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 A B S T R A C T

We analyze optimal carbon pricing under financial constraints and endogenous climate-related transition and 
physical costs. The socially optimal emissions tax may be above or below a Pigouvian benchmark, depending on 
the strength of physical climate impacts on pledgeable resources. We derive necessary conditions for emissions 
taxes alone to implement a constrained-efficient allocation, and show a cap-and-trade system may dominate 
emissions taxes because it can be designed to have a less adverse effect on financial constraints. We also assess 
how capital structure, carbon price hedging markets, and socially responsible investors interact with emissions 
pricing, and evaluate other commonly used policy tools.

1. Introduction

Tackling climate change requires large-scale emissions reductions 
and investments in clean technologies. Absent frictions, such invest-
ments can be incentivized through emissions taxes set at a rate equal 
to the marginal social cost of emissions, also known as Pigouvian 
taxes in reference to Pigou (1920). However, during the transition 
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to a low-carbon economy firms and financial institutions may suffer 
significant losses that can exacerbate the severity of financial frictions. 
Such frictions can limit the ability of firms to make the necessary 
investments in green technologies and constrain regulators in designing 
environmental policies. Consistent with this notion, recent empirical 
evidence underlines the relevance of financial frictions for firms’ green 
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investments (Xu and Kim, 2022; Kacperczyk and Peydró, 2022; Martins-
son et al., 2024a), and the risks posed by climate change have moved up 
the agenda of investors and financial policy makers (Brunnermeier and 
Landau, 2022; Krueger et al., 2020). Motivated by these considerations, 
this paper evaluates how carbon pricing policies interact with financial 
constraints.

A natural intuition is that the presence of financial constraints 
implies lower optimal emissions taxes because high taxes, costly abate-
ment investments, and other climate transition-related costs tighten 
financial constraints. Our first key result shows that these effects may 
reverse once we account for the interaction between financial con-
straints and the negative impact of a warming climate on borrowers’ 
assets. This interaction gives rise to a climate-induced collateral ex-
ternality through which emissions taxes can relax, rather than tighten, 
financial constraints. This collateral externality motivates higher opti-
mal emissions taxes, and if it is sufficiently strong, it may even imply 
that financial constraints lead to an optimal tax rate above a standard 
Pigouvian benchmark.

Our second key contribution lies in evaluating the relative merit 
of carbon taxes and cap-and-trade systems in the presence of financial 
constraints. We show that a cap-and-trade system may dominate a car-
bon tax, but that this crucially depends on how the regulator allocates 
pollution permits, highlighting the importance of understanding the 
nuances of how financial constraints interact with environmental policy 
design. We also identify conditions under which combining carbon 
pricing with other policy tools can improve welfare, and demonstrate 
how carbon pricing could be complemented by leverage regulation. 
Additionally, we show that efficient carbon pricing can be supported by 
carbon price hedging markets. Moreover, socially responsible investors 
can either support or hinder carbon pricing policies, depending on the 
nature of investors’ social preferences.

We derive these insights in a model with two dates and two types 
of agents: borrowers and deep-pocketed lenders. Each borrower has 
an initial investment project in place, which generates a pecuniary 
return as well as carbon emissions at the final date. A regulator sets 
an emissions tax in order to incentivize borrowers to reduce their 
emissions through costly abatement activities. Borrowers need to raise 
debt to finance abatement spending, but debt issuance is limited by 
a financial constraint because project returns are not fully pledgeable 
to outside investors. To capture the notion of ‘‘stranded assets’’, we 
assume that constrained borrowers can liquidate part of the initial 
investment to generate resources and reduce emissions, yet liquidations 
are inefficient due to liquidation losses.

In the model, all agents suffer disutility due to aggregate emissions, 
but agents do not internalize the impact of their actions on aggregate 
variables because they are atomistic. A key feature of our model is that 
we also assume that the payoffs of borrowers’ projects may decrease 
in the level of aggregate emissions. In the Internet Appendix, we 
provide different micro foundations for this assumption. Our preferred 
interpretation is that it captures the negative effect of physical climate 
risk on asset values or direct negative cash flow effects due to extreme 
weather events. Such effects have been extensively documented in the 
empirical literature (Ginglinger and Moreau, 2023; Issler et al., 2020; 
Giglio et al., 2021b; Pankratz and Schiller, 2024), yet the interaction 
of these effects with financial constraints and implications for optimal 
emissions pricing have not been explored in the theoretical literature.1

Thus, in our model borrowers’ projects are exposed to the two 
major categories of climate-related costs laid out by the Task Force 

1 Giglio et al. (2021b) find that the value of real estate in flood zones 
responds more to changes in climate attention. Issler et al. (2020) document 
an increase in delinquencies and foreclosures after wildfires in California. 
Evidence in Ginglinger and Moreau (2023) indicates that physical climate risks 
affect a firm’s capital structure. For a review discussing climate risks, see Giglio 
et al. (2021a).

on Climate-Related Financial Disclosures (TCFD, 2017): (1) emissions 
taxes and abatement costs resemble costs associated with the transition 
to a low-carbon economy, and (2) losses to borrowers’ assets due to 
aggregate emissions resemble costs related to the physical impacts 
of climate change. Both climate-related costs are endogenous in the 
model: transition-related costs are a consequence of emissions taxes 
optimally set by an environmental regulator, and losses due to physical 
climate impacts are a function of abatement and investment decisions 
by (other) borrowers. This allows us to explore the differences in how 
these two types of climate-related costs interact with financial frictions 
and affect optimal environmental and financial policies in equilibrium.

As a benchmark, we show that an emissions tax equal to the social 
cost of emissions (i.e., a Pigouvian benchmark tax) implements the 
first-best allocation if the financial constraint is slack. By contrast, if 
financial constraints bind, optimal emissions taxes generally differ from 
the Pigouvian benchmark. The reason is that constrained borrowers 
have a limited ability to finance abatement and therefore need to 
inefficiently liquidate some of the initial investment. Consequently, 
the socially optimal emissions tax needs to trade off the benefit of 
lower emissions against the cost of triggering inefficient liquidations. 
In the absence of physical climate impacts on borrowers’ pledgeable 
assets, a higher emissions tax bill and greater abatement spending 
unambiguously tighten financial constraints, motivating an optimal 
emissions tax below the Pigouvian benchmark in line with common 
intuition.

A key insight from our analysis is that physical climate impacts 
can reverse the relationship between emissions taxes and financial 
constraints. This is because a higher emissions tax reduces aggre-
gate emissions, which can lead to an increase in pledgeable resources 
for borrowers whose assets are exposed to physical climate impacts. 
Given that this mechanism operates through the effect of aggregate 
emissions on pledgeable resources, we refer to it as a climate-induced 
collateral externality. This collateral externality arises endogenously 
due to the interaction of physical climate impacts and financial con-
straints, resulting in higher optimal emissions taxes. If the collateral 
externality is sufficiently strong, it may even motivate an optimal 
emissions tax above the Pigouvian benchmark rate. More broadly, we 
show that financial constraints call for a generalized Pigouvian tax 
that takes climate-induced collateral externalities into account. This 
generalized Pigouvian benchmark rate increases in the severity of 
physical climate impacts, especially if financial constraints are very 
tight. This underscores the importance of understanding how financial 
constraints interact with environmental policy: a regulator overlooking 
this interaction would set sub-optimally low emissions taxes.

Given that financial constraints distort emissions pricing and give 
rise to a collateral externality, a natural question is whether a regulator 
can do better by using additional policy tools. Our second key result 
answers this question: despite the presence of financial constraints, 
emissions taxes alone can implement a constrained-efficient allocation 
without relying on other policy tools—but only if the tax proceeds 
from emissions taxes are fully rebated to borrowers and these tax 
rebates are fully pledgeable to outside investors.2

However, the pledgeability of tax rebates to outside financiers may 
be beyond the control of the regulator, for instance due to limitations of 
political or legal institutions. We show that if tax rebates are not fully 
pledgeable, replacing carbon taxes with a cap-and-trade system with 
tradable pollution permits, such as the EU Emissions Trading System, 
may enhance welfare. (We further examine emissions caps, non-linear 
taxes, and green subsidies in the Internet Appendix.) Previous lit-
erature demonstrates that, in the absence of frictions, cap-and-trade 
systems and emissions taxes yield equivalent outcomes, with the initial 

2 Examples of such tax rebates in practice include the ‘‘Canada Carbon 
Rebate’’ and the Austrian ‘‘Klimabonus’’. Constrained efficiency requires that 
such rebates are fully pledgeable to outside investors.
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allocation of permits being irrelevant (see Montgomery, 1972). This 
is known as the independence property. Independence breaks down 
under frictions such as transaction costs or market power, typically 
leading to increased emissions when more permits are allocated for 
free (Hahn, 1984; Stavins, 1995; Fowlie and Perloff, 2013; Fowlie 
et al., 2016). We show that under financial constraints the failure 
of the independence property can imply that allocating more free 
permits results in lower emissions. This occurs because allocating more 
free permits limits the direct negative impact of the cap-and-trade 
system on pledgeable income. Importantly, we show that a regulator 
can eliminate the direct impact on pledgeable income altogether by 
allocating all permits for free. This policy design enables implementing 
a constrained-efficient carbon price, effectively mirroring emissions 
taxes with fully pledgeable tax rebates.

These results imply that a cap-and-trade system may be a superior 
policy tool compared to a carbon tax, but that its efficacy hinges on the 
regulator allocating permits in a manner that minimizes adverse effects 
on financial constraints. This is an important consideration given that 
real-world cap-and-trade systems typically do not allocate all permits 
for free. For example, the EU is gradually reducing the amount of free 
permits over time. Our result caveats that under financial constraints 
this approach can have negative side effects.

The result also speaks to debates on whether, for example, financial 
policy makers should use policy tools to target climate-related goals. 
In our model, there is a pecking order for optimal policy tools under 
financial constraints: only if carbon pricing policies cannot be designed 
to have a minimal impact on pledgeable income, there is a case to use 
other policy tools to target climate-related goals.

To directly study financial policy in the model, we introduce an 
ex-ante capital structure decision. This allows us to examine the inter-
action between carbon pricing and leverage regulation. A borrower’s 
leverage affects emissions by influencing financial constraints, liquida-
tions, and abatement activities. When tax rebates are fully pledgeable, 
optimal emissions taxes ensure that emissions externalities are correctly 
internalized, aligning borrowers’ leverage choices with socially efficient 
levels. Consequently, in this case carbon pricing alone is sufficient 
to achieve constrained efficiency, as in the baseline model. However, 
when tax rebates are not fully pledgeable, a gap persists between the 
social and private costs of emissions, leading to inefficient leverage 
choices. In such cases, leverage regulation can improve welfare. In-
terestingly, we find that the socially-optimal leverage may be either 
above or below the level chosen privately by borrowers, depending on 
whether borrowers respond to financial constraints mostly by scaling 
down abatement or by liquidating assets.

In additional analyses, we study how financial markets interact with 
emissions pricing. In a model extension with climate risk, we show 
that carbon price hedging markets can enable the regulator to set a 
more efficient environmental policy in equilibrium, thereby increas-
ing welfare beyond the first-order risk-sharing benefits for borrowers. 
This highlights an important role the financial sector can play in the 
transition to a low-carbon economy, distinct from socially responsible 
investing that aims to reduce emissions by taking environmental and 
social factors into account in investment decisions. In another exten-
sion, we consider socially responsible investors directly in the model. 
Such investors can provide incentives to reduce emissions by making 
financing costs contingent on emissions reductions. We show that such 
an investment strategy can be beneficial if it results in lower financing 
costs for constrained borrowers, but can have a perverse effect if it 
increases financing costs and tightens borrowers’ financial constraints, 
consistent with evidence in Kacperczyk and Peydró (2022). This implies 
that socially responsible investors may be an imperfect substitute for 
a well-designed carbon pricing policy. Finally, we consider a setting 
with multiple jurisdictions in which regulators do not internalize the 
effects of their policy on the rest of the world. Our model highlights 
that the climate-induced collateral externality gives rise to financial 

spillovers between jurisdictions, amplifying the costs of inadequate 
global coordination on climate policy.

This paper relates to several recent contributions that study en-
vironmental externalities and green investment under financial and 
other economic frictions (Tirole, 2010; Biais and Landier, 2022; Huang 
and Kopytov, 2023; Allen et al., 2023; Lanteri and Rampini, 2023; 
Inderst and Opp, 2025; Gupta and Starmans, 2024). Hoffmann et al. 
(2017) and Oehmke and Opp (2025) also show that, in the presence 
of binding financial constraints, the optimal emissions tax may be 
below a Pigouvian benchmark. Our analysis contributes by uncovering 
a novel climate-induced collateral externality that alters the interaction 
between environmental policy and financial constraints, potentially 
motivating emissions taxes above a Pigouvian benchmark. The col-
lateral externality-based mechanism also distinguishes our findings 
from Simpson (1995) and Heider and Inderst (2022), who show that 
high emissions taxes can be beneficial in models with product market 
competition as they can shift production to more efficient firms. Our 
mechanism is related to collateral externalities that arise in models 
with pecuniary externalities (Stein, 2012; Dávila and Korinek, 2018; 
Jeanne and Korinek, 2020), but it is distinct in that it operates through 
losses caused by aggregate emissions rather than mispricing due to 
fire sales. It also provides distinct implications: fire sale losses amplify 
financial constraints, which in the absence of physical climate im-
pacts on collateral values motivates lower emissions taxes. By contrast, 
the climate-induced collateral externality we identify motivates higher 
emissions taxes.

Our analysis also contributes by evaluating the relative merit of 
emissions taxes and cap-and-trade systems under financial constraints, 
and by deriving a necessary condition under which these policy tools 
can implement a constrained-efficient allocation. By studying finan-
cial policy as an additional tool in this context we relate to recent 
contributions by Oehmke and Opp (2023) and Dávila and Walther 
(2022), who consider risk-weighted capital regulation as a tool for 
tackling environmental externalities, as well as to Zhang et al. (2025), 
who explore income taxes on capital investment as a tool that can 
complement a carbon tax. We follow a different approach in that we 
take optimal emissions taxes as a starting point and show under what 
conditions financial policy, in the form of leverage regulation, can be 
valuable as a complementary policy tool.

Finally, our model also relates to the literature on socially respon-
sible investing (Heinkel et al., 2001; Chowdhry et al., 2019; Pástor 
et al., 2021; Green and Roth, 2025; Broccardo et al., 2022; Gupta 
et al., 2025; Goldstein et al., 2022; Piccolo et al., 2022; Edmans et al., 
2022; Hong et al., 2023; Oehmke and Opp, 2025; Geelen et al., 2024). 
Our findings highlight the role of carbon price hedging markets as 
a distinct mechanism through which financial markets can facilitate 
emissions reductions, driven by the positive impact of hedging on 
equilibrium carbon pricing. We also contribute by investigating the 
interaction between socially responsible investing and carbon pricing 
and highlight how socially responsible investors may hinder efficient 
emissions pricing in equilibrium.

2. Model setup

There are two dates, 𝑡 = 1, 2, a unit mass of investors, and a unit 
mass of borrowers. Investors are risk-neutral and deep-pocketed in 
that they have a large endowment 𝐴𝑖 at 𝑡 = 1, while borrowers have 
no endowment and need to raise financing from investors. There is 
no discounting and all agents suffer disutility from aggregate carbon 
emissions 𝐸𝑎 at 𝑡 = 2. That is, agents’ utility is given by 
𝑈 = 𝑐1 + 𝑐2 − 𝛾𝑢𝐸𝑎, (1)

where 𝑐𝑡 denotes consumption and 𝛾𝑢 is a parameter governing the cost 
of emissions in agents’ utility. Agents are atomistic, so that they do not 
internalize the effect of their decisions on aggregate emissions 𝐸𝑎. In 
the baseline model, we abstract from heterogeneity among borrowers, 
but we show in the Internet Appendix (Section IA.3) that our main 
insights hold also in the case of heterogeneous borrowers.
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Technology. Borrowers start with an initial investment project in place, 
representing polluting legacy assets. The initial investment scale is 𝐼0. 
At 𝑡 = 1, borrowers can liquidate some of the initial assets and adjust 
the scale to 𝐼1 ≤ 𝐼0. The project generates a payoff of 𝑅(𝐼1, 𝐸𝑎) at 𝑡 = 2, 
which increases in 𝐼1, and liquidations generate a payoff 𝜇(𝐼0 − 𝐼1) at 
𝑡 = 1, with 𝜇 < 1.

The project emits carbon emissions 𝐸(𝑋, 𝐼1) at 𝑡 = 2, which can be 
reduced by non-verifiable abatement investments 𝑋 at a cost 𝐶(𝑋, 𝐼1)
paid at 𝑡 = 1. Emissions also increase in the final investment scale 
𝐼1. Thus, borrowers can reduce emissions either through abatement or 
through liquidations.

