when price rises, and so prices

(negatively) predict forecast errors.
This overreaction also suppresses the covariance of prices with sub-

jective expected returns because the analyst underestimates discount
rate variation. For sufficiently large 𝜔, 𝜎̂2𝛽 = 0: the analyst believes
subjective expected returns are constant and so do not covary with
prices.

This overreaction also amplifies how strongly analyst cash flow ex-
pectations predict future returns because higher 𝛼 admits more discount
rate variation into analyst cash flow expectations.

7.2. Estimation and model performance

I estimate the model and show that it quantitatively matches several
common subjective belief and cross-sectional asset pricing moments.
Thus, the impact of prices on analyst cash flow expectations can par-
tially reconcile subjective beliefs data and models featuring investors
with rational expectations. Since I identify 𝛼 in the cross section of
stocks, I target other cross-sectional moments for consistency.57 Table 6
displays the parameters as well as the targeted and model-implied
moments. Appendix H.2 provides estimation details.

7.2.1. Targeted moments
I externally calibrate three parameters and estimate the other nine

parameters via generalized method of moments to jointly target ten
moments.

Externally calibrated parameters. I calibrate 𝑟𝑓 = 0.043 and 𝜇𝑑 = 0.063 to
annual average one-year Treasury bill returns and firm-level earnings
growth, and 𝜎𝑢 = 0.23 to aggregate earnings growth volatility.

57 When calculating data moments, I remove time fixed effects to focus
on the cross section, and stock fixed effects because the model features no
permanent differences across stocks.
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Asset pricing moments. The first six targeted moments are asset pricing
moments.

The first three moments are the variance and first and second
autocorrelations of firm-level earnings growth, which depend on the
volatilities (𝜎𝑝𝑟𝑖𝑣, 𝜎𝑝𝑢𝑏, and 𝜎𝛽) and persistences (𝜌𝑝𝑟𝑖𝑣, 𝜌𝑝𝑢𝑏, and 𝜙) of
the private and public signals as well as 𝛽𝑛,𝑡.58 The fourth moment is
the first autocorrelation of log price–dividend ratio, which depends
on all shock volatilities and persistences and is targeted to the first
autocorrelation of log market-to-book ratio.59 The fifth moment is the
log market premium, which depends on SDF volatility (controlled by 𝛾
and 𝜎) and is targeted to the average CRSP value-weighted index return
in excess of the one-year Treasury bill. The sixth moment is cross-
sectional return predictability (the proportion of price–dividend ratio
variance explained by future returns), which arises only from discount-
rate variation and so depends on the volatility and persistence of 𝛽𝑛,𝑡
(𝜎𝛽 and 𝜙). I target the 20% of valuation ratio variance explained by
future returns documented by Cohen et al. (2003).60

Subjective belief moments. The last four targeted moments are subjective
belief moments, which all depend on the volatility and persistence of
the private signal (𝜎𝑝𝑟𝑖𝑣 and 𝜌𝑝𝑟𝑖𝑣) and 𝛽𝑛,𝑡 (𝜎𝛽 and 𝜙), as well as on the
overreaction parameter 𝜔.

The first moment is 𝛼. Since the model 𝛼 in (23) represents the
impact of average price changes on one-year analyst cash flow growth
expectations, it maps to 𝛼𝐴𝑇𝐸1 : the average treatment effect of prices
on one-year analyst expectations.61 Thus, I target 𝛼 = 𝛼𝐴𝑇𝐸1 = 0.12,
calculated as discussed in Section 6.1 (see Appendix Table G10 for
details).62

The second moment is the predictability of analyst forecast errors:
the coefficient in a predictive regression of future one-year forecast
errors on current log price–dividend ratio. I target 40% of the scaled
empirical covariance between the log market-to-book ratio and one-
year EPS forecast errors given the result from Section 6 that 40% of
the covariance of analyst one-to-four-year forecast errors with prices
comes from the impact of prices on analyst expectations. Section 7.3
discusses extensions of this model that can match the full covariance.