Aggregating over borrowers, emissions aggregate to
𝐸𝑎 = ∫ 1

0 𝐸(𝑋, 𝐼1). A key modeling element is that we assume the payoff 
𝑅(𝐼1, 𝐸𝑎) decreases in aggregate emissions 𝐸𝑎. To simplify notation, 
we refer to the marginal effect of aggregate emissions on payoffs as 
𝛾𝑝 ≡ −𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎. Modeling the payoff-relevant effect 𝛾𝑝 allows us 
to distinguish it from the utility-related component 𝛾𝑢 in comparative 
statics exercises. As we show in our analysis, this distinction is impor-
tant because 𝛾𝑝 and 𝛾𝑢 interact differently with financial constraints. 
The total social cost of emissions consists of the two components and 
is given by 𝛾 = 2𝛾𝑢 + 𝛾𝑝.

In the Internet Appendix (Section IA.1), we provide different micro 
foundations for 𝛾𝑝. Our preferred interpretation is that it captures the 
negative effect of aggregate emissions on payoffs due to (expected) 
losses from extreme weather. This may be driven by direct exposure 
to extreme weather events in the near future, or by negative asset 
pricing effects due to expected losses from extreme weather over longer 
horizons. Such asset pricing effects have been documented in the liter-
ature (for a review, see Giglio et al., 2021a), and are often described 
as physical climate risk. Since there is no risk in our baseline model, 
we simply refer to 𝛾𝑝 as ‘‘physical climate impacts’’ and interpret it as 
capturing the direct and indirect (asset pricing) effects of (expected) 
extreme weather events that become more likely as aggregate emissions 
rise and the climate heats up. In the Internet Appendix, we model such 
asset pricing effects explicitly by assuming the firm sells some of its 
assets in secondary markets at 𝑡 = 2, and show that the price it can 
fetch declines in 𝐸𝑎 as buyers anticipate greater expected losses in the 
future. We also show that 𝛾𝑝 could similarly capture other financial 
spillovers from emissions reductions, such as technological spillovers 
from developing green technologies.

We make the following functional form assumptions. 

Assumption 1. 𝑅(𝐼1, 𝐸𝑎), 𝐸(𝑋, 𝐼1) and 𝐶(𝑋, 𝐼1) satisfy
1. 𝜕𝐶(𝑋, 𝐼1)∕𝜕𝑋 ≥ 0, 𝜕𝐶(𝑋, 𝐼1)∕𝜕𝐼1 ≥ 0, 𝜕𝐸(𝑋, 𝐼1)∕𝜕𝑋 ≤ 0, 

𝜕𝐸(𝑋, 𝐼1)∕𝜕𝐼1 ≥ 0, 𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐼1 ≥ 0, 𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎 ≤ 0, 
2. 𝐶(0, 𝐼1) = 0, 𝐶(𝑋, 0) = 0, lim𝑋→∞ 𝐸(𝑋, 𝐼0) = 0, 𝐸(𝑋, 0) = 0, 

𝐸(0, 𝐼0) = 𝐸̄, 
3. 𝜕2𝐸(𝑋, 𝐼1)∕𝜕𝑋2 = 0, 𝜕2𝐶(𝑋, 𝐼1)∕𝜕𝑋2 > 0. 
Assumption  1.1 ensures that abatement investments are costly but 

reduce emissions, and that a higher final investment scale is associated 
with higher emissions, payoffs, and abatement costs. Assumption  1.2 
defines boundaries such that costs and emissions are non-negative, and 
there is an upper bound 𝐸̄ on emissions. Assumption  1.3 implies that 
emissions are linear in abatement, which simplifies the exposition, and 
that the cost of abatement is strictly convex, so that the borrower’s 
optimal abatement choice has an interior solution.
Environmental regulation. An environmental regulator sets an emissions 
tax 𝜏 per unit of emissions in order to maximize social welfare.3 

3 In the baseline model we only consider a linear tax because there is no 
heterogeneity among borrowers. In Internet Appendix IA.2 we discuss non-
linear taxes as well as quantity-based regulation (an emissions cap) that fixes 
the level of abatement, which is equivalent to a non-linear tax that is zero 

Emissions taxes are rebated lump-sum to borrowers, 𝑇 = 𝜏𝐸𝑎 (such 
tax rebates are sometimes referred to as a ‘‘carbon dividend’’ in policy 
debates). Section 4.3 studies a cap-and-trade system as an alternative 
policy tool, while quantity limits on emissions and green subsidies are 
covered in the Internet Appendix.

Financing. At 𝑡 = 1, borrowers can finance abatement 𝑋 by raising 
debt 𝑑1 from investors. External financing is limited by a moral haz-
ard problem. We assume that at 𝑡 = 2 borrowers can abscond with 
any resources except a fraction 𝜃 ∈ [0, 1] of asset payoffs, and a 
fraction 𝜓 ∈ [0, 1] of tax rebates 𝑇 . Thus, there is a wedge between 
the project’s payoff and pledgeable income, with pledgeable payoffs 
given by 𝜃𝑅(𝐼1, 𝐸𝑎) (as in Rampini and Viswanathan, 2013, among 
others). The separate pledgeability parameter for tax rebates allows us 
to perform key comparative statics exercises. For example, when 𝜓 = 1
and 𝜃 < 1, borrowers may be financially constrained but tax rebates are 
fully pledgeable.

In the baseline model, borrowers have no outstanding debt at the 
beginning of 𝑡 = 1. In reality, past financing choices may also affect 
borrowers’ financial constraints and ability to finance abatement. In 
Section 5.1, we extend the model to study the ex-ante financing choice 
of the initial investment 𝐼0 by introducing an initial stage 𝑡 = 0. This 
enables us to study the role of ex-ante leverage choices and regulation 
used alongside carbon pricing policies. Building on this extension, we 
also introduce ex-ante uncertainty about the social cost of carbon 𝛾, 
which allows us to study the role of other types of financing such 
as carbon-price-hedging contracts, risky long-term debt, and equity. 
Moreover, we explore the effect of introducing socially responsible 
investors. These extensions provide interesting additional insights on 
how financial markets interact with equilibrium environmental policy.

Variable definitions. For the further analysis it will be useful to intro-
duce the following variable definitions and assumptions:

Definition 1.  The project’s private net marginal return on invest-
ment, denoted by 𝑟(𝜏,𝑋, 𝐼1), and pledgeable net marginal return on 
investment, denoted by 𝑟(𝜏,𝑋, 𝐼1), are defined as, respectively,

𝑟(𝜏,𝑋, 𝐼1) =
𝜕𝑅(𝐼1, 𝐸𝑎)

𝜕𝐼1
− 𝜇 −

𝜕𝐶(𝑋, 𝐼1)
𝜕𝐼1

− 𝜏
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1
,

𝑟(𝜏,𝑋, 𝐼1) = 𝜃
𝜕𝑅(𝐼1, 𝐸𝑎)

𝜕𝐼1
− 𝜇 −

𝜕𝐶(𝑋, 𝐼1)
𝜕𝐼1

− 𝜏
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1
.

Assumption 2.  Project payoffs are sufficiently large and pledgeability 
𝜃 sufficiently small such that, given a threshold 𝜏 ≥ 𝛾,

1. 𝑟(𝜏,𝑋, 𝐼1) > 0, ∀𝑋, 𝐼1, 𝜏 ≤ 𝜏, 
2. 𝑟(0, 𝑋, 𝐼1) < 0, ∀𝑋, 𝐼1. 

In principle, sufficiently high emissions taxes can always render 
the project non-viable. The first condition ensures that continuing 
rather than liquidating the project has a positive NPV as long as 
emissions taxes do not exceed some threshold 𝜏. To ensure contin-
uation of the project is privately profitable, we focus on 𝜏 ≤ 𝜏
throughout the paper. While in reality a mix of liquidations and abate-
ment may be optimal, we assume that liquidations are inefficient to 
cleanly distinguish between efficient abatement spending and ineffi-
cient liquidations. The second condition ensures that, while inefficient, 
liquidations relax financial constraints.

below a threshold level and infinite above the threshold. In Internet Appendix 
IA.3 we allow for borrower heterogeneity and discuss non-linear taxes in this 
context.
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2.1. First-best benchmark

Proposition 1.  In the first-best allocation there are no liquidations, 𝐼1 =
𝐼0, and the optimal abatement 𝑋 solves 

𝛾
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
= −

𝜕𝐶(𝑋, 𝐼1)
𝜕𝑋

. (2)

Proof.  See Appendix  A.1 □

In the first-best allocation, the optimal abatement equates the 
marginal gain from lower emissions with the marginal cost of abate-
ment. Crucially, there are no liquidations because liquidations are 
inefficient by Assumption  2. The next section shows that this may be 
different in the competitive equilibrium, where financially constrained 
borrowers may need to liquidate some of their initial investment.

3. Competitive equilibrium

This section solves the problem of borrowers and defines a com-
petitive equilibrium given an emissions tax 𝜏. We analyze optimal 
emissions taxes and other policy tools in later sections.

3.1. Borrower problem

Borrowers maximize their utility subject to the following con-
straints:

𝑐1 + 𝐶(𝑋, 𝐼1) = (𝐼0 − 𝐼1)𝜇 + 𝑑1, (3)

𝑐2 + 𝑑1 + 𝜏𝐸(𝑋, 𝐼1) = 𝑅(𝐼1, 𝐸𝑎) + 𝑇 , (4)

𝑑1 ≤ 𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜓𝑇 , (5)

𝑐𝑡 ≥ 0, 𝑡 = 1, 2, (6)

𝐼1 ∈ [0, 𝐼0]. (7)

Eqs. (3) and (4) are budget constraints at 𝑡 = 1 and 𝑡 = 2. Eq. (5) 
is a financial constraint that ensures debt does not exceed pledgeable 
income. It follows from the incentive-compatibility condition 𝑐2 ≥
(1 − 𝜃)𝑅(𝐼1, 𝐸𝑎) + (1 − 𝜓)𝑇  and implies borrowers have no incentive 
to abscond at 𝑡 = 2. Finally, (6) denotes the non-negativity constraints 
on consumption at each date, and (7) puts bounds on the investment 
scale.

Using the budget constraints to eliminate 𝑐1, 𝑐2 and 𝑑1, the bor-
rower’s problem can be formulated as a Lagrange function of 𝑋 and 
𝐼1, with Lagrange multipliers 𝜆 for the 𝑡 = 1 financial constraint, and 
𝜅𝐼 , 𝜅𝐼  serving as multipliers for upper and lower bounds on investment 
scale. The Lagrangian is formally stated in Eq. (A.2) in Appendix  A.2.

3.2. Borrower decisions

Borrowers observe the tax 𝜏 and then choose abatement 𝑋 and 
liquidations 𝐼0 − 𝐼1 according to the following conditions.

(1 + 𝜆)
(

𝜏
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

)

= 0, (8)

𝑟(𝜏,𝑋, 𝐼1) + 𝜆𝑟(𝜏,𝑋, 𝐼1) − 𝜅𝐼 + 𝜅𝐼 = 0, (9)

𝜆[𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜓𝑇 + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)] = 0. (10)

The first order condition with respect to 𝑋 in Eq. (8) shows that 
borrowers choose abatement trading off a reduction in the emissions 
tax bill against the cost of abatement. Eq. (9) is the first order condition 
with respect to 𝐼1, and it reflects the trade-off between increasing the 
private net return and relaxing the financial constraints, captured by 
𝑟(⋅) and 𝜆𝑟(⋅) respectively. Together with Eq. (10), which combines the 
complementary slackness conditions of the financial constraint (5) and 
non-negativity constraint of 𝑐1 defined in (6), these conditions define 
the optimal 𝐼1, 𝑋, and 𝜆 for a given 𝜏.

Lemma 1.  Borrowers liquidate investment only if the financial constraint 
(5) binds: 𝐼1 < 𝐼0 only if 𝜆 > 0.

Proof.  See Appendix  A.3 □

Lemma  1 follows from Assumption  2, which implies that the net 
marginal return is positive and therefore it is optimal to continue 
the project without any liquidations, i.e., the optimum is a corner 
solution with 𝐼1 = 𝐼0. By contrast, if the financial constraint is binding, 
the pledgeable income under the full investment scale is insufficient 
to support the required borrowing. Since liquidations relax financial 
constraints (by Assumption  2.2), in this case borrowers reduce the 
investment scale at 𝑡 = 1 by choosing 𝐼1 < 𝐼0.

Definition 2.  Given an emissions tax 𝜏, the competitive equilibrium 
is the set of allocations 𝐼∗1 (𝜏), 𝑋∗(𝜏), 𝜆∗(𝜏), defined by Eqs. (8), (9) and 
(10). Aggregate emissions are given by 𝐸𝑎(𝜏) = 𝐸(𝑋∗(𝜏), 𝐼∗1 (𝜏)). The al-
locations 𝑐∗1 (𝜏) and 𝑐∗2 (𝜏) follow from the respective budget constraints.

For brevity we sometimes omit the dependence of equilibrium 
allocations on 𝜏. For instance, we refer to 𝑋∗(𝜏) as 𝑋∗ or to 𝐼∗1 (𝜏) as 𝐼∗.

3.3. Pigouvian benchmark

Proposition 2.  If 𝜆∗(𝛾) = 0, then the competitive equilibrium with 𝜏 = 𝛾
is equivalent to the first-best allocation.

Proof.  With 𝜆∗(𝛾) = 0, it follows from Lemma  1 that 𝐼∗1 = 𝐼0. This 
investment level, as well as the FOC of borrowers w.r.t. 𝑋 in Eq. (8), 
are then equivalent to those in the first best given in Proposition  1. □

Proposition  2 establishes an important benchmark result. If the 
financial constraint is slack, then by Lemma  1 borrowers can avoid 
inefficient liquidations, and the optimal Pigouvian emissions tax can 
implement the first-best allocation. Accordingly, throughout we refer 
to a tax 𝜏 = 𝛾 as the Pigouvian benchmark. Note that this is a general 
benchmark which could also implement the first-best allocation if bor-
rowers had heterogeneous cost functions (see Internet Appendix IA.3). 
In the next section we analyze optimal emissions taxes when financial 
constraints bind and explore how they depart from this benchmark.

4. Optimal carbon pricing

This section analyzes optimal emissions taxes in the presence of 
financial constraints. We then show under what conditions the resulting 
equilibrium allocation is constrained efficient, and ask whether there is 
a case to use other policy instruments.

4.1. Socially optimal emissions tax

We solve the problem of a regulator choosing the optimal emissions 
tax 𝜏∗ at 𝑡 = 1 so as to maximize social welfare. This problem is 
formally stated in Appendix  B.3. The regulator’s first order condition 
with respect to 𝜏 can be written as 

(𝜏 − 𝛾)
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝜏
+ 𝑟(𝛾,𝑋∗, 𝐼∗1 )

𝜕𝐼∗1
𝜕𝜏

+ 𝜅𝜏 = 0, (11)

where 𝜅𝜏 is the Lagrange multiplier on the non-negativity constraint 
𝜏 ≥ 0.

The regulator trades off the effect of the tax on welfare through 
its impact on emissions, reflected in the first term in Eq. (11), against 
the welfare implications of the change in the final investment scale 
induced by the tax, captured in the second term of the equation. In this 
condition, the final investment scale 𝐼∗1  and abatement 𝑋∗ are optimal 
choices by borrowers that respond to changes in emissions taxes. We 
next discuss how emissions taxes affect borrowers’ choices and then use 
these insights to characterize the optimal emissions tax.
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4.1.1. The effect of taxes on equilibrium allocations
Higher emissions taxes increase the cost of polluting, which incen-

tivizes borrowers to invest more in abatement. But higher emissions 
taxes also affect the tightness of financial constraints, which may induce 
borrowers to abate less. Through this indirect effect, emissions taxes 
can have a perverse effect and decrease abatement due to tightening 
financial constraints. In this case, emissions taxes would be counter-
productive and not a useful tool to reduce emissions in the first place. 
We discuss this case in Appendix  B.1. In the main text, we focus on the 
interesting case in which emissions taxes are a useful tool to incentivize 
abatement, so that 𝜕𝑋∗∕𝜕𝜏 > 0 ∀𝜏 (in the Appendix we also characterize 
sufficient conditions for this to hold).

The following Lemma additionally clarifies how liquidations and 
therefore the equilibrium investment scale 𝐼∗1  responds to emissions 
taxes. 

Lemma 2.  If the financial constraint is slack, then emissions taxes do not 
affect the final investment scale, 𝜕𝐼∗1 ∕𝜕𝜏 = 0. If the financial constraint 
binds, then there exists a threshold 𝛾̂𝑝(𝜏) such that

• if 𝛾𝑝 < 𝛾̂𝑝(𝜏), then emissions taxes reduce the final investment scale 
𝜕𝐼∗1 ∕𝜕𝜏 < 0;

• if 𝛾𝑝 = 𝛾̂𝑝(𝜏), then emissions taxes do not affect the final investment 
scale 𝜕𝐼∗1 ∕𝜕𝜏 = 0;

• if 𝛾𝑝 > 𝛾̂𝑝(𝜏), then emissions taxes increase the final investment scale 
𝜕𝐼∗1 ∕𝜕𝜏 > 0.

Proof.  See Appendix  B.2 □

Only if the financial constraint binds, borrowers need to liquidate 
investments. Interestingly, higher emissions taxes can result in more or 
less liquidations, depending on how strongly payoffs are affected by 
physical climate impacts captured by 𝛾𝑝 = −𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎. To dissect 
the result in Lemma  2, the overall effect of emissions taxes on the final 
investment scale can be derived from totally differentiating (10) with 
respect to 𝜏: 
𝜕𝐼∗1
𝜕𝜏

=
(1 − 𝜓)𝐸(𝑋∗, 𝐼∗1 ) − 𝜓𝜏

𝜕𝐸𝑎

𝜕𝑋
𝜕𝑋∗

𝜕𝜏 + 𝜃𝛾𝑝 𝜕𝐸
𝑎

𝜕𝑋
𝜕𝑋∗

𝜕𝜏
𝑟(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )

(12)

This equation highlights the three channels through which financial 
constraints shape the effect of emissions taxes on the final investment 
scale. First, changes in the tax directly affect the size of the tax bill and 
the tax rebate. Since only a fraction 𝜓 of the tax rebate is pledgeable, 
this direct negative effect of the emissions tax on the tightness of the 
financial constraint is captured by the term (1 − 𝜓)𝐸(𝑋∗, 𝐼∗1 ). Sec-
ond, higher taxes incentivize more abatement, which lowers aggregate 
emissions and reduces the pledgeable tax rebate 𝜓𝑇 = 𝜓𝜏𝐸𝑎. This 
is captured by the second term in the numerator of (12).4 Through 
both the direct effect and the tax rebate effect higher taxes deplete 
pledgeable income, resulting in a lower final investment scale.

The third channel operates in the opposite direction and implies 
that higher emissions taxes partly relax financial constraints. Higher 
emissions taxes result in a lower aggregate level of emissions. This has a 
positive impact on borrowers’ pledgeable resources, because it reduces 
future physical climate impacts on borrowers’ assets. This channel 
represents a collateral externality of emissions: each unit of prevented 
aggregate emissions increases borrowers’ pledgeable resources by 𝜃𝛾𝑝, 
reflected in the third term in the numerator of (12).

4 The total effect of abatement on pledgeable income 
also includes changes in abatement costs and is given by 
−
[

𝜕𝐶(𝑋, 𝐼1)∕𝜕𝑋 + 𝜏𝜕𝐸(𝑋, 𝐼1)∕𝜕𝑋 − 𝜓𝜏𝜕𝐸𝑎∕𝜕𝑋
]

𝜕𝑋∗∕𝜕𝜏. However, using 
the borrower’s optimal abatement choice in Eq. (8), this term simplifies to 
𝜓𝜏𝜕𝐸𝑎∕𝜕𝑋 × 𝜕𝑋∗∕𝜕𝜏 in Eq. (12).

Overall, the effect of emissions taxes on financial constraints and 
liquidations depends on the relative strength of the collateral exter-
nality. When borrowers’ exposure to physical climate impacts is low 
such that 𝛾𝑝 < 𝛾̂𝑝, higher emissions taxes imply tighter constraints and 
more liquidations. By contrast, if 𝛾𝑝 > 𝛾̂𝑝, the equilibrium effect of the 
collateral externality dominates, so that higher emissions taxes relax 
financial constraints and result in fewer liquidations.

4.1.2. Optimal emissions tax
Because emissions taxes interact with financial constraints, the reg-

ulator considers not only the direct effect of taxes on emissions, but 
also their side effect on asset liquidations.

Proposition 3.  The optimal emissions tax 𝜏∗ solves (11). If the financial 
constraint is slack, then 𝜏∗ = 𝛾. If the financial constraint binds, then

• 𝜏∗ < 𝛾 if 𝛾𝑝 < 𝛾̂𝑝(𝜏∗),
• 𝜏∗ = 𝛾 if 𝛾𝑝 = 𝛾̂𝑝(𝜏∗),
• 𝜏∗ > 𝛾 if 𝛾𝑝 > 𝛾̂𝑝(𝜏∗),

where the threshold 𝛾̂𝑝(𝜏∗) is defined in Lemma  2 and Appendix  B.2.

Proof.  See Appendix  B.3 □

With binding financial constraints, the optimal emissions tax gener-
ally differs from the Pigouvian benchmark equal to the direct social 
cost of emissions 𝛾. We stress that 𝛾 = 2𝛾𝑢 + 𝛾𝑝 already includes 
both the utility component 𝛾𝑢 as well as the physical climate damage 
component 𝛾𝑝. Therefore, Proposition  3 implies that the optimal tax 
may be 𝜏∗ > 2𝛾𝑢 + 𝛾𝑝 if 𝛾𝑝 is sufficiently large.

To understand this result, first suppose aggregate emissions do not 
affect borrowers’ payoffs, i.e., 𝛾𝑝 = 0 and 𝛾 = 2𝛾𝑢. In this case, binding 
financial constraints unambiguously imply an optimal emissions tax 
𝜏∗ < 𝛾. The reason is that with 𝛾𝑝 = 0, financial constraints do not 
result in a collateral externality, and emissions taxes affect financial 
constraints only through the negative direct and tax rebate effects on 
pledgeable income. As a result, in this case higher taxes unambiguously 
trigger more inefficient liquidations by Lemma  2. Internalizing this 
undesired side effect, an environmental regulator sets an emissions tax 
below the direct social cost of emissions, 𝜏∗ < 𝛾.

However, as discussed above, with 𝛾𝑝 > 0 physical climate impacts 
imply that emissions taxes also affect borrowers’ financial constraints 
through a collateral externality. This collateral externality works in 
the opposite direction, and if 𝛾𝑝 > 𝛾̂𝑝, then the effect of aggregate 
emissions on pledgeable income is sufficiently high such that the col-
lateral externality dominates the negative effects of the tax. In this 
case, higher emissions taxes relax financial constraints by Lemma  2. 
This fundamentally changes the trade-offs faced by an environmental 
regulator, implying optimal emissions taxes above the direct social cost 
of emissions, 𝜏∗ > 𝛾. Conversely, if 𝛾𝑝 < 𝛾̂𝑝, as in the example with 
𝛾𝑝 = 0, the negative direct and tax rebate effects dominate the collateral 
externality, and the optimal tax is 𝜏∗ < 𝛾.

Thus, the collateral externality of emissions warrants higher optimal 
emission taxes if emissions disproportionately affect the pledgeable 
resources of financially constrained agents. For example, the optimal 
tax may be above the Pigouvian benchmark if the value of collateraliz-
able assets— such as real estate or productive equipment—are highly 
exposed to climate risks like droughts, floods, or heat waves, which 
become more likely when emissions remain high. Conversely, if the 
social costs of emissions primarily affect assets with limited collateral 
value, such as natural ecosystems or human capital, the collateral 
externality is weak. In such a case, financial constraints call for an 
optimal emissions tax below the Pigouvian benchmark.
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Fig. 1. Final investment scale and optimal emissions taxes.
This figure uses a numerical example to plot the equilibrium final investment scale 
𝐼1 as a function of the emissions tax 𝜏 for a large and a small value of physical 
climate impacts 𝛾𝑝, holding the overall social cost of emissions 𝛾 constant. Details on 
the numerical solution are provided in the Internet Appendix (Section IA.8).

Numerical example. To illustrate the results in Proposition  3 and
Lemma  2, we solve the model numerically using the functional forms 
𝑅(𝐼1, 𝐸𝑎) = 𝜌𝐼1 − 𝛾𝑝𝐸𝑎, 𝐶(𝑋, 𝐼1) = 𝜂𝑋2𝐼1∕2, and 𝐸(𝑋, 𝐼1) =
𝑚𝑎𝑥

{

(1 − 𝛽𝑋)𝐼1, 0
}

, where 𝜂 and 𝛽 are parameters governing the cost 
and benefit of abatement, respectively. Details on the parametriza-
tion, derivations, and numerical solution are provided in the Internet 
Appendix (Section IA.8).

Using these functional forms, the borrower’s first order condition (8) 
implies an interior solution 𝑋 = 𝜏𝛽∕𝜂. The optimal 𝐼1 is plotted as a 
function of the emissions tax 𝜏 for two separate cases in Fig.  1. In the 
first case (red dashed line), we set 𝛾𝑝 to a relatively small number and 
𝛾𝑢 to a relatively large number. Conversely, in the second case (blue 
solid line) 𝛾𝑝 is relatively large and 𝛾𝑢 relatively small. Importantly, we 
hold the overall social cost of emissions 𝛾 constant across the two cases, 
so that only the relative weight of physical climate impacts 𝛾𝑝 varies.

We compute the optimal emissions tax for both cases and find that 
it is below the Pigouvian benchmark rate 𝛾 if 𝛾𝑝 is relatively small, but 
above 𝛾 if 𝛾𝑝 is relatively large— illustrating Proposition  3. Moreover, 
in line with Lemma  2, the optimal emissions tax is at a level where the 
final investment scale 𝐼1 decreases in the emissions tax if 𝛾𝑝 is small, but 
increases if 𝛾𝑝 is relatively large. Since we are holding the overall cost 
of emissions 𝛾 constant, this example illustrates how the predominant 
type of costs of emissions matters for the optimal level of emissions 
taxes. If a sufficiently high share of the costs of aggregate emissions 
affects pledgeable assets (i.e. if 𝛾𝑝 is high relative to 𝛾𝑢), the climate-
induced collateral externality is strong enough to motivate an optimal 
emissions tax above the Pigouvain benchmark.
Collateral externality of emissions. Previous literature on collateral ex-
ternalities focuses primarily on pecuniary externalities, whereby bor-
rowers do not internalize how their choices affect financial constraints 
through their impact on fire sale discounts (for a detailed discussion, 
see Dávila and Korinek, 2018). By contrast, in our setting collateral 
externalities can emerge because agents do not internalize their im-
pact on financial constraints through aggregate emissions. Proposition 
3 shows that this climate-induced collateral externality may imply 
optimal emissions taxes above a standard Pigouvian benchmark. The 
more general point is that, even if the collateral externality is not strong 
enough to motivate taxes above a standard Pigouvian benchmark, it 
shapes optimal emissions taxes as it dampens the negative effect of 

taxes on financial constraints. In the next subsection, we demonstrate 
this further by deriving a generalized Pigouvian benchmark tax that 
accounts for climate-induced collateral externalities.

4.2. Efficiency and generalized pigouvian benchmark

In the presence of financial constraints, the total social cost of 
emissions includes not only the direct social cost of emissions 𝛾 =
2𝛾𝑢 + 𝛾𝑝, but also the indirect cost due to collateral externalities driven 
by physical climate impacts. We next define a generalized Pigouvian 
benchmark that accounts for this collateral externality. This enables 
us to demonstrate how the optimal tax is shaped by the interaction 
between financial constraints and physical climate impacts, and eval-
uate the efficiency of the allocation that it implements. Specifically, 
we define the generalized Pigouvian benchmark as the emissions tax 
that equalizes the private cost of emissions 𝜏 to the total social cost of 
emissions. The total cost accounts for all marginal effects of increasing 
aggregate emissions in the presence of financial constraints. It thus 
sums the direct cost 𝛾 and the shadow cost of the climate-induced 
collateral externality 𝜆𝜃𝛾𝑝. Additionally, the total social cost accounts 
for the fact that a fraction 𝜓 of tax rebates are pledgeable, generating 
a marginal benefit 𝜆𝜓𝜏. 

Definition 3.  The generalized Pigouvian tax is given by 

𝜏𝐺𝑃 =
𝛾 + 𝜆∗𝜃𝛾𝑝

1 + 𝜓𝜆∗
. (13)

Financial constraints motivate a generalized Pigouvian benchmark 
tax 𝜏𝐺𝑃  that takes into account the interaction of aggregate emis-
sions with financial constraints. The generalized Pigouvian tax 𝜏𝐺𝑃
increases in borrowers’ exposure to physical climate impacts 𝛾𝑝 through 
two channels. First, higher 𝛾𝑝 mechanically increases the direct costs 
of emissions 𝛾. Second, larger physical climate impacts increase the 
magnitude of the collateral externality captured in 𝜆∗𝜃𝛾𝑝. This latter 
channel is stronger when financial constraints of borrowers are tighter, 
as reflected by the cross derivative 𝜕2𝜏𝐺𝑃 ∕(𝜕𝛾𝑝𝜕𝜆∗) = 𝜃∕(1 + 𝜓𝜆∗)2 > 0. 
This highlights that the interaction between physical climate impacts 
and financial constraints is central to why the collateral externality of 
emissions drives up the generalized Pigouvian benchmark tax. Finally, 
note that if financial constraints are slack, then the generalized Pigou-
vian tax coincides with the standard Pigouvian benchmark: 𝜏𝐺𝑃 = 𝛾 if 
𝜆∗ = 0. The next subsection compares this generalized benchmark to 
the optimal emissions tax derived in Proposition  3 and evaluates the 
efficiency of the allocation implemented with emissions taxes.

4.2.1. Are carbon taxes enough?
With binding financial constraints, the optimal emissions tax differs 

from a standard Pigouvian benchmark and cannot implement the first-
best allocation. One may expect this implies that it is beneficial to 
complement or replace emissions taxes with other policy tools. How-
ever, this does not need to be the case because the optimal emissions tax 
may still implement the second-best, constrained-efficient allocation. In 
such circumstances, there is no benefit to introducing other policy tools.

In the constrained-efficient allocation, which is formally defined 
in Appendix  C, a social planner can choose 𝑋 and 𝐼1 directly, subject 
to the same resource and financial constraints as private agents. This 
contrasts with the regulator’s problem, where abatement is incentivized 
through an emissions tax. The following proposition compares the 
optimal emissions tax 𝜏∗ to the generalized Pigouvian benchmark 𝜏𝐺𝑃
and evaluates whether emissions taxes alone can implement the second 
best. 

Proposition 4.  If the financial constraint binds and
• 𝜓 = 1, then 𝜏∗ = 𝜏𝐺𝑃  and the competitive equilibrium is constrained 
efficient,
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• 𝜓 < 1, then 𝜏∗ < 𝜏𝐺𝑃  and the competitive equilibrium is not 
constrained efficient.

Proof.  See Appendix  C □

In contrast to a social planner, the environmental regulator cannot 
choose abatement directly, but instead uses emissions taxes as a policy 
instrument to incentivize abatement. If tax rebates are fully pledge-
able, the regulator can implement the constrained-efficient abatement 
level without introducing additional distortions to the final investment 
scale by setting the emissions tax equal to the generalized Pigouvian 
benchmark tax 𝜏𝐺𝑃  from Definition  3. In contrast, if tax rebates are not 
fully pledgeable, 𝜓 < 1, taxes have a direct adverse effect on financial 
constraints because 𝜏𝐸(𝑋, 𝐼1) − 𝜓𝑇 > 0, and the regulator needs to 
set an emissions tax below 𝜏𝐺𝑃 . As a result, emissions taxes can only 
implement the constrained-efficient allocation if tax rebates are fully 
pledgeable.

This result implies that, when 𝜓 < 1, there may be scope to improve 
welfare by using policy tools other than carbon taxes. The follow-
ing section discusses a cap-and-trade system with tradable pollution 
permits in this context.

4.3. Cap and trade

An alternative policy tool that can curb emissions is a cap-and-
trade system with a limited quantity 𝑄 of tradable pollution permits 
(similar to the EU ETS). Absent other frictions, such pollution permit 
markets are equivalent to emissions taxes, and the Coase Theorem 
implies that the initial allocation of pollution permits does not affect the 
equilibrium level of emissions (see Coase, 1960; Montgomery, 1972). 
In what follows we show that this is not necessarily the case in the 
presence of financial constraints, and explore whether a cap-and-trade 
system can achieve higher welfare than emissions taxes.

For each unit of emissions, a borrower needs to surrender a permit 
to the regulator at 𝑡 = 2. We assume that a share 𝜙 of all permits 𝑄 is 
freely allocated to borrowers ex-ante, and that the remaining (1 − 𝜙)𝑄
permits need to be purchased by the borrower at the market price 𝑝. To 
simplify the exposition, we assume here that the proceeds from permit 
sales accrue to investors (Internet Appendix Section IA.2.3 shows that 
the insights derived here also hold if instead the proceeds accrue to 
borrowers). Borrowers can trade permits with each other at the market 
price 𝑝. Note that with freely allocated permits borrowers retain the 
same incentives to invest in abatement because of the opportunity cost 
of selling unused permits.

4.3.1. Mapping cap-and-trade to emissions taxes
The budget constraints of the borrower and the first order condi-

tions under the cap-and-trade system are stated in Appendix  D. The 
FOCs are equivalent to those in the baseline problem, with 𝑝 taking the 
place of 𝜏. The borrower’s FOC with respect to abatement determines 
the relationship between the privately optimal level of abatement 𝑋
and the permit price 𝑝, and mirrors Eq. (8) of the original problem: 

(1 + 𝜆)
(

𝑝
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

)

= 0, (14)

This condition, together with the market clearing for permits, 𝑄 = 𝐸𝑎, 
jointly determine a mapping from 𝑝 to 𝐸𝑎. Consequently, we can ex-
press the regulator’s problem as maximizing social welfare by choosing 
𝑝. Appendix  D reports the first order condition of the regulator. As in 
the baseline setting, the regulator internalizes the effect of the policy 
on borrowers’ profits and emissions. Comparing the FOCs under the 
cap-and-trade system with the one in the original problem yields the 
following result.

Proposition 5.  The equilibrium allocation implemented with a cap-and-
trade system is equivalent to the one implemented with emission taxes if 
𝑝 = 𝜏 and 𝜙 = 𝜓 .