The third moment is the predictability of future returns by analyst
cash flow expectations. Following previous work that studies the re-
lationship between analyst cash flow expectations and future returns
in the cross section of stocks (e.g. Bordalo et al., 2024; Gormsen
and Lazarus, 2023), I focus on the ability of long-term analyst cash
flow expectations to predict returns. Specifically, I target the model
predictability (i.e. predictive regression coefficient) of four-year returns
by current four-year analyst cash flow growth expectations to match

58 I target moments involving four-year earnings growth instead of annual
earnings growth moments to better capture the dynamics of persistent compo-
nents of earnings growth (which matter more for prices). To address potential
issues due to an unbalanced panel, I drop stocks with less than ten years of
data when computing data moments. See Appendix H.2 for details.
59 I use data moments involving the market-to-book ratio because it is
defined for all stocks, whereas many stocks do not pay dividends, thereby
rendering the price–dividend ratio undefined.
60 Cohen et al. (2003) look at market equity to book equity ratios instead
of price–dividend ratios.
61 The model 𝛼 maps less cleanly to the 𝛼2𝑆𝐿𝑆1 from either instrument, which
represent the impact of price changes driven specifically by those instruments
on analyst expectations.
62 Note that a one percent rise in next-period’s expected cash flow (which is
what 𝛼𝐴𝑇𝐸1 measures) is (approximately) the same as a one percentage point
rise in expected growth rate. Assume E𝑡

[

𝐷𝑛,𝑡+1
]

rises by 𝛿%, so E𝑡
[

log
(

𝐷𝑛,𝑡+1
)]

becomes E𝑡
[

log
(

𝐷𝑛,𝑡+1
)

+ 𝛿
]

. Then the new expected growth rate is

E𝑡
[

log
(

𝐷𝑛,𝑡+1
)

+ 𝛿 − log
(

𝐷𝑛,𝑡
)]

= E𝑡
[

log
(

𝐷𝑛,𝑡
(

1 + 𝛥𝑑𝑛,𝑡+1
))

+ 𝛿 − log
(

𝐷𝑛,𝑡
)]

= E𝑡
[

log
(

1 + 𝛥𝑑𝑛,𝑡+1
)]

+ 𝛿 ≈ E𝑡
[

𝛥𝑑𝑛,𝑡+1
]

+ 𝛿,

where the approximation follows from log(1 + 𝑥) ≈ 𝑥.

the empirical predictability of four-year returns by LTG expectations
(similar to Bordalo et al., 2024).

The fourth moment is the scaled covariance of analyst subjective
expected returns with prices, which I target to zero to show this
covariance can be arbitrarily small.63

7.2.2. Model performance
The model matches cross-sectional asset pricing moments well, as

displayed in Table 6. Although the model-implied equity premium is
slightly large, the model matches firm-level cash flow and valuation
ratio dynamics, as well as cross-sectional return predictability.

Crucially, the model also matches subjective belief moments, and
so illustrates that models featuring investors with rational expecta-
tions can be consistent with subjective beliefs data. The estimated
overreaction parameter 𝜔 = 1.88 implies the analyst overestimates
𝜎2𝑝𝑟𝑖𝑣 by a factor of about three, which creates overreaction to prices
and predictable forecast errors. Furthermore, the analyst’s subjective
expected returns are constant and do not covary with prices because
the analyst attributes all price signal variation to 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 , even the varia-
tion that is really due to discount rates. Moreover, since the analyst
learns from prices that reflect discount rate variation, analyst cash
flow expectations reflect discount rate variation and predict future re-
turns. Overreaction to prices amplifies how strongly these expectations
predict returns.

7.3. Extensions

The empirical covariance decomposition results from Section 6
attribute 40% of the covariance of prices with analyst forecast errors to
the impact of prices on analyst expectations. Thus, I target the model to
match 40% of the empirical covariance of prices with analyst forecast
errors. An additional bias in analyst expectations, such as overreaction
to fundamental signals, would be required for the model to match
the remaining 60% of this covariance. To keep the quantitative model
as simple as possible, I do not include a second bias. This section
outlines an extended model with overreaction to fundamental signals
and Appendix H.3 provides a toy model featuring this mechanism.