A cap-and-trade system that allocates all permits for free, 𝜙 = 1, and 
implements a permit price 𝑝∗ = 𝜏𝐺𝑃 , results in a constrained-efficient 
allocation.

Proof.  See Appendix  D □

In both the baseline setting with emissions taxes and the cap-and-
trade system the regulator’s policy amounts to choosing the private 
marginal cost of emissions represented either by the tax rate 𝜏 or 
the permit price 𝑝. The direct effect of the policies on the financial 
constraints depend, respectively, on the pledgeability of the tax rebates 
𝜓 , and the share of freely allocated permits 𝜙. Pollution permits have 
a direct effect on the financial constraint if borrowers need to purchase 
some of them ex-ante (i.e. if 1 − 𝜙 > 0). This corresponds to the 
direct effect of the tax bill on pledgeable income under emissions 
taxes. The price of permits also affects the tightness of the financial 
constraints indirectly, mirroring the effects of emissions taxes discussed 
in Section 4.1.2 (including the collateral externality).

The advantage of using a cap-and-trade system instead of emissions 
taxes is that the regulator can choose 𝜙 optimally. The equivalence 
result in Proposition  5 implies that the regulator can avoid the problem 
of the carbon price’s direct effect on borrowers’ financial constraints 
altogether by allocating all permits for free, i.e. setting 𝜙 = 1. In this 
case, the shadow cost of permits induces borrowers to engage in a 
constrained-efficient level of abatement, as stated in the second part 
of Proposition  5.

4.3.2. Coasean independence
An implication of the Coase Theorem is that absent other frictions 

the initial allocation of the pollution allowances does not affect the 
equilibrium level of externality (see Montgomery, 1972). This result is 
often referred to as the independence property in the literature. Propo-
sition  5 combined with our previous results show that independence 
does not hold under financial frictions. This is consistent with recent 
empirical evidence from the EU ETS that indicates that independence 
holds for large emitters but not for smaller firms (see Zaklan, 2023), as 
small firms are more likely to be financially constrained.

Our result also complements previous findings that show indepen-
dence fails under frictions such as transaction costs (Stavins, 1995) and 
market power (Hahn, 1984; Fowlie et al., 2016). These contributions 
show that allocating more permits for free can lead to higher emissions 
if marginal transaction costs are decreasing or incumbents have market 
power. Our next result relates to these findings by showing that, in 
the presence of financial constraints, allocating more permits at no cost 
may instead result in lower emissions. 

Lemma 3.  An increase in the number of freely allocated permits results in 
lower aggregate emissions at a given permit price 𝑝 if and only if 
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝐼1
+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1
< 0. (15)

Proof.  See Appendix  D □

Allocating more permits for free limits the direct impact of the cap-
and-trade system on borrowers’ pledgeable income. This can increase 
or decrease aggregate emissions, depending on whether borrowers 
respond to laxer financial constraints predominantly by liquidating less 
or by abating more. As we show in the appendix, if the condition in 
Lemma  3 holds, then relaxing financial constraints results in lower 
emissions because the underlying technologies are such that abatement 
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is more efficient at a higher investment scale.5 In this case, allocating 
more permits for free induces a reduction in aggregate emissions for 
a given permit price. Vice versa, if the condition in Lemma  3 does not 
hold, increasing the number of freely allocated permits leads to a higher 
level of aggregate emissions because the effect of relaxing financial 
constraints on the final investment scale dominates.

4.4. Policy implications

Propositions  4 and 5 imply that—despite the presence of binding fi-
nancial constraints—a regulator can implement a constrained-efficient 
allocation by combining carbon taxes with a fully pledgeable tax rebate, 
or by using a cap-and-trade system with freely allocated permits. An 
important policy implication is that a pollution permit market with free 
allowances may be a superior policy instrument to carbon taxes in the 
presence of financial constraints and partially pledgeable tax rebates.

Yet, in practice cap-and-trade systems often do not allocate permits 
for free. For example, the EU ETS (the largest emissions permit market 
in the world), only grants free allowances equal to a fraction of total 
emissions, and is gradually reducing the amount of free allowances 
over time. For example, the manufacturing industry received 80% of 
its allowances for free in 2013. This proportion had been decreased 
down to 30% in 2020 (European Commission, 2024).

We note that there may be considerations outside our model that 
motivate these real-life policy choices. For example, it may be diffi-
cult for regulators to correctly allocate free permits if polluters were 
privately informed about heterogeneous abatement costs, potentially 
triggering undesirable distributional consequences. Determining the 
amount of freely allocated permits by past emissions (a policy referred 
to as ‘‘grandfathering’’) could help alleviate this issue, but may weaken 
incentives to reduce emissions as firms may aim to avoid a reduction 
in the amount of freely allocated permits in the future (see Clò, 2010). 
Additionally, under heterogeneity it may be beneficial to use non-
linear emissions taxes to ensure different polluters face the private cost 
of emissions that more accurately accounts for their individual con-
straints (see Hoffmann et al., 2017). In the Internet Appendix (Section 
IA.3), we discuss how this may call for combining emissions taxes and 
cap-and-trade to obtain the distinct benefits of these two policy tools: 
emissions taxes can be set non-linearly, while cap-and-trade enables the 
regulator to allocate permits for free, limiting the negative effect due to 
non-pledgeable tax rebates. While modeling all these frictions is beyond 
the scope of this paper, our results highlight that regulators should 
also weigh the adverse impact of allowance sales on the tightness of 
financial constraints when accounting for these additional forces.
Regulatory pecking order. Our results also imply that financial con-
straints do not necessarily motivate targeting climate-related objectives 
using other policy tools, such as financial regulatory tools or monetary 
policy. In fact, in the model there is a clear ‘‘regulatory pecking order’’ 
whereby regulators should first design carbon pricing in a way that 
minimizes the adverse effect on financial constraints before resorting 
to other policy tools. While the precise conditions for constrained 
efficiency may not be satisfied in real life, at a minimum, our results 
highlight the importance of prioritizing limiting the impact of carbon 
pricing on pledgeable income.

In the next section we extend the baseline model to allow for an 
initial leverage choice and show that these insights carry over also to 
this setting. In the Internet Appendix (Section IA.2), we also analyze a 

5 We show in Appendix  D that the sign of 𝜕𝑋∗∕𝜕𝐼1, i.e. whether abatement 
is more efficient at higher investment scale, depends on the underlying 
production technologies. This may differ by industry. For example, consistent 
with 𝜕𝑋∗∕𝜕𝐼1 > 0, evidence from (Martinsson et al., 2024b) shows that larger 
firms are more efficient at reducing emissions following a shock to emissions 
prices in the Swedish trucking industry, and Bellon and Boualam (2024) find 
that financially distressed firms in the US increase their pollution intensity.

quantity limit on pollution, non-linear taxes, and green subsidies. These 
policies may implement the constrained-efficient allocation if designed 
appropriately, but can have limitations that we discuss in the Internet 
Appendix.

5. Extensions

5.1. Initial leverage choice and regulation

In the baseline model, borrowers have no initial leverage at 𝑡 = 0, 
yet in reality the tightness of financial constraints is often affected by 
debt raised in the past. Motivated by this observation and by recent 
debates on whether financial regulation should include climate-related 
goals (for example, see Brunnermeier and Landau, 2021), this section 
extends the model by allowing for the tightness of 𝑡 = 1 financial 
constraints to be influenced by a borrower’s previous capital structure 
choices. In particular, we introduce the ex-ante date 𝑡 = 0 during which 
borrowers decide how to finance their project. This allows us to explore 
how borrowers’ financing choices interact with carbon pricing.

5.1.1. Additional model ingredients
At 𝑡 = 0 each borrower receives a limited endowment 𝐴𝑏 and has 

access to a fixed-scale project requiring an upfront investment of 𝐼0. 
Borrowers can fund the project with a mix of inside equity 𝑒 ≤ 𝐴𝑏

and external debt financing 𝑑0 = 𝐼0 − 𝑒. We do not restrict 𝑑0 to be 
positive (negative 𝑑0 can be interpreted as cash holdings). We assume 
that borrowers issue short-term debt due at 𝑡 = 1, at which stage they 
can issue 𝑑1 as in the baseline model.6 If borrowers fail to repay the debt 
at 𝑡 = 1, creditors can force a (partial) liquidation of the investment and 
appropriate all of the liquidation proceeds. We show in the appendix 
that this implies there is no default on 𝑡 = 0 debt at 𝑡 = 1 and that the 
financial constraints at 𝑡 = 0 are slack whenever borrowers prefer to 
start, rather than forgo, the project. To introduce a meaningful trade-
off for borrowers in how much inside equity they contribute to the 
project, we assume that borrowers’ consumption utility at 𝑡 = 0, 𝑢(𝑐0), 
is concave, 𝑢′(𝑐0) > 0, 𝑢′′(𝑐0) < 0. To ensure an interior solution we 
assume it also satisfies 𝑢′(0) = ∞ and 𝑢′(∞) = 0. Hence, borrowers’ 
overall utility (1) is replaced by 
𝑈 𝑏 = 𝑢(𝑐0) + 𝑐1 + 𝑐2 − 𝛾𝑢𝐸𝑎, (16)

Focusing on the relevant case in which borrowers prefer to start 
the project, their problem is to maximize utility subject to (4), (5), (6), 
(7), as well as an additional 𝑡 = 0 budget constraint and a revised 
𝑡 = 1 budget constraint stated in Appendix  E. We close the model 
by assuming that investors remain risk-neutral through all periods and 
receive a large endowment 𝐴𝑖 at both 𝑡 = 0 and 𝑡 = 1.

5.1.2. Borrowers’ optimal choices
The 𝑡 = 1 problem of the borrower is similar to the baseline model, 

with the FOCs with respect to abatement and investment scale given 
by (8) and (9). The only difference is that the complementary slackness 
condition (10) is replaced by a condition that also depends on 𝑡 = 0
debt: 
𝜆[𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜓𝑇 + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1) − 𝑑0] = 0. (17)

Liquidations at 𝑡 = 1 still depend on whether the financial constraint 
binds or not, as described in Lemma  1. Critically, with 𝑡 = 0 debt the 
financial slack available to borrowers at 𝑡 = 1 is endogenous to their 
initial leverage.

6 Since there is no risk, this is equivalent to assuming borrowers can issue 
long-term debt and have access to a storage technology. In this case the total 
amount of debt due at 𝑡 = 2 would be subject to a constraint as in (5) and the 
problem would be equivalent to the one studied here.
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At 𝑡 = 0 borrowers decide on their capital structure by choosing the 
optimal inside equity contribution 𝑒. Outside debt financing follows as 
the residual from 𝑑0 = 𝐼0−𝑒. The first order condition of the borrower’s 
problem w.r.t. 𝑒 is given by 
𝑢′(𝐴𝑏 − 𝑒) − 1 = 𝜆. (18)

Thus, borrowers contribute equity trading off its effect on marginal 
utilities of consumption at 𝑡 = 0 and 𝑡 = 1 against the benefit of relaxing 
financial constraints, captured by 𝜆.

Condition (18) implies that, if the borrower’s endowment 𝐴𝑏 is 
sufficiently low, the high marginal utility of 𝑡 = 0 consumption jus-
tifies choosing high initial leverage even if that means future financial 
constraints will bind. In what follows we focus on this case.

5.1.3. Carbon pricing and socially optimal leverage
We now revisit optimal carbon pricing and ask whether borrowers’ 

leverage choices are socially efficient. To that end, we extend the regu-
latory toolbox and allow the regulator to complement the emissions tax 
with a 𝑡 = 0 leverage mandate that fixes the borrower’s inside equity at 
a level 𝑒. Such a policy could be implemented through a direct mandate 
or taxes and subsidies on external financing (see Internet Appendix 
IA.2.4).7 To remain close to the baseline model, we assume that the 
regulator sets the emissions tax at 𝑡 = 1 (rather than committing to a 
tax at 𝑡 = 0).

We show in Appendix  E that the optimal emissions tax in the 
extended setting is still characterized by Proposition  3. This is because 
borrowers’ choice of 𝑑0 does not change the nature of the trade-off 
faced by the regulator between incentivizing abatement and triggering 
inefficient liquidations for a given tightness of the financial constraints 
at 𝑡 = 1.

The optimal leverage regulation affects a different decision margin: 
it changes the extent to which the borrower uses 𝑡 = 0 resources to 
consume vs to relax the 𝑡 = 1 financial constraints, as can be seen from 
the regulator’s first order condition w.r.t. 𝑒: 

𝑢′(𝐴𝑏 − 𝑒) − 1 =
[

𝑟(𝛾,𝑋∗, 𝐼∗1 ) − (𝛾 − 𝜏∗)
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝐼1

] 𝜕𝐼∗1
𝜕𝑒

. (19)

The first order condition trades off the marginal utility of consumption 
against the marginal social value of more financial slack at 𝑡 = 1. The 
latter consists of the value due to a higher net return on the project 
(captured by 𝑟(𝛾,𝑋∗, 𝐼∗1 ) in Eq. (19)), and the value due to the change 
in abatement and its effect on aggregate emissions (captured by the 
remaining terms in the square brackets). Notice that, by the envelope 
theorem, the regulator does not consider the effect of the leverage 
mandate on the emissions tax because the tax is set optimally at 𝑡 = 1.

Comparing (18) and (19) implies that whether the private choice 
of leverage is socially optimal depends on whether the private value of 
financial slack coincides with the social value (as reflect in the right-
hand side of the respective equations). While both the borrower and 
the regulator account for the effect of equity on the pecuniary return 
generated by the project, the social and private value of emissions may 
differ. 

Proposition 6.  If the financial constraint binds at 𝑡 = 1, the borrower’s 
choice of equity

• is socially optimal whenever 𝜓 = 1,
• is not socially optimal whenever 𝜓 < 1 and 𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒 ≠ 0.

Proof.  See Appendix  E □

7 Such policies could be applied directly to non-financial firms, or intro-
duced into the Basel regulatory framework if borrowers are interpreted as 
financial institutions. We offer such reinterpretation of our framework in 
Internet Appendix IA.6 where we assume borrowers’ projects represent lending 
to firms with polluting assets by financial institutions.

When tax rebates are fully pledgeable, then the regulator sets a tax 
equal to the generalized Pigouvian benchmark 𝜏𝐺𝑃 , as in the baseline 
model. This implies that emissions are priced correctly, which ensures 
that the private and social value of emissions coincides. Hence, the 
marginal private and social values of financial slack are equalized, so 
that the choice of leverage by borrowers is socially optimal when 𝜓 = 1. 
By contrast, if 𝜓 < 1 the optimal emissions tax is below the generalized 
Pigouvian benchmark, so that there is a wedge between the social and 
private cost of emissions. As a result, in this case leverage regulation 
can improve welfare.

Appendix  E shows that, if 𝜓 < 1, the socially optimal equity can be 
above or below the privately optimal level depending on how equity 
affects emissions. Higher borrower equity loosens financial constraints. 
This can affect emissions in two ways. On one hand, it implies more 
emissions due to a higher final investment scale. On the other hand, 
looser financial constraints affect the optimal abatement choice, which 
may lower emissions. Whether the effect on abatement dominates de-
pends on the cross-derivatives of the emissions and abatement functions 
(it requires abatement to be more efficient at a higher investment 
scale).

If the effect of equity on abatement dominates, such that
𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒 < 0, then the socially optimal equity is above the 
privately optimal level, 𝑒∗ > 𝑒∗. By contrast, if 𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒 > 0, 
then higher equity implies higher emissions, and the socially optimal 
equity level is below a borrower’s optimal choice, 𝑒∗ < 𝑒∗. Note that 
𝑒∗ < 𝑒∗ may be socially optimal even though liquidations are inefficient. 
This is because the emissions tax is already set to optimally distribute 
the 𝑡 = 1 resources between abatement and avoiding liquidations, 
while the role of the leverage mandate is to correct the consumption 
choice that may not fully internalize the social benefits of higher 
leverage reducing emissions. This result mirrors insights in Dávila 
and Walther (2022) that, with constraints on the regulation of some 
externality-generating activity (here abatement), the optimal second-
best regulation of other choices (here leverage) depends on Pigouvian 
wedges in the constrained regulation and on how the perfectly reg-
ulated choices affect the imperfectly regulated activity. In Appendix 
E.4 we discuss in detail how emissions and abatement technologies 
shape these wedges and determine the direction of the optimal leverage 
regulation in our framework.

To sum up, if the regulator can design environmental policy that 
avoids directly impacting financial constraints (e.g. by using fully 
pledgeable tax rebates or a cap-and-trade system with freely allocated 
permits), then there is no need to complement it with leverage regula-
tion. Otherwise, leverage regulation can improve welfare by ensuring 
that the choice of funding mix internalizes the social benefit of reducing 
emissions through leverage. A difficulty in using this tool is that the 
optimal policy may need to constrain or limit leverage, depending on 
the specifics of the underlying technologies that link abatement and 
investment scale to costs and emissions.

5.2. Financial markets

This section analyzes how financial markets interact with emissions 
taxes. First, we introduce socially responsible investors (SRIs). We then 
introduce risk to the model to study the role of hedging, long-term debt 
and external equity financing.

5.2.1. Socially responsible investing
We assume that SRIs derive utility 𝜔 from emissions reductions by 

the borrowers they provide funding to at 𝑡 = 1, relative to a benchmark 
𝐸̃ (see Internet Appendix IA.4 for a formal statement of investors’ 
preferences). SRIs’ break even requires that 𝑑1 = 𝑟1𝑑1+𝜔[𝐸̃−𝐸(𝑋, 𝐼1)], 
where 𝑟1 is the gross interest rate charged by SRIs. The case 𝐸̃ =
0 corresponds to SRIs receiving negative utility from any emissions 
generated by borrowers, whereas 𝐸̃ > 0 represents impact investors 
who receive positive utility if a borrower reduces emissions sufficiently. 
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For SRIs to have an impact, it must be that borrowers cannot easily 
substitute away from SRIs to purely financially-motivated investors. For 
simplicity, we assume here that all investors are socially responsible, 
so that borrowers cannot substitute SRI capital for cheaper financial 
capital (for a discussion on SRIs achieving impact even when purely 
financially-motivated capital is abundant, see Oehmke and Opp, 2025).

Under these assumptions, the borrower’s problem now yields the 
following FOC for abatement and complementary slackness condition:

(1 + 𝜆)
[

(𝜏 + 𝜔)
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

]

= 0, (20)

𝜆[𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜔[𝐸̃ − 𝐸(𝑋, 𝐼1)] + 𝜓𝑇 − 𝑑0

+ 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)] = 0. (21)

These correspond to the original conditions (8) and (17), with 𝜏 + 𝜔
taking the place of 𝜏 in (20), and with the new term 𝜔[𝐸̃ − 𝐸(𝑋, 𝐼1)]
showing up in the complementary slackness condition (21). Eq. (20) 
captures the incentive effect of SRIs on abatement due to the financing 
cost being proportional to emissions reductions. This incentive effect 
works in the same way as an emissions tax. A critical difference be-
tween the tax and the SRI premium is the effect on financial constraints, 
as seen in the complementary slackness condition (21). The term 𝜔[𝐸̃−
𝐸(𝑋, 𝐼1)] can be positive if firms reduce emissions below the target level 
𝐸̃. In this case, SRIs relax financial constraints. However, if the term is 
negative, the disutility SRIs derive from lending to polluters tightens 
financial constraints. This contrasts with the effect of the emissions tax 
on the financial constraint, which is (partially) offset by the pledgeable 
tax rebate and thus equal to 𝜓𝑇 − 𝜏𝐸(𝑋, 𝐼1). 

Corollary 1.  Suppose investors derive utility 𝜔 from emissions reductions 
relative to a benchmark 𝐸̃ by borrowers they provide financing to. Then, 
abatement and liquidations with 𝜏 = 0 are equivalent to those in the baseline 
model without socially responsible investors but with an emissions tax 𝜏 = 𝜔
and tax rebate pledgeability 𝜓 = 𝐸̃∕𝐸(𝑋∗, 𝐼∗1 ).

This implies that taxes and SRI premiums are imperfect substitutes 
in incentivizing borrowers to abate. While the direct incentive effect 
of 𝜏 and 𝜔 on borrowers’ abatement choice is the same, SRIs’ overall 
impact on financial constraints depends on their benchmark 𝐸̃, while 
the effect of the tax depends on the size of pledgeable tax rebates 𝜓 .

An implication is that, if 𝐸̃ is sufficiently low, the presence of 
SRIs may worsen the trade-offs faced by a regulator setting emissions 
taxes, due to the tightening of borrowers’ financial constraints. This 
outcome occurs if SRIs charge higher financing costs to brown firms 
(for instance, when 𝐸̃ = 0), consistent with popular real-world ESG 
investing strategies that focus on divesting from brown firms. This 
result shows that divestment strategies may backfire if they increase 
brown firms’ cost of capital, consistent with evidence in Hartzmark and 
Shue (2023)

SRIs can be more beneficial if instead investor preferences lead 
to favorable financing terms and looser financial constraints, i.e. if 
𝐸̃ is high. This outcome occurs if investors have a more impact-
oriented objective and derive positive utility from downward deviations 
relative to a benchmark level, or, more broadly, if SRIs derive utility 
from reforming firms (as in, e.g. Allen et al., 2023; Green and Roth, 
2025; Gupta et al., 2025). While analyzing different SRI preferences in 
greater detail is beyond the scope of this paper (for a comprehensive 
analysis of different types of investors’ pro-social preferences, see Dangl 
et al., 2024), our result highlights that understanding the nature of 
SRI preferences and strategies is critical for assessing their real-world 
impact and the nature of their interactions with environmental policies.

5.2.2. Hedging and climate-linked bonds
In the baseline model, there is no risk. Yet, in reality there is 

substantial uncertainty about the future impacts of climate change, 
as evident in the wide range of estimates of the social cost of car-
bon (Golosov et al., 2014; Nordhaus, 2019). In this extension we 

introduce climate risk by assuming that at 𝑡 = 1 all agents learn whether 
the economy is in a good state (𝑠 = 𝐺) or in a bad state (𝑠 = 𝐵). In the 
bad state 𝛾𝑠 takes a high value 𝛾𝐵 > 𝛾𝐺. The probability of the bad state 
is given by 𝑞𝐵 and that of the good state is equal to 𝑞𝐺 = 1 − 𝑞𝐵 .

In the Internet Appendix (Section IA.5), we characterize the prob-
lem of borrowers and show how optimal emissions pricing is now 
state-contingent and may be highly constrained in the bad state of 
the world. This is because borrowers’ choice of leverage now depends 
on the expected cost of binding financial constraints, which implies 
that from the ex-post perspective leverage is excessive in the bad 
state, which can result in a high shadow cost of a binding financial 
constraints, 𝜆𝐵 > 𝜆𝐺.

We then consider fairly-priced hedging contracts that pay ℎ𝐵 in the 
bad state and ℎ𝐺 in the good state. Such contracts can be implemented 
through carbon price derivatives, or through state-contingent financing 
such as ‘‘climate linkers’’ that write off the principal by ℎ𝐵 when carbon 
taxes (or the social cost of emissions) are high, in return for an interest 
payment ℎ𝐺 when taxes are low. Fair pricing requires that 

(1 − 𝑞𝐵)ℎ𝐺 + 𝑞𝐵ℎ𝐵 = 0. (22)

The borrower’s problem now includes additional choices ℎ𝐺 and ℎ𝐵 . In 
the Internet Appendix we show that borrowers optimally shift resources 
from the good to the bad state, such that 𝜆𝐺 = 𝜆𝐵 . If this allows 
borrowers to ensure that financial constraints are slack in both states 
(𝜆𝐺 = 𝜆𝐵 = 0), then a Pigouvian emissions tax 𝜏𝑠 = 𝛾𝑠,∀𝑠 ∈ {𝐵,𝐺}
can implement the first-best allocation (see Proposition  2). This implies 
that, by allowing firms to hedge climate-related transition risk, the 
financial sector can enable efficient emissions taxation in equilibrium.

This highlights that hedging of climate-related risks may be an im-
portant role the financial sector can play in supporting the transition to 
a low-carbon economy, distinct from socially responsible investing. We 
also contribute to the nascent debate on climate-linked securities. Our 
analysis shows that supporting such markets can allow more efficient 
environmental policy in equilibrium, thus pointing to benefits that go 
beyond the direct risk-sharing and informational gains discussed so 
far (see Chikhani and Renne, 2022).

Some degree of hedging climate risks could also be achieved using 
external equity or long-term debt. However, we show in the Internet 
Appendix (Sections IA.5.3 and IA.5.4) that the risk-sharing benefits are 
more limited compared to carbon price hedging.

5.3. Multiple jurisdictions

In the baseline model, environmental policy is set by a global reg-
ulator in a single jurisdiction or, equivalently, corresponds to a setting 
with multiple jurisdictions that have one perfectly coordinated policy. 
However, in reality international coordination is an important friction 
undermining the full internalization of global emissions externalities. 
In this extension, we assume that there are two jurisdictions, 𝑗 and −𝑗. 
A fraction 𝛼 of borrowers and investors are based in jurisdiction 𝑗, and 
the remaining agents are in −𝑗. Total emissions in the respective juris-
dictions are denoted by 𝐸𝑗 = 𝛼𝐸(𝑋𝑗 , 𝐼1,𝑗 ) and 𝐸−𝑗 = (1−𝛼)𝐸(𝑋−𝑗 , 𝐼1,−𝑗 ), 
respectively, and aggregate global emissions are 𝐸𝑎 = 𝐸𝑗 + 𝐸−𝑗 . In 
each jurisdiction, a regulator sets emissions taxes so as to maximize the 
welfare of all agents in the jurisdiction, ignoring externalities on agents 
in the other jurisdiction. For tractability, we assume in this extension 
that −𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎 = 𝛾𝑝 is a constant, and we focus on the case in 
which borrowers in −𝑗 are not financially constrained (𝜆−𝑗 = 0; the case 
𝜆−𝑗 > 0 is discussed in the Internet Appendix).

In the Internet Appendix (Section IA.7), we formally set up and solve 
the agents’ and regulators’ problems, and derive the following result 
comparing the multi-jurisdiction emissions tax to the emissions tax set 
in the baseline model with a single jurisdiction.
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Proposition 7.  If 𝛾𝑝 = 0 or 𝜆𝑗 = 0, then the optimal emissions tax in 
jurisdiction 𝑗 is independent of 𝐸−𝑗 and equivalent to the one in the baseline 
model with social costs of emissions 𝛾̃𝑢 = 𝛼𝛾𝑢 instead of 𝛾𝑢 and 𝛾̃𝑝 = 𝛼𝛾𝑝

instead of 𝛾𝑝.
If 𝛾𝑝 > 0 and 𝜆𝑗 > 0, then the same mapping holds if additionally 

borrowers’ pledgeable income in the baseline model is reduced by 𝜃𝛾𝑝𝐸−𝑗 .

Proof.  See Internet Appendix Section IA.7. □

As regulators do not internalize effects on agents in other jurisdic-
tions, they set laxer regulation than under full coordination. With slack 
financial constraints, this results in an emissions tax 𝜏∗𝑗 = 2𝛾̃𝑢+ 𝛾̃𝑝 = 𝛼𝛾, 
which is independent of regulation in jurisdiction −𝑗 and scales with 
the size of jurisdiction 𝑗 because regulators in a larger jurisdiction 
internalize more of the externality. This effect resembles the standard 
coordination problem in global externalities, highlighting the benefits 
of international coordination (for example, see Nordhaus, 2019).

The second part of the proposition highlights an additional global 
spillover due to the climate-induced collateral externality present in 
our model. With binding financial constraints and 𝛾𝑝 > 0, emissions 
in one jurisdiction have a negative impact on the pledgeable income of 
borrowers in other jurisdictions due to the physical climate impacts on 
pledgeable resources. As we show in the Internet Appendix, this implies 
that higher emissions in jurisdiction −𝑗 lead to more liquidations in ju-
risdiction 𝑗. Thus, the collateral externality leads to a financial spillover 
between jurisdictions, captured by the additional loss in pledgeable 
income of 𝜃𝛾𝑝𝐸−𝑗 . This loss is driven by emissions in jurisdiction −𝑗, 
which are outside the direct control of the regulator in jurisdiction 
𝑗. Consequently, from the perspective of the regulator in 𝑗, this loss 
constitutes an exogenous tightening in financial constraints, leading to 
more liquidations and worsening the trade-offs faced by a regulator 
setting emissions taxes. Thus, climate-induced collateral externalities 
give rise to financial spillovers across jurisdictions, exacerbating the 
costs of insufficient global policy coordination on climate change.

An implication of Proposition  7 is that, keeping the size of jurisdic-
tion 𝑗 fixed at 𝛼, financial spillovers from multiple small jurisdictions 
may be larger than from one single other jurisdiction. To see this, 
suppose that all 1 − 𝛼 agents outside of jurisdiction 𝑗 are evenly 
distributed across 𝐽 ≥ 1 other jurisdictions. As the number of juris-
dictions 𝐽 increases, the internalized social cost of emissions (1−𝛼)𝛾∕𝐽
targeted by each regulator outside of 𝑗 declines. Consequently, total 
emissions by all jurisdictions other than 𝑗 may increase in the number 
of jurisdictions, worsening the trade-offs faced by the regulator in 𝑗. 
Hence, in the presence of climate-induced collateral externalities, the 
optimal policy of the regulator in a large economy depends on whether 
the remaining jurisdictions are fragmented or coordinate.

6. Conclusion

This paper provides an analytical framework to shed light on how 
emissions pricing interacts with financial constraints. We uncover a 
climate-related collateral externality that affects how emissions taxes 
interact with financial constraints. Higher emissions taxes tighten finan-
cial constraints if borrowers have carbon-emitting assets, but emissions 
taxes can ease financial constraints if they have a positive effect on 
the collateral value of assets exposed to physical climate impacts. 
This highlights that the interaction between financial constraints and 
emissions pricing is nuanced, and that optimal emissions pricing needs 
to account for climate-induced collateral externalities.

The fact that financial constraints distort Pigouvian emissions pric-
ing does not necessarily imply that regulators can do better by using 
other policy tools. Emissions pricing alone can result in a constrained-
efficient allocation if implemented through emissions taxes when tax 
rebates are fully pledgeable, or if implemented through a cap-and-trade 
system with ex-ante freely allocated pollution permits. Only if such 
policies are not available, it may be beneficial to consider climate-
related goals in other policy tools, for example, by complementing 

carbon taxes with leverage regulation. Fostering financial markets that 
allow firms to hedge regulatory risk, such as carbon-price derivatives 
or climate-linked bonds, can improve equilibrium climate policies by 
enabling firms to shoulder higher carbon prices.
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Appendix A. First best and competitive equilibrium

To simplify the notation in parts of the Appendix we use the 
following definition 

𝑁(𝑋, 𝐼1, 𝜏) = −𝜏𝐸(𝑋, 𝐼1) − 𝐶(𝑋, 𝐼1). (A.1)

Moreover, to make the expressions more legible we sometimes use 
the following shorthand notation: 𝐹 (𝑋, 𝐼1) = 𝐹 , 𝐹 ′

𝑋 = 𝜕𝐹 (𝑋, 𝐼1)∕𝜕𝑋, 
𝐹 ′
𝐼 = 𝜕𝐹 (𝑋, 𝐼1)∕𝜕𝐼1 for 𝐹 = 𝐸 and 𝐹 = 𝐶, 𝑁 ′′

𝑋𝐼 = 𝜕2𝑁(𝑋, 𝐼1, 𝜏)∕(𝜕𝑋𝜕𝐼1), 
𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐼1 = 𝜌.

A.1. First best (Proof of Proposition  1)

This appendix proves Proposition  1. To distinguish investors and 
borrowers, we use super-scripts 𝑖 and 𝑏, respectively. The first-best 
allocation maximizes social welfare defined as 𝑊 = 𝑈 𝑖 + 𝑈 𝑏, subject 
to aggregate resource constraints at 𝑡 = 1, 2

𝑐𝑏1 + 𝑐
𝑖
1 + 𝐶(𝑋, 𝐼1) = 𝐴𝑖 + 𝜇(𝐼0 − 𝐼1)

𝑐𝑏2 + 𝑐
𝑖
2 = 𝑅(𝐼1, 𝐸𝑎)

Using the resource constraints to eliminate 𝑐𝑖1 + 𝑐𝑏1 and 𝑐𝑖2 + 𝑐𝑏2 , the 
problem can be written as the following Lagrangian:

max
𝐼1 ,𝑋

 = 𝐴𝑖 + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1) + 𝑅(𝐼1, 𝐸𝑎) − 𝛾𝑢𝐸(𝑋, 𝐼1)

+ 𝜅𝐼𝐼1 + 𝜅𝐼 (𝐼0 − 𝐼1),

with 𝜅𝐼  and 𝜅𝐼  the Lagrange multipliers on the constraint that 𝐼1 > 0
and 𝐼1 ≤ 𝐼0, respectively. The FOC’s with respect to 𝑋, and 𝐼1 are, 
respectively:

𝛾
𝜕𝐸(𝑋, 𝐼1)
𝜕𝑋1

+
𝜕𝐶(𝑋, 𝐼1)
𝜕𝑋1

= 0,

𝑟(𝛾,𝑋, 𝐼1) + 𝜅𝐼 − 𝜅𝐼 = 0.

The first condition is the one stated in Proposition  1. The second 
condition can be used to show that in the first best it must be that 
𝜅𝐼 > 0, which implies that 𝐼1 = 𝐼0 as stated in Proposition  1. To see 
this, recall that by Assumption  2.1 liquidations are privately inefficient 
for any 𝜏 ≤ 𝜏, with 𝜏 > 𝛾. This implies that

𝑟(𝛾,𝑋, 𝐼1) =
𝜕𝑅(𝐼1, 𝐸𝑎)

𝜕𝐼1
− 𝜇 −

𝜕𝐶(𝑋, 𝐼1)
𝜕𝐼1

− 𝛾
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1
> 0

Hence, the planner’s first order condition w.r.t. 𝐼1 can only be satisfied 
if 𝜅̄𝐼 > 0, which implies that 𝐼1 = 𝐼0 in the first-best allocation.
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A.2. Borrower’s Lagrangian

This appendix formally states the Lagrangian for the borrower’s 
problem in Section 3.1, from which the first order conditions in Sec-
tion 3.2 are derived.