Consider an extension of the dividend growth dynamics from (20)
that features an additional component 𝜈𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 that is unobserved by both
the representative investor and analyst:

𝛥𝑑𝑛,𝑡+1 = 𝜇𝑑 + 𝜈
𝑝𝑢𝑏
𝑛,𝑡 + 𝜈𝑝𝑟𝑖𝑣𝑛,𝑡 + 𝜈𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 + 𝛽𝑛,𝑡𝜖𝑡+1 + 𝑢𝑛,𝑡+1.

However, both the investor and analyst observe a noisy signal of
this unobserved component: 𝑠𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 = 𝜈𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 + 𝜖𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 . Now assume the
analyst overreacts to this signal because he misperceives the variance
of 𝜖𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 and believe it is lower than in reality (the same way he
overreacts to prices because he underestimates the level of discount rate
variation). Thus, the signal 𝑠𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 will predict analyst forecast errors.
Since the investor learns from 𝑠𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 as well, price reflects 𝑠𝑢𝑛𝑜𝑏𝑠𝑛,𝑡 and
so will also predict analyst forecast errors. Thus, analyst overreaction
to fundamental signals raises the covariance of analyst forecast errors
with prices.

Importantly, analyst overreaction to fundamental signals contributes
to the covariance of analyst forecast errors with prices even if investors
are fully rational (as the toy model in Appendix H.3 demonstrates).
However, this covariance is larger if investors also overreact to fun-
damental signals (as Appendix H.3 demonstrates). There remains an
open question of whether a model featuring both investors with rational
expectations and an empirically realistic degree of analyst overreaction
to both fundamental signals and prices can quantitatively match the full
covariance of prices with analyst forecast errors. It is possible that only
a model with biased investors would be able to do so. I leave these
interesting possibilities to future work.

63 Delao et al. (2023) find this covariance is negative, but smaller than
implied by rational expectations.
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Table 6
Model Estimation.
Panel (a): Externally Calibrated Parameters

Parameter Value

𝑟𝑓 0.043
𝜎 0.23
𝜇𝑑 0.063

Panel (b): Estimated Parameters

Parameter Value

𝛾 1.73
𝜎𝑝𝑢𝑏 0.02
𝜎𝑝𝑟𝑖𝑣 0.001
𝜎𝛽 0.03
𝜎𝑢 0.30
𝜌𝑝𝑢𝑏 0.48
𝜌𝑝𝑟𝑖𝑣 0.89
𝜙 0.91
𝜔 1.88

Panel (c): Target and Model Moments

Moment Target Model

V[𝐺𝑛,𝑡] Cross-Sectional Annual EPS Growth Variance 0.36 0.36
𝐶𝑜𝑣(𝐺𝑛,𝑡+1 ,𝐺𝑛,𝑡 )

V[𝐺𝑛,𝑡 ]
1st Order Annual EPS Growth Autocorrelation 0.70 0.75

𝐶𝑜𝑣(𝐺𝑛,𝑡+1 ,𝐺𝑛,𝑡−1 )
V[𝐺𝑛,𝑡 ]

2nd Order Annual EPS Growth Autocorrelation 0.37 0.50
𝐶𝑜𝑣(log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 ),log(𝑃𝑛,𝑡−1∕𝐷𝑛,𝑡−1 ))

V[log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 )]
1st Order Valuation Ratio Autocorrelation 0.64 0.63

logE[𝑟𝑚,𝑡 − 𝑟𝑓 ] Log Equity Premium 0.06 0.09
−

∑15
𝑠=1 𝜅

𝑠
1𝐶𝑜𝑣

(

𝑟𝑛,𝑡+𝑠 ,log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 )
)

V[log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 )]
Level of Cross-Sectional Return Predictability 0.20 0.19