The financial constraint (5) implies 𝑐2 > 0, so that the non-negativity 
constraint on 𝑐2 never binds. Thus, after eliminating 𝑐1, and 𝑐2 using 
Eqs. (3) and (4), the problem of borrowers can be stated as: 

max
𝑋,𝐼1 ,𝑑1

 =𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1) + 𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝑇

+ 𝜆
[

𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜓𝑇 − 𝑑1
]

+ 𝜅𝐼𝐼1 + 𝜅𝐼 [𝐼0 − 𝐼1]

+ 𝜅𝑐1
[

𝑑1 + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)
]

.

(A.2)

The first order condition w.r.t. 𝑑1 implies that 𝜆 = 𝜅𝑐1 . The remaining 
FOC’s of the problem are given in Section 3.2.

A.3. Proof of Lemma  1

With a slack financial constraint, Eq. (9) evaluated at 𝜆 = 0 is 
𝑟(𝜏,𝑋, 𝐼1)−𝜅𝐼 +𝜅𝐼 = 0. By Assumption  2.1 we have that 𝑟(𝜏,𝑋, 𝐼1) > 0, 
which implies that the solution requires 𝜅𝐼 > 0 (i.e., 𝐼0 = 𝐼∗1 ).

With a binding financial constraint, the complementary slackness 
condition (10) can be reformulated as
𝜆𝑆(𝜏,𝑋, 𝐼1) = 0,

where 𝑆(𝜏,𝑋, 𝐼1) ≡ 𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜓𝑇 + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)
collects the terms in square brackets in Eq. (10). By Assumption  2.2, 
liquidating investments eases financial constraints, so 𝜕𝑆∕𝜕𝐼1 < 0. If 
𝑆(𝜏,𝑋, 𝐼1 = 𝐼0) < 0, financial constraints bind, 𝜆 > 0. In this case, the 
complementary slackness condition requires that borrowers choose 𝐼∗1
s.t. 𝑆(𝜏,𝑋, 𝐼∗1 ) = 0. Thus, if 𝜆 > 0 it must be that 𝐼∗1 < 𝐼0 and 𝜅𝐼 = 0.

Appendix B. Optimal policy

B.1. Effect of emissions tax on abatement

Totally differentiating Eq. (8) with respect to 𝜏 allows us to find 
𝜕𝑋∗∕𝜕𝜏: 

𝜕𝑋∗

𝜕𝜏
=

𝜕𝐸(𝑋,𝐼1)
𝜕𝑋 − 𝜕2𝑁(𝑋,𝐼1 ,𝜏)

𝜕𝑋𝜕𝐼1

𝜕𝐼∗1
𝜕𝜏

− 𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

(B.1)

where we use the definition of 𝑁(𝑋, 𝐼1, 𝜏) from Eq. (A.1) and that by 
Assumption  1.3 𝜕2𝐸(𝑋, 𝐼1)∕𝜕𝑋2 = 0.

If the financial constraint is slack, 𝜆∗(𝜏) = 0, then 𝐼∗1 = 𝐼0, so 
that 𝜕𝐼∗1 ∕𝜕𝜏 = 0. Together with the fact that 𝜕2𝐶(𝑋, 𝐼1)∕𝜕𝑋2 > 0 by 
Assumption  1.3, this implies 𝜕𝑋∗∕𝜕𝜏 > 0 in this case (without further 
parameter conditions).

If the financial constraint binds, 𝜆∗(𝜏) > 0, the sign of 𝜕𝑋∗∕𝜕𝜏 is less 
straightforward. In this case, 𝜕𝐼∗1 ∕𝜕𝜏 follows from totally differentiating 
Eq. (10) with respect to 𝜏:

𝜕𝐼∗1
𝜕𝜏

=
(1 − 𝜓)𝐸(𝑋∗, 𝐼∗1 ) − (𝜓𝜏 − 𝜃𝛾𝑝) 𝜕𝐸(𝑋,𝐼1)𝜕𝑋

𝜕𝑋∗

𝜕𝜏
𝑟(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )

(B.2)

where 𝛾𝑝 = −𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎.
In the paper, we focus on the case in which emissions taxes in-

centivize abatement, i.e. 𝜕𝑋∗∕𝜕𝜏 > 0. This is the case if the optimal 
abatement is not too sensitive to the level of investment, i.e. the second 
order effects of increasing 𝜏 on abatement operating through the effect 
of 𝜏 on the optimal investment scale are not too high relative to the 
direct incentive effect. Below we first derive the restrictions on the 
functional forms that ensure that this is the case and then characterize 
equilibrium outcomes if these conditions are not satisfied and instead 
𝜕𝑋∗∕𝜕𝜏 < 0.

Conditions for 𝜕𝑋∗∕𝜕𝜏 > 0. We combine (B.1) and (B.2) to isolate the 
terms 𝜕𝐼∗1 ∕𝜕𝜏 and 𝜕𝑋∗∕𝜕𝜏:

𝜕𝐼∗1
𝜕𝜏

=
(1 − 𝜓)𝐸𝐶 ′′

𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)(𝐸′
𝑋 )

2

𝑟̃(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼
, (B.3)

𝜕𝑋∗

𝜕𝜏
=

(1 − 𝜓)𝐸𝑁 ′′
𝑋𝐼 − 𝑟(𝜏(1 − 𝜓) + 𝜃𝛾

𝑝, 𝑋∗, 𝐼∗1 )𝐸
′
𝑋

𝑟̃(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼
, (B.4)

where we simplified the expressions using the shorthand notation for 
𝐸′
𝑋 , 𝐶 ′

𝑋 , 𝑁 ′′
𝑋𝐼 , etc., introduced at the beginning of the Appendix.

To focus on model parameters such that 𝜕𝑋∗∕𝜕𝜏 > 0, the numerator 
and denominator of (B.4) should have the same sign. While it is not 
possible to provide explicit parameter conditions under which this is 
always the case, it can easily be seen that the denominator of (B.4) 
is negative if 𝜓 = 0 and 𝛾𝑝 = 0, because 𝐶 ′′

𝑋2 > 0 and 𝑟(𝜏,𝑋∗, 𝐼∗1 ) <
0 by Assumptions  1.3 and 2.2 respectively. Therefore, we focus on 
parameter ranges such that both the denominator and the numerator 
of (B.4) are negative. This implicitly defines the parameters required 
for 𝜕𝑋∗∕𝜕𝜏 > 0.

To further characterize the conditions, note the denominator is 
negative if and only if 𝑟(𝜏(1−𝜓)+𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶

′′
𝑋2 < −(𝜓𝜏−𝜃𝛾𝑝)𝑁 ′′

𝑋𝐼𝐸
′
𝑋 . 

For the numerator, we can use Definition  1 to expand 𝑟(𝜏(1 − 𝜓) +
𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 ) = 𝑟(𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 ) − (1 − 𝜓)𝜏𝐸′

𝐼 . Using this in the numerator 
of (B.4), we can see that it is negative whenever 𝑟(𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐸

′
𝑋 >

(1−𝜓)(𝜏𝐸′
𝐼𝐸

′
𝑋+𝐸𝑁

′′
𝑋𝐼 ). This condition is always satisfied if 𝜓 = 1, using 

Assumption  2.2, and since the RHS of this inequality is monotone in 𝜓 , 
the numerator of (B.4) is negative for any 𝜓 if the inequality also holds 
for 𝜓 = 0, i.e. if 𝑟(𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐸

′
𝑋 > 𝜏𝐸′

𝐼𝐸
′
𝑋 + 𝐸𝑁 ′′

𝑋𝐼 . Thus, to ensure 
that 𝜕𝑋∗∕𝜕𝜏 > 0 we make the following assumption. 

Assumption 3.  Model parameters are such that ∀𝑋∗(𝜏), 𝐼∗1 (𝜏), 𝜏 < 𝜏:

𝑟̃(𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
> 𝜏

𝜕𝐸(𝑋, 𝐼1)
𝜕𝑋

𝜕𝐸(𝑋, 𝐼1)
𝜕𝐼1

+ 𝐸(𝑋∗, 𝐼∗1 )
𝜕2𝑁(𝑋, 𝐼1, 𝜏)

𝜕𝑋𝜕𝐼1

𝑟̃(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋, 𝐼1)
𝜕2𝐶(𝑋, 𝐼1)

𝜕𝑋2
< −(𝜓𝜏 − 𝜃𝛾𝑝)

𝜕2𝑁(𝑋, 𝐼1, 𝜏)
𝜕𝑋𝜕𝐼1

𝜕𝐸(𝑋, 𝐼1)
𝜕𝑋

Equilibrium if 𝜕𝑋∗∕𝜕𝜏 < 0. In the main text we focus on the interesting 
case 𝜕𝑋∗∕𝜕𝜏 > 0, which holds under Assumption  3. For completeness, 
here we discuss the equilibrium outcomes if instead 𝜕𝑋∗∕𝜕𝜏 < 0. Notice 
that when the tax decreases abatement, higher 𝜏 is associated with 
losses through the collateral externality channel and gains due to higher 
tax rebates. Below we characterize how these interactions affect the 
sensitivity of investment scale to the tax when 𝜕𝑋∗∕𝜕𝜏 < 0.

• If (1 −𝜓)𝐸(𝑋∗, 𝐼∗1 ) + 𝜃𝛾
𝑝𝜕𝐸𝑎∕𝜕𝑋 × 𝜕𝑋∗∕𝜕𝜏 < 𝜓𝜏𝜕𝐸𝑎∕𝜕𝑋 × 𝜕𝑋∗∕𝜕𝜏

then 𝜕𝐼∗1 ∕𝜕𝜏 > 0.
• If (1 − 𝜓)𝐸(𝑋∗, 𝐼∗1 ) + 𝜃𝛾

𝑝𝜕𝐸𝑎∕𝜕𝑋 × 𝜕𝑋∗∕𝜕𝜏 > 𝜓𝜏𝜕𝐸𝑎∕𝜕𝑋 × 𝜕𝑋∗𝜕𝜏
then 𝜕𝐼∗1 ∕𝜕𝜏 < 0.

Using this in the regulator’s FOC (11) implies that:

• If 𝜕𝐼∗1 ∕𝜕𝜏 < 0 then there are two solutions to (11): 𝜏 = 0 and 
potentially 𝜏 > 𝛾. Note that if the left-hand-side of (11) crosses 
0 at some 𝜏 > 𝛾 it is crossing it from below, so the solution 
minimizes welfare. Given the constraint that 𝜏 ≥ 0 welfare is 
maximized at 𝜏 = 0

• If 𝜕𝐼∗1 ∕𝜕𝜏 > 0 then the equilibrium must feature: 𝜏 < 𝛾. In this 
case the optimal emissions tax may be above 0 as a higher tax 
relaxes financial constraints.

B.2. Proof of Lemma  2

The derivative 𝜕𝐼∗1 ∕𝜕𝜏 is defined in Eq. (B.3). The denominator of 
(B.3) is negative under Assumption  3 stated in Appendix  B.1. Lemma 
2 follows from observing that the numerator of Eq. (B.3) is negative if 
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−𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎 = 𝛾𝑝 > 𝛾̂𝑝(𝜏) and positive if −𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐸𝑎 = 𝛾𝑝 <
𝛾̂𝑝(𝜏), where 

𝛾̂𝑝(𝜏) ≡ 𝜓
𝜃
𝜏 +

(1 − 𝜓)𝐸(𝑋∗, 𝐼∗1 )
𝜕2𝐶(𝑋,𝐼1)

𝜕𝑋2

𝜃
(

𝜕𝐸(𝑋,𝐼1)
𝜕𝑋

)2
. (B.5)

B.3. Proof of Proposition  3

The regulator’s problem is to set the emissions tax 𝜏 so as to 
maximize welfare at 𝑡 = 1 𝑊1 = 𝑐𝑖1 + 𝑐

𝑖
2 + 𝑐

𝑏
1 + 𝑐

𝑏
2 − 2𝛾𝑢𝐸𝑎 (where we use 

super-scripts 𝑖 and 𝑏 to distinguish between investors and borrowers), 
subject to the non-negativity constraint on 𝜏. We eliminate 𝑐𝑏1 , and 𝑐𝑏2
using Eqs. (3) and (4), and substitute 𝑐𝑖1 = 𝐴𝑖 −𝑑1, and 𝑐𝑖2 = 𝑑1, to write 
the regulator’s problem as the following Lagrangian: 
max
𝜏

𝐴𝑖 + 𝑅(𝐼∗1 , 𝐸
𝑎) + 𝜇(𝐼0 − 𝐼∗1 ) − 2𝛾𝑢𝐸𝑎 − 𝐶(𝑋∗, 𝐼∗1 ) + 𝜅𝜏𝜏. (B.6)

The first order condition with respect to 𝜏 is given by: 
(

𝛾
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

)

𝜕𝑋∗

𝜕𝜏
=

(

𝜕𝑅(𝐼1, 𝐸𝑎)
𝜕𝐼1

− 𝜇 − 𝛾
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1
−
𝜕𝐶(𝑋, 𝐼1)

𝜕𝐼1

) 𝜕𝐼∗1
𝜕𝜏

+ 𝜅𝜏 .
(B.7)

Using (8) and the definition of 𝑟(𝜏,𝑋, 𝐼1) the FOC above simplifies 
to (11). In Eq. (11), the term 𝜕𝐸(𝑋, 𝐼1)∕𝜕𝑋 × 𝜕𝑋∗∕𝜕𝜏 < 0 under 
Assumption  1.1 and given we focus on 𝜕𝑋∗∕𝜕𝜏 > 0 (which holds 
under Assumption  3 stated in Appendix  B.1), while 𝑟(𝛾,𝑋, 𝐼1) > 0 by 
Assumption  2. Consequently, for Eq. (11) to hold the optimal tax must 
be:

• lower than the direct social cost of carbon 𝜏 < 𝛾 if 𝜕𝐼∗1 ∕𝜕𝜏 < 0
• equal to the direct social cost of carbon 𝜏 = 𝛾 if 𝜕𝐼∗1 ∕𝜕𝜏 = 0
• higher than the direct social cost of carbon 𝜏 > 𝛾 if 𝜕𝐼∗1 ∕𝜕𝜏 > 0

The result in Proposition  3 in terms of the threshold 𝛾̂𝑝(𝜏) follows from 
using Lemma  2 to determine the sign of 𝜕𝐼∗1 ∕𝜕𝜏.

Appendix C. Constrained efficiency

C.1. Proof of 𝜏∗ vs. 𝜏𝐺𝑃  result in Proposition  4

Using Eq. (12) in Eq. (11) and the definition of 𝜆∗ in the interior 
solution for 𝐼1, the regulator’s FOC can be rewritten as: 
𝑟(𝛾,𝑋∗, 𝐼∗1 )(1 − 𝜓)𝐸(𝑋

∗, 𝐼∗1 ) + 𝜅𝜏𝑟(𝜏(1 − 𝜓) + 𝜃𝛾
𝑝, 𝑋∗, 𝐼∗1 ) =

[

𝛾 − 𝜏 + 𝜆∗(𝜃𝛾𝑝 − 𝜓𝜏)
] 𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝜏
𝑟(𝜏,𝑋∗, 𝐼∗1 )

(C.1)

The RHS of Eq. (C.1) is zero if 𝜏 = 𝜏𝐺𝑃 ≡ (𝛾+𝜆∗𝜃𝛾𝑝)∕(1+𝜓𝜆∗). The RHS 
is positive whenever 𝜏 < 𝜏𝐺𝑃 , since 𝜕𝐸(𝑋, 𝐼1)∕𝜕𝑋 < 0, 𝑟̃(𝜏,𝑋∗, 𝐼∗𝐼 ) < 0
and 𝜕𝑋∗∕𝜕𝜏 > 0 under Assumptions  1.1, 2.2 and 3 respectively.

In the interior solution, 𝜅𝜏 = 0 and 𝜏 > 0. If 𝜓 = 1, then the LHS 
of (C.1) is equal to zero, so the optimal emissions tax must be 𝜏 = 𝜏𝐺𝑃 . 
If 𝜓 < 1, then the LHS is positive, so the optimal emissions tax must 
satisfy 𝜏 < 𝜏𝐺𝑃 .

In the corner solution, 𝜅𝜏 > 0 and 𝜏 = 0. We first show that 𝜏 = 0
while 𝛾 > 0 can only be an equilibrium if 𝜓 < 1. We do it in two 
steps: (i) show that if 𝜓 = 1 and 𝛾 > 0, then 𝜏∗ = 0 cannot be an 
equilibrium and (ii) show that if 𝜓 < 1 and 𝛾 > 0, then 𝜏∗ = 0 is a 
feasible equilibrium. Then we show that when 𝜓 < 1 and 𝛾 > 0, the 
equilibrium tax satisfies 𝜏∗ < 𝜏𝐺𝑃  as stated in Proposition  4.
(i) Notice that when 𝜏 = 0 and 𝛾 > 0, then the RHS of Eq. (C.1) is 
strictly positive. If 𝜓 = 1, the LHS of Eq. (C.1) is weakly negative, since 
𝑟(𝜏(1 −𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗𝐼 ) < 0 and 𝜅𝜏 ≥ 0. Thus, if 𝜓 = 1 and 𝛾 > 0, 𝜏∗ = 0
cannot be an equilibrium.

(ii) If 𝜓 < 1, the LHS of Eq. (C.1) can take any sign, depending on 
the relative size of 𝜅𝜏 . Since the RHS of Eq. (C.1) is positive whenever 
𝜏∗ = 0 < 𝛾, such equilibrium is feasible.
(iii) Since 𝜏𝐺𝑃 (𝛾) > 0 ∀ 𝛾 > 0, it follows that 𝜏∗ = 0 < 𝛾 when 𝜓 < 1 is 
consistent with 𝜏∗ < 𝜏𝐺𝑃 .

C.2. Proof of constrained efficiency result in Proposition  4

We define the constrained-efficient allocation in which a social 
planner can choose 𝑋 and 𝐼1 directly without any policy instruments, 
but subject to the same constraints as private agents. Using 𝑖 and 𝑏
super-scripts to denote investors and borrowers, we eliminate 𝑐𝑏1 , and 
𝑐𝑏2 using Eqs. (3) and (4), and use 𝑐𝑖1 = 𝐴𝑖 −𝑑1, and 𝑐𝑖2 = 𝑑1, to write the 
planner’s problem as the following Lagrangian: 
max
𝑋,𝐼1

 = 𝐴𝑖 + 𝑅(𝐼1, 𝐸𝑎) + 𝜇(𝐼0 − 𝐼1) − 2𝛾𝑢𝐸(𝑋, 𝐼1) − 𝐶(𝑋, 𝐼1)

+ 𝜆𝑆𝑃
[

𝜃𝑅(𝐼1, 𝐸𝑎) + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)
]

+ 𝜅𝑆𝑃𝐼 𝐼1 + 𝜅
𝑆𝑃
𝐼 (𝐼0 − 𝐼1).

(C.2)

The constrained-efficient levels of 𝐼𝑆𝑃1 , 𝑋𝑆𝑃 , 𝜆𝑆𝑃  are pinned down by 
the FOCs with respect to 𝑋 and 𝐼1 and the complementary slackness 
condition:

− (𝛾 + 𝜆𝑆𝑃 𝜃𝛾𝑝)
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
− (1 + 𝜆𝑆𝑃 )

𝜕𝐶(𝑋, 𝐼1)
𝜕𝑋

= 0, (C.3)

𝑟(𝛾,𝑋, 𝐼1) + 𝜆𝑆𝑃 𝑟(𝛾𝑝, 𝑋, 𝐼1) − 𝜅
𝑆𝑃
𝐼 + 𝜅𝑆𝑃𝐼 = 0, (C.4)

𝜆𝑆𝑃 [𝜃𝑅(𝐼1, 𝐸𝑎) + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)] = 0. (C.5)

To check whether the equilibrium is constrained efficient, we compare 
the planner’s FOCs to the borrowers FOCs (8) and (9) and the com-
plementary slackness condition (10). The equilibrium is constrained 
efficient if and only if 𝑋∗(𝜏∗) = 𝑋𝑆𝑃 , 𝐼∗1 (𝜏∗) = 𝐼𝑆𝑃1  and 𝜆∗(𝜏∗) = 𝜆𝑆𝑃 . 
This is the case if (8) is equivalent to (C.3), (9) is equivalent to (C.4), 
and (10) is equivalent to (C.5). To check whether this is the case, we 
postulate that 𝑋∗(𝜏∗) = 𝑋𝑆𝑃 , 𝐼∗1 (𝜏∗) = 𝐼𝑆𝑃1  and 𝜆∗(𝜏∗) = 𝜆𝑆𝑃 , and verify 
whether each of the borrower-planner FOC pairs are equivalent given 
𝜏∗ defined in Eq. (11).

Case 𝜓 < 1.

• If (C.5) is satisfied at 𝑋𝑆𝑃 = 𝑋∗, 𝐼𝑆𝑃1 = 𝐼∗1 , then (10) is satisfied if 
and only if 𝜏∗𝐸(𝑋∗, 𝐼∗1 ) − 𝜓𝑇

∗ = 0. This is the case only if 𝜏∗ = 0
and 𝑇 ∗ = 0.

• If 𝐼𝑆𝑃1 = 𝐼∗1 , then (C.3) is equivalent to (8) if and only if 𝜏∗ =
(𝛾 + 𝜆𝑆𝑃 𝜃𝛾𝑝)∕(1 + 𝜆𝑆𝑃 ) ≡ 𝜏𝑆𝑃 .

Thus, for 𝑋𝑆𝑃 = 𝑋∗, 𝐼𝑆𝑃1 = 𝐼∗1  and (C.5) to be equivalent to (10), 
it must be that 𝜏𝑆𝑃 = 0. However, this is the case only if 𝛾 = 0, 
contradicting that 𝛾 > 0. Hence, if 𝜓 < 1 the competitive equilibrium 
is not constrained efficient.

Case 𝜓 = 1. We proceed in four steps:

1. (10) & (C.5): When 𝜓 = 1, then −𝜏∗𝐸(𝑋∗, 𝐼∗1 ) + 𝜓𝑇 ∗ = 0. This 
implies (10) is equivalent to (C.5).

2. (8) & (C.3): The two conditions are equivalent if 𝜏∗ = (𝛾 +
𝜆𝑆𝑃 𝜃𝛾𝑝)∕(1+𝜆𝑆𝑃 ) ≡ 𝜏𝑆𝑃 . We have shown above that the optimal 
emissions tax is given by 𝜏∗ = 𝜏𝐺𝑃 = (𝛾 + 𝜆∗𝜃𝛾𝑝)∕(1 + 𝜆∗) when 
𝜓 = 1. This implies that 𝜏∗ = 𝜏𝑆𝑃  whenever 𝜆∗(𝜏∗) = 𝜆𝑆𝑃 . We 
show that this holds below.

3. (9) & (C.4): the two conditions are equivalent if and only if 
𝜆𝑆𝑃 = 𝜆∗(𝜏∗). Verifying that 𝜆𝑆𝑃 = 𝜆∗(𝜏∗) at 𝜏∗ = 𝜏𝑆𝑃  also 
establishes that (8) is equivalent to (C.3) (see step 2).

To verify that 𝜆∗(𝜏𝑆𝑃 ) = 𝜆𝑆𝑃 , we first find 𝜏𝑆𝑃  and then plug it 
into borrower’s FOC (9) to find 𝜆∗(𝜏𝑆𝑃 ). Eq. (C.4) implies that 𝜆𝑆𝑃 =
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𝑟(𝛾,𝑋𝑆𝑃 , 𝐼𝑆𝑃1 )∕𝑟(𝜃𝛾𝑝, 𝑋𝑆𝑃 , 𝐼𝑆𝑃1 ). Using this in the expression for 𝜏𝑆𝑃 : 

𝜏𝑆𝑃 =
𝛾𝑟(𝜃𝛾𝑝, 𝑋𝑆𝑃 , 𝐼𝑆𝑃1 ) − 𝜃𝛾𝑝𝑟(𝛾,𝑋𝑆𝑃 , 𝐼𝑆𝑃1 )

𝑟̃(𝜃𝛾𝑝, 𝑋𝑆𝑃 , 𝐼𝑆𝑃1 ) − 𝑟(𝛾,𝑋𝑆𝑃 , 𝐼𝑆𝑃1 )

=
𝜌𝜃(𝛾 − 𝛾𝑝) −𝑤(𝛾 − 𝜃𝛾𝑝)
𝜌(𝜃 − 1) − (𝜃𝛾𝑝 − 𝛾)𝐸′

𝐼

(C.6)

where 𝑤 = 𝜕𝐶(𝑋, 𝐼1)∕𝜕𝐼1+𝜇 and we use short-hand notation introduced 
at the beginning of the Appendix: 𝐸′

𝐼 = 𝜕𝐸(𝑋, 𝐼1)∕𝜕𝐼1 and 𝜌 =
𝜕𝑅(𝐼1, 𝐸𝑎)∕𝜕𝐼1.

Using the expression for 𝜏𝑆𝑃  in (18) to find 𝜆∗(𝜏𝑆𝑃 ) :

𝜆∗(𝜏𝑆𝑃 ) = −
𝑟(𝜏𝑆𝑃 , 𝑋∗, 𝐼∗1 )

𝑟(𝜏𝑆𝑃 , 𝑋∗, 𝐼∗1 )
= −

𝜌 −𝑤 − 𝜏𝑆𝑃𝐸′
𝐼

𝜃𝜌 −𝑤 − 𝜏𝑆𝑃𝐸′
𝐼

= −
𝜌2(𝜃 − 1) −𝑤𝜌(𝜃 − 1) − 𝜌𝛾(𝜃 − 1)𝐸′

𝐼

𝜃𝜌2(𝜃 − 1) −𝑤𝜌(𝜃 − 1) − 𝜌𝜃𝛾𝑝(𝜃 − 1)𝐸′
𝐼

= −
𝜌 −𝑤 − 𝛾𝐸′

𝐼

𝜃𝜌 −𝑤 − 𝜃𝛾𝑝𝐸′
𝐼
= −

𝑟(𝛾,𝑋𝑆𝑃 , 𝐼𝑆𝑃1 )

𝑟(𝜃𝛾𝑝, 𝑋𝑆𝑃 , 𝐼𝑆𝑃1 )
= 𝜆𝑆𝑃

where we use that 𝑋∗ = 𝑋𝑆𝑃 , 𝐼∗1 = 𝐼𝑆𝑃1  and the last step follows from 
the definition of 𝜆𝑆𝑃  for the interior solution of 𝐼1 in Eq. (C.4). This 
completes the proof that 𝜆∗(𝜏𝑆𝑃 ) = 𝜆𝑆𝑃 .

Appendix D. Cap-and-trade

This appendix derives the borrower’s problem under the cap-and-
trade system laid out in Section 4.3, and derives the optimal permit 
price. We assume here that the proceeds from the sale of permits 
are distributed to investors (Internet Appendix IA.2.3 shows that the 
insights on implementing the constrained efficient allocation are robust 
if sale proceeds are distributed to borrowers instead). The budget 
constraints of the borrower under the pollution trading scheme are: 

𝑐𝑏1 = 𝜇(𝐼0 − 𝐼1) + 𝑑1 − 𝐶(𝑋, 𝐼1) ≥ 0, (D.1)

𝑐𝑏2 = 𝑅(𝐼1, 𝐸𝑎) − (1 − 𝜙)𝑄𝑝 + 𝑝(𝑄 − 𝐸(𝑋, 𝐼1)) − 𝑑1 ≥ 0, (D.2)

𝑑1 ≤ 𝜃𝑅(𝐼1, 𝐸𝑎). (D.3)

The borrower’s problem is analogous to the one with emissions taxes, 
but with the pollution permit price 𝑝 taking the place of the tax 𝜏, as 
shown in the budget constraints above. The FOCs and the complemen-
tary slackness condition are:

(1 + 𝜆)
(

𝑝
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

)

= 0, (D.4)

𝜌(1 + 𝜆𝜃) − (1 + 𝜆)
[

𝜇 +
𝜕𝐶(𝑋, 𝐼1)

𝜕𝐼1
+ 𝑝

𝜕𝐸(𝑋, 𝐼1)
𝜕𝐼1

]

− 𝜅𝐼 + 𝜅𝐼 = 0, (D.5)

𝜆[𝜃𝑅(𝐼1, 𝐸𝑎) + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1) + 𝑝(𝜙𝑄 − 𝐸(𝑋, 𝐼1))] = 0. (D.6)

Regulator problem. The regulator sets the amount of emissions 𝑄. Con-
dition (D.4), together with the market clearing for permits, 𝑄 = 𝐸𝑎, 
jointly determine a mapping from 𝑝 to 𝐸𝑎. Thus, the regulator can 
implement a desired market price of permits by altering the total 
quantity of permits. Consequently, we can solve the regulator’s problem 
as maximizing social welfare at 𝑡 = 1 by choosing 𝑝, analogous to 
the regulator problem with emission taxes in Eq. (B.6). The first order 
condition of the regulator is: 

𝑟(𝛾,𝑋∗, 𝐼∗1 )
𝜕𝐼∗1
𝜕𝑝

− (𝛾 − 𝑝)
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝑝
+ 𝜅𝑝 = 0 (D.7)

To find 𝜕𝑋∗∕𝜕𝑝, we take a total derivative of (D.4) with respect to 𝑝. 
This yields: 

𝜕𝑋∗

𝜕𝑝
=

𝜕𝐸(𝑋,𝐼1)
𝜕𝑋 − 𝜕2𝑁(𝑋,𝐼1 ,𝑝)

𝜕𝑋𝜕𝐼1
𝜕𝐼1
𝜕𝑝

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

(D.8)

To find 𝜕𝐼∗1 ∕𝜕𝑝 take a total derivative of (D.6) with respect to 𝑝, keeping 
in mind that 𝜙𝑄 = 𝜙𝐸𝑎. 

𝜕𝐼∗1
𝜕𝑝

=
(1 − 𝜙)𝐸(𝑋∗, 𝐼∗1 ) − (𝜙𝑝 − 𝜃𝛾𝑝) 𝜕𝐸(𝑋,𝐼1)𝜕𝑋

𝜕𝑋∗

𝜕𝑝

𝑟(𝑝(1 − 𝜙) − 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )
(D.9)

In the baseline model we can define 𝜕𝑋∗∕𝜕𝜏 = 𝑔𝑋 (𝜏, 𝜓) and 𝜕𝐼∗1 ∕𝜕𝜏 =
𝑔𝐼 (𝜏, 𝜓). Comparing (B.1) with (D.8) and (B.2) with (D.9), it is straight-
forward that 𝜕𝑋∗∕𝜕𝑝 = 𝑔𝑋 (𝑝, 𝜙) and 𝜕𝐼∗1 ∕𝜕𝑝 = 𝑔𝐼 (𝑝, 𝜙). Thus, the first 
order condition of the regulator’s problem in the baseline model (11) is 
equivalent to the first order condition of the problem of choosing 𝑄 to 
implement 𝑝 taking as given 𝜙, given by (D.7). The two problems are 
exactly the same if 𝜓 = 𝜙. This proves the statement in Proposition  5.
Effect of free permits on aggregate emissions (Lemma  3). We now turn 
to understanding the effect of free allocation of permits on aggregate 
emissions. Let 𝑄𝑓  denote the number of permits that the regulator 
allocates for free to borrowers. Using this notation, the complementary 
slackness condition of the borrower is equivalent to (D.6) with 𝑄𝑓
taking the place of 𝜙𝑄.

To isolate the effect of allocating permits for free, we aim to perform 
a comparative statics exercise in which the price of permits remains 
constant. That is, we evaluate the effect of increasing 𝑄𝑓  on the demand 
for permits by borrowers 𝐸𝑑 at a given permit price 𝑝. We note that this 
implies the total supply of permits may need to adjust to keep 𝑝 fixed. 
The effect of free permits on the demand for permits, for a given price 
𝑝, is 
𝜕𝐸𝑑

𝜕𝑄𝑓
|

|

|

|𝑝
=
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝑄𝑓
|

|

|

|𝑝
+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1

𝜕𝐼∗1
𝜕𝑄𝑓

|

|

|

|𝑝
. (D.10)

We thus need to find 𝜕𝑋∗∕𝜕𝑄𝑓 |𝑝 and 𝜕𝐼1∕𝜕𝑄𝑓 |𝑝. To do that notice that 
Eqs. (D.4) and (D.6) (where 𝑄𝑓  takes the place of 𝜙𝑄) respectively 
define 𝑋∗ = 𝑓 (𝐼1, 𝑝) and 𝐼∗1 = 𝑔(𝑋, 𝑝,𝑄𝑓 ). This implies
𝜕𝑋∗

𝜕𝑄𝑓
|

|

|

|𝑝
=
𝜕𝑓
𝜕𝐼1

𝜕𝐼1
𝜕𝑄𝑓

= 𝜕𝑋∗

𝜕𝐼1

𝜕𝐼1
𝜕𝑄𝑓

,

𝜕𝐼∗1
𝜕𝑄𝑓

|

|

|

|𝑝
=
𝜕𝑔
𝜕𝑋

𝜕𝑋
𝜕𝑄𝑓

+
𝜕𝑔
𝜕𝑄𝑓

=
𝜕𝐼∗1
𝜕𝑋

𝜕𝑋
𝜕𝑄𝑓

+
𝜕𝐼∗1
𝜕𝑄𝑓

.

Next we differentiate (D.6) with respect to 𝑋 to find 𝜕𝐼∗1 ∕𝜕𝑋:

𝑟(𝑝)
𝜕𝐼∗1
𝜕𝑋

−
(

𝑝
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

)

= 0 ⇒
𝜕𝐼∗1
𝜕𝑋

= 0.

where we use that FOC (D.4) implies 𝑝𝜕𝐸(𝑋, 𝐼1)∕𝜕𝑋+𝜕𝐶(𝑋, 𝐼1)∕𝜕𝑋 = 0. 
Differentiating (D.6) in which 𝑄𝑓  takes the place of 𝜙𝑄, with respect 
to 𝑄𝑓 :

𝑟(𝑝)
𝜕𝐼∗1
𝜕𝑄𝑓

+ 𝑝 = 0 ⇒
𝜕𝐼∗1
𝜕𝑄𝑓

=
−𝑝
𝑟(𝑝)

.