𝐶𝑜𝑣(log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 ),𝛥𝑑𝑛,𝑡+1−E𝐴𝑡 [𝛥𝑑𝑛,𝑡+1 ])
V[log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 )]

Analyst Forecast Error Predictability −0.01 −0.03
𝐶𝑜𝑣(E𝐴𝑡 [𝐺𝑛,𝑡 ],

∑4
𝑠=0 𝑟𝑛,𝑡+1+𝑠 )

V[E𝐴𝑡 [𝐺𝑛,𝑡 ]]
Return Predictability by Analyst Expectations −0.15 −0.18

−
∑15
𝑠=1 𝜅

𝑠
1𝐶𝑜𝑣

(

E𝐴𝑡 [𝑟𝑛,𝑡+𝑠 ],log
(

𝑃𝑛,𝑡∕𝐷𝑛,𝑡
))

V[log(𝑃𝑛,𝑡∕𝐷𝑛,𝑡 )]
Covariance of Subjective Expected Returns with Prices 0 0

𝛼 Impact of Prices on Analyst Cash Flow Expectations 0.12 0.11

This table reports the externally calibrated parameters in Panel (a), the estimated parameters in Panel (b), and the targeted and model-implied moments in Panel (c). 𝐺𝑛,𝑡 is
four-year dividend growth (𝐺𝑛,𝑡 =

∑4
𝑠=1 𝛥𝑑𝑛,𝑡+𝑠). 𝜅1 is the log-linearization constant from Campbell and Shiller (1988) (𝜅1 = 1∕

(

1 + exp
[

E
[

log
(

𝐷𝑛,𝑡∕𝑃𝑛,𝑡
)]])

). Appendix H.2 provides
details.

8. Conclusion

I propose a potential reconciliation of subjective beliefs data with
asset pricing models in which investors have rational expectations and
discount rate variation drives prices: I demonstrate that prices impact
analyst cash flow expectations. Using instruments based on Russell index
reconstitution and mutual fund flow-induced trading, I quantify in
the cross section of equities how much price increases unrelated to
cash-flow news raise analyst cash flow expectations. An exogenous
1% price increase driven by these instruments raises analyst long-term
earnings growth expectations by 5 basis points and one to four year
EPS expectations and forecast errors by 20 to 40 basis points. This
mechanism is economically significant: it explains about half of the
covariance of prices with analyst expectations and forecast errors.

To illustrate how this mechanism can partially reconcile subjective
beliefs data and models featuring investors with rational expectations,
I propose an example model that uses this mechanism to match both
subjective belief and cross-sectional asset pricing moments. Investors
have private information and discount rate variation drives excess
volatility and return predictability. This private information motivates
analysts to learn from prices as a signal of future cash flows. However,
analysts inadvertently learn from discount rate variation in prices as
well. As a result, analysts have biased cash flow expectations that differ
from those of investors and forecast future returns, as well as return
expectations that weakly correlate with prices.

My results suggest models featuring both investors with rational ex-
pectations and discount rate variation need not conflict with subjective
beliefs data. While beliefs data can be consistent with investors sharing
analysts’ biased expectations, they can also be consistent with investors
having rational expectations and analysts learning from prices. More-
over, these results raise questions about how investors and analysts
form beliefs and the extent to which analyst beliefs proxy for investor

beliefs. Are analyst cash flow expectations a good proxy for the be-
liefs of a large, price-relevant group of investors? Do large groups of
investors also learn from prices as analysts do? Do investors have biased
cash flow expectations? Are these biased expectations important drivers
of asset prices? Ultimately, since the impact of prices on cash flow
expectations arises naturally in models with heterogeneous beliefs, my
results suggest heterogeneity may be an important feature of subjective
beliefs data and analyst expectations may not align with those of
investors. Hence, analyst expectations alone are likely insufficient to
answer these questions. Instead, direct measures of investor beliefs or
empirical strategies that account for belief heterogeneity will likely
prove necessary.
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