Differentiating (D.4) with respect to 𝐼1 to find 𝜕𝑋∗∕𝜕𝐼1 yields:
(

𝑝
𝜕2𝐸(𝑋, 𝐼1)
𝜕𝑋𝜕𝐼1

+
𝜕2𝐶(𝑋, 𝐼1)
𝜕𝑋𝜕𝐼1

)

+
(

𝑝
𝜕2𝐸(𝑋, 𝐼1)

𝜕𝑋2
+
𝜕2𝐶(𝑋, 𝐼1)

𝜕𝑋2

)

𝜕𝑋∗

𝜕𝐼1
= 0

⇒
𝜕𝑋∗

𝜕𝐼1
= −

𝑝 𝜕
2𝐸(𝑋,𝐼1)
𝜕𝑋𝜕𝐼1

+ 𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

=

𝜕2𝑁(𝑝,𝑋,𝐼1)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

.

Using these in (D.10) yields
𝜕𝐸𝑑

𝜕𝑄𝑓
|

|

|

|𝑝
=
(

𝜕𝐸(𝑋, 𝐼1)
𝜕𝑋

𝜕𝑋∗

𝜕𝐼1
+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1

) 𝜕𝐼∗1
𝜕𝑄𝑓

=

⎛

⎜

⎜

⎜

⎝

𝜕𝐸(𝑋, 𝐼1)
𝜕𝑋

𝜕2𝑁(𝑝,𝑋,𝐼1)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1

⎞

⎟

⎟

⎟

⎠

(−𝑝)
𝑟(𝑝)

.

Since 𝑟(𝑝) < 0, we get that 𝜕𝐸𝑑∕𝜕𝑄𝑓 |𝑝 < 0 if and only if
⎛

⎜

⎜

⎜

⎝

𝜕𝐸(𝑋, 𝐼1)
𝜕𝑋

𝜕2𝑁(𝑝,𝑋,𝐼1)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1

⎞

⎟

⎟

⎟

⎠

< 0,
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Plugging back in 𝜕𝑋∗∕𝜕𝐼1 =
(

𝜕2𝑁(𝑝,𝑋, 𝐼1)∕𝜕𝑋𝜕𝐼1
)

×
(

𝜕2𝐶(𝑋, 𝐼1)∕𝜕𝑋2)−1 yields the condition stated in Lemma  3.

Appendix E. Initial leverage choice

E.1. Changes to the setup

The key changes to the model are described in the main text in 
Section 5.1. Additionally, there is a 𝑡 = 0 budget constraint and a 
revised 𝑡 = 1 budget constraint given by, respectively, 
𝑐0 + 𝐼0 − 𝑑0 = 𝐴𝑏, (E.1)

𝑐1 + 𝑑0 + 𝐶(𝑋, 𝐼1) = 𝜇(𝐼1 − 𝐼0) + 𝑑1, (E.2)

where the borrowers’ inside equity in the project is 𝑒 = 𝐼0 − 𝑑0. We 
do not restrict 𝑑0 to be positive, so it should be interpreted as net debt 
between 𝑡 = 0 and 𝑡 = 1.

E.2. Restated borrower problem

Throughout our analysis, we focus on the case in which the bor-
rower finds it optimal to start the project at 𝑡 = 0, rather than to 
forgo it and consume all of the endowment. We first show that the 
necessary condition for this is that the model parameters are such that 
the borrower’s optimal initial debt satisfies 𝑑∗0 < 𝜇𝐼0. To see this, 
suppose that the borrower would like to borrow 𝑑0 > 𝜇𝐼0 at 𝑡 = 0. Since 
the borrower’s financial slack at 𝑡 = 1 decreases in 𝐼1, by Assumption 
2.2, the overall resources that are available to the borrower at 𝑡 = 1 are 
maximized at 𝐼1 = 𝐼0 where they equal 𝜇𝐼0. Hence, a borrower with 
initial debt of 𝑑0 > 𝜇𝐼0 would have to default. This, combined with the 
fact that investors can force liquidation of the assets and appropriate all 
liquidation proceeds, implies a 𝑡 = 0 constraint on borrowing given by 
𝑑0 ≤ 𝜇𝐼0. Would borrowers want to borrow to the point where this 
constraint just binds, 𝑑0 = 𝜇𝐼0? In this case, investors would force 
liquidation at 𝑡 = 1 to recoup their initial debt because 𝜇𝐼0 is the 
highest pledgeable income. Thus, borrower utility would be given by 
𝑢(𝐴𝑏−𝐼0(1−𝜇)). But this is dominated by forgoing the project and fully 
consuming the endowment at 𝑡 = 0, which gives the borrower 𝑢(𝐴𝑏). 
Therefore, borrowers would always forgo the project if the optimal 
𝑑∗0 ≥ 𝜇𝐼0. This motivates our focus on parameter ranges in which the 
optimal initial debt is such that 𝑑∗0 < 𝜇𝐼0. In this range, the 𝑡 = 0
borrowing constraint is always slack.

Thus, if the borrower finds it optimal to start the project, the 
modified version of the Lagrangian (A.2) in the presence of the ex-ante 
leverage choice is given by 

max
𝑋,𝐼1 ,𝑑1 ,𝑒

 =𝑢(𝐴0 − 𝑒) + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1) + 𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝑇

+ 𝜆
[

𝜃𝑅(𝐼1, 𝐸𝑎) − 𝜏𝐸(𝑋, 𝐼1) + 𝜓𝑇 − 𝑑1
]

+ 𝜅𝐼𝐼1 + 𝜅𝐼 [𝐼0 − 𝐼1]

+ 𝜅𝑐1
[

𝑑1 + 𝑒 − 𝐼0 + 𝜇(𝐼0 − 𝐼1) − 𝐶(𝑋, 𝐼1)
]

.

(E.3)

The first order conditions with respect to 𝑋 and 𝐼1 are the same as in 
the baseline model (8) and (9), as stated in the main text. Similarly, 
the first order condition w.r.t. 𝑑1 implies that 𝜆 = 𝜅𝑐1  as in the baseline 
model. This implies we can again combine the complementary slack-
ness condition of the financial constraint (5) and the non-negativity 
constraint for 𝑐1 in (6), which results in the modified condition (17) 
stated in the main text.

E.3. Proof of Proposition  6

Consider the problem of a regulator who maximizes social welfare 
by choosing 𝑒 at 𝑡 = 0 and 𝜏 at 𝑡 = 1. The first order condition with 

respect to 𝜏 is given by Eq. (11). This implies that the optimal tax is 
still characterized by Proposition  3, as stated in the main text.

The first order conditions of the regulator with respect to 𝑒 is 
𝑢′(𝐴𝑏 − 𝑒)

= 1 + 𝑟(𝛾,𝑋∗, 𝐼∗1 )
𝜕𝐼∗1
𝜕𝑒

−
(

𝛾
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
+
𝜕𝐶(𝑋, 𝐼1)

𝜕𝑋

)

𝜕𝑋∗

𝜕𝑒
(E.4)

To get Eq. (19) in the main text, combine this FOC with the borrower’s 
FOC w.r.t. 𝑋, (8), and totally differentiate (8) with respect to 𝑒 to find: 

𝜕𝑋∗

𝜕𝑒
= 𝜕𝑋∗

𝜕𝐼1

𝜕𝐼∗1
𝜕𝑒

. (E.5)

Effect of equity on liquidations and abatement. To derive the result in 
Proposition  6, we first find 𝜕𝐼

∗
1

𝜕𝑒  and 𝜕𝑋∗

𝜕𝐼∗1
, which are needed to further 

expand Eq. (E.4).
Totally differentiating (8) with respect to 𝐼1 allows us to find 

𝜕𝑋∗

𝜕𝐼1
=

𝜕2𝑁(𝑋,𝐼1 ,𝜏)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

(E.6)

where we use 𝑁(𝑋, 𝐼1, 𝜏) = −𝜏𝐸(𝑋, 𝐼1) − 𝐶(𝑋, 𝐼1).
If 𝜆∗(𝜏) = 0, then 𝐼∗1 = 𝐼0, so 𝜕𝐼∗1 ∕𝜕𝑒 = 0 and 𝜕𝑋∗∕𝜕𝑒 = 0. If 

𝜆∗(𝜏) > 0, the interior solution of 𝐼∗1 (𝜏) is pinned down by (10). Totally 
differentiating (10) with respect to 𝑒 yields: 

𝜕𝐼∗1
𝜕𝑒

=
−1 − (𝜓𝜏 − 𝜃𝛾𝑝) 𝜕𝐸(𝑋,𝐼1)𝜕𝑋

𝜕𝑋∗

𝜕𝐼1

𝜕𝐼∗1
𝜕𝑒

𝑟(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )
(E.7)

Combining (E.5) and (E.7) and using the shorthand notation, yields:
𝜕𝐼∗1
𝜕𝑒

=
−𝐶 ′′

𝑋2

𝑟̃(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼

(E.8)

𝜕𝑋∗

𝜕𝑒
=

−𝑁 ′′
𝑋𝐼

𝑟̃(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼

(E.9)

The denominators of (E.8) and (E.9) are negative by Assumption  3 
in Appendix  B.1. The numerator of (E.8) is negative since 𝐶 ′′

𝑋2 > 0 by 
Assumption  1.1. This implies that 𝜕𝐼

∗
1

𝜕𝑒 > 0.
From (E.8), 𝜕𝑋∗∕𝜕𝑒 > 0 if and only if the cross-derivative 𝑁 ′′

𝑋𝐼 =
𝜕2𝑁(𝑋, 𝐼1, 𝜏)∕𝜕𝑋𝜕𝐼 > 0, with 𝑁(𝑋, 𝐼1, 𝜏) defined in Eq. (A.1). The 
economic interpretation of this cross-derivative being positive is that 
the net benefit of abatement is greater at a higher investment scale, for 
example, because there are economies of scale which make it cheaper 
to reduce emissions of a larger project. However, the effect of higher 
equity can alternatively be negative if 𝑁 ′′

𝑋𝐼 < 0.

Comparing private and socially optimal equity choice. Focusing on the 
case where the financial constraint binds and using (9), (E.8), and (E.9), 
we can further rewrite the regulator’s FOC (19) and the borrower’s FOC 
(18) as, respectively:

𝑢′(𝐴𝑏 − 𝑒) − 1 =
−𝑟(𝜏,𝑋∗, 𝐼∗1 )𝐶

′′
𝑋2 + (𝛾 − 𝜏)[𝐸′

𝐼𝐶
′′
𝑋2 + 𝐸

′
𝑋𝑁

′′
𝑋𝐼 ]

𝑟(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼
,

(E.10)

𝑢′(𝐴𝑏 − 𝑒) − 1 =
−𝑟(𝜏,𝑋∗, 𝐼∗1 )
𝑟̃(𝜏,𝑋∗, 𝐼∗1 )

. (E.11)

Comparing the two, borrowers choose an inefficiently low level of 
equity if and only if: 

−𝑟(𝜏,𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝛾 − 𝜏)[𝐸′

𝐼𝐶
′′
𝑋2 + 𝐸

′
𝑋𝑁

′′
𝑋𝐼 ]

𝑟(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶
′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼

>
−𝑟(𝜏,𝑋∗, 𝐼∗1 )
𝑟(𝜏,𝑋∗, 𝐼∗1 )

(E.12)

Note that under Assumption  3 stated in Appendix  B.1:
𝑟(𝜏(1 − 𝜓) + 𝜃𝛾𝑝, 𝑋∗, 𝐼∗1 )𝐶

′′
𝑋2 + (𝜓𝜏 − 𝜃𝛾𝑝)𝐸′

𝑋𝑁
′′
𝑋𝐼 < 0,
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and by Assumption  2: 𝑟̃(𝜏,𝑋∗, 𝐼∗1 ) < 0. Thus with some algebra, (E.12) 
becomes: 
⎛

⎜

⎜

⎜

⎝

𝜕𝐸(𝑋, 𝐼1)
𝜕𝐼1

+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋

𝜕2𝑁(𝑋,𝐼1 ,𝜏)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

⎞

⎟

⎟

⎟

⎠

×

[

(𝛾 − 𝜏) −
𝑟(𝜏,𝑋∗, 𝐼∗1 )
𝑟(𝜏,𝑋∗, 𝐼∗1 )

(𝜃𝛾𝑝 − 𝜓𝜏)

]

< 0.

(E.13)

To further simplify we use (E.6) to restate the first term of (E.13) 
as:

𝜕𝐸(𝑋, 𝐼1)
𝜕𝐼1

+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋

𝜕2𝑁(𝑋,𝐼1 ,𝜏)
𝜕𝑋𝜕𝐼1

𝜕2𝐶(𝑋,𝐼1)
𝜕𝑋2

=
𝜕𝐸(𝑋, 𝐼1)

𝜕𝐼1
+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝐼1
≡ 𝑑𝐸
𝑑𝐼1

Since 𝜕𝐼∗1 ∕𝜕𝑒 > 0 whenever 𝜆∗ > 0, we can express the condition in 
terms of 𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒, by using 𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒 = 𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝐼1 ×
𝜕𝐼∗1 ∕𝜕𝑒. Plugging in, the following condition characterizes whether 
borrowers choose a socially optimal level of equity 
𝑑𝐸(𝑋∗, 𝐼∗1 )

𝑑𝑒
[

𝛾 − 𝜏∗ + 𝜆
(

𝜃𝛾𝑝 − 𝜓𝜏∗
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
T-SCC wedge

= 0. (E.14)

Borrowers choose a lower level of equity than the regulator if the left-
hand side is smaller than zero. Conversely, borrowers choose a higher 
level of equity if the left-hand side is greater than zero, and the same 
level if it is equal to zero.

The left-hand side of Eq. (E.14) measures the gap in the marginal 
social and private values of increasing financial slack by contributing 
more equity. It consists of the marginal effect of equity on emissions, 
𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒, and a total social cost of carbon (T-SCC) wedge. The T-
SCC wedge reflects the difference between the direct social and private 
cost of emissions, 𝛾 − 𝜏, as well as the effect of emissions on pledgeable 
income due to collateral externality associated with physical climate 
impacts, and tax rebates, 𝜆 (𝜃𝛾𝑝 − 𝜓𝜏). From Proposition  4, the optimal 
emissions tax is equal to 𝜏𝐺𝑃  if 𝜓 = 1, which implies a zero T-SCC 
wedge and no motive for leverage regulation. By contrast, if 𝜓 < 1, the 
optimal emissions tax is below the generalized Pigouvian benchmark, 
so that the T-SCC wedge is positive and leverage regulation can improve 
welfare, as stated in Proposition  6.

E.4. The effect of equity on emissions

This subsection characterizes under what conditions equity has a 
positive or negative effect on emissions. If the financial constraint is 
slack, then 𝑑𝐸(𝑋∗, 𝐼∗1 )∕𝑑𝑒 = 0. To understand how leverage affects 
emissions when the financial constraint binds, note that: 

𝑑𝐸(𝑋∗, 𝐼∗1 )
𝑑𝑒

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝐸(𝑋, 𝐼1)
𝜕𝐼1

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Direct effect of 𝐼1

+
𝜕𝐸(𝑋, 𝐼1)

𝜕𝑋
𝜕𝑋∗

𝜕𝐼1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Indirect effect through 𝑋∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= 𝑑𝐸
𝑑𝐼1

𝜕𝐼∗1
𝜕𝑒

. (E.15)

Higher borrower equity relaxes financial constraints, which allows 
the borrower to liquidate less, and therefore implies a higher final 
investment scale, 𝜕𝐼∗1 ∕𝜕𝑒 > 0. The direct effect of a higher invest-
ment scale is an increase in emissions, captured by the first term in 
brackets in Eq. (E.15). At the same time, looser financial constraints 
affect the optimal abatement choice. This effect is captured by the 
second term in brackets in Eq. (E.15). Note that this is an indirect 
effect that depends on how the marginal cost and benefit of abate-
ment respond to changes in the final investment scale. As reflected 
in Eq. (E.6) the magnitude and direction of this effect depends on the 
cross-derivatives of 𝐶(𝑋, 𝐼1) and 𝐸(𝑋, 𝐼1), since 𝜕2𝑁(𝑋, 𝐼1, 𝜏)∕𝜕𝑋𝜕𝐼1 =
−𝜏𝜕2𝐸(𝑋, 𝐼1)∕𝜕𝑋𝜕𝐼1 − 𝜕2𝐶(𝑋, 𝐼1)∕𝜕𝑋𝜕𝐼1:

• The effect of higher equity on abatement is positive if abatement 
is more efficient at a higher investment scale: i.e. if
𝜕2𝑁(𝑋, 𝐼1, 𝜏)∕𝜕𝑋𝜕𝐼1 > 0.

• The effect of higher equity on abatement is negative if abatement 
is less efficient at a higher investment scale: i.e. if
𝜕2𝑁(𝑋, 𝐼1, 𝜏)∕𝜕𝑋𝜕𝐼1 < 0.

Since both the direct and indirect effects operate through the final 
investment scale, the overall sign of 𝑑𝐸∕𝑑𝑒 coincides with the sign of 
𝑑𝐸∕𝑑𝐼1. Using this insight, we can combine Eqs. (19) and (E.15) to 
parsimoniously describe the optimal leverage mandate.
